Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
Molecules ; 29(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274862

RESUMEN

The chestnut tree (Castanea sativa Mill.) is a widespread plant in Europe, rich in high-value compounds, which can be divided mainly into monomeric polyphenols and tannins. These compounds exhibit various biological activities, such as antioxidant, as well as anticarcinogenic and antimicrobial properties. Chestnut wood (CW) extracts were prepared using different extraction techniques, process conditions, solvents, and their mixtures. This work aimed to test various extraction techniques and determine the optimal solvent for isolating enriched fractions of vescalagin, castalagin, vescalin, and castalin from CW residues. Supercritical CO2 extraction with a more polar cosolvent was applied at different pressures, which influenced solvent density. According to the results, the proportions of the components strongly depended on the solvent system used for the extraction. In addition, HPLC-DAD was used for semiqualitative purposes to detect vescalagin, castalagin, vescalin, and castalin. The developed valorization protocol allows efficient fractionation and recovery of the polyphenolic components of CW through a sustainable approach that also evaluates pre-industrial scaling-up.


Asunto(s)
Aesculus , Taninos Hidrolizables , Extractos Vegetales , Madera , Taninos Hidrolizables/química , Extractos Vegetales/química , Aesculus/química , Madera/química , Cromatografía Líquida de Alta Presión , Polifenoles/química , Polifenoles/análisis , Solventes/química , Antioxidantes/química
2.
J Agric Food Chem ; 72(34): 19051-19060, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39155698

RESUMEN

Walnut shells, often discarded as waste, hold hidden potential as a source of ellagitannins (ETs), compounds known for their promising antioxidant properties and health benefits. This study employed reversed-phase liquid chromatography (RPLC) coupled with Orbitrap-based high-resolution mass spectrometry (HRMS) via electrospray ionization (ESI) in negative polarity to investigate the ET profile in extracts of dried powdered walnut shells. Several compounds belonging to various ET families were successfully identified as deprotonated molecules ([M - H]-) and characterized, including mono-, di-, tri-, tetra-, and pentagalloyl glucopyranoses, as well as ETs containing the hexahydroxydiphenoyl (HHDP) group. Characteristic product ions were identified in HR tandem MS spectra and employed to recognize the ET landscape. Analysis revealed a complex picture with more than 10 isomers identified in some cases. However, the structural similarity and limitations in MS/MS data hindered the definitive identification of all isomers. Characterization of ETs featuring HHDP groups also remained challenging. Despite these restraints, the estimated total content of ETs suggests potential application in the food, pharmaceutical, and cosmetic industries of those extracts. These findings indicate that walnut shells can be considered a sustainable source of health-promoting compounds, contributing to a greener economy.


Asunto(s)
Taninos Hidrolizables , Juglans , Nueces , Extractos Vegetales , Espectrometría de Masas en Tándem , Taninos Hidrolizables/química , Taninos Hidrolizables/análisis , Juglans/química , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/química , Nueces/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Residuos/análisis , Estructura Molecular
3.
Sci Rep ; 14(1): 19585, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179615

RESUMEN

The World Health Organization (WHO) has declared the monkeypox outbreak a public health emergency, as there is no specific therapeutics for monkeypox virus (MPXV) disease. This study focused on docking various commercial drugs and plant-derived compounds against the E8 envelope protein crucial for MPXV attachment and pathogenesis. The target protein structure was modeled based on the vaccinia virus D8L protein. Notably, maraviroc and punicalagin emerged as potential ligands, with punicalagin exhibiting higher binding affinity (- 9.1 kcal/mol) than maraviroc (- 7.8 kcal/mol). Validation through 100 ns molecular dynamics (MD) simulations demonstrated increased stability of the E8-punicalagin complex, with lower RMSD, RMSF, and Rg compared to maraviroc. Enhanced hydrogen bonding, lower solvent accessibility, and compact motions also attributed to higher binding affinity and stability of the complex. MM-PBSA calculations revealed van der Waals, electrostatic, and non-polar solvation as principal stabilizing energies. The binding energy decomposition per residue favored stable interactions between punicalagin and the protein's active site residues (Arg20, Phe56, Glu228, Tyr232) compared to maraviroc. Overall study suggests that punicalagin can act as a potent inhibitor against MPXV. Further research and experimental investigations are warranted to validate its efficacy and safety.


Asunto(s)
Maraviroc , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas del Envoltorio Viral , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Maraviroc/química , Maraviroc/farmacología , Monkeypox virus/química , Monkeypox virus/metabolismo , Antivirales/química , Antivirales/farmacología , Enlace de Hidrógeno , Unión Proteica , Taninos Hidrolizables/química , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/metabolismo
4.
Molecules ; 29(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203029

RESUMEN

Castanea sativa Mill. (C. sativa) processing and pruning generate several by-products, including leaves, burs, and shells (inner and outer teguments), which are considered an important source of high-value phytochemicals. Ellagitannins from C. sativa leaf extracts have been described to impair H. pylori viability and inflammation in gastric cells. Furthermore, chestnut shells showed an important anti-inflammatory effect in gastric epithelial cells. Dietary polyphenols, including tannins, have been reported to interfere with targets of inflammation, including the nuclear factor κB (NF-κB). A promising role as a further therapeutical target for gut disorders has been recently proposed for the regulatory subunit of hypoxia-inducible factor (HIF-1α), as a potential stabilizer of intestinal barrier integrity. Therefore, the main objective of this work is the chemical characterization of several chestnut by-products (bud, spiny bur, wood, pericarp and episperm), together with the exploitation of their anti-inflammatory properties in intestinal cells, scavenging capacity, and stability following gastrointestinal digestion. The chemical characterization confirmed the presence of bioactive polyphenols in the extracts, including ellagitannins. In CaCo-2 cells stimulated by an IL-1ß-IFN-γ cocktail, nearly all chestnut by-products (50 µg/mL) inhibited the release of proinflammatory mediators (CXCL-10, IL-8, MCP-1, ICAM), along with the NF-κB-driven transcription, and induced the HRE-driven transcription. The stability of the most promising extracts, identified through PCA and cluster analysis, was addressed by in vitro gastrointestinal digestion. Despite the significant reduction in total polyphenol index of chestnut bud and wood after gastric and intestinal digestion, the activity of these extracts on both scavenging and anti-inflammatory parameters remained promising. These data contribute to exploit the potential of chestnut by-products as sources of dietary polyphenols with anti-inflammatory properties at the intestinal level. Moreover, this study could represent an important step to encourage the recycling and valorization of chestnut by-products, promoting the circular economy and reducing the environmental impact related to the management of agriculture waste.


Asunto(s)
Antiinflamatorios , Fagaceae , Extractos Vegetales , Humanos , Fagaceae/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células CACO-2 , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Polifenoles/farmacología , Polifenoles/química , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , FN-kappa B/metabolismo
5.
Biomacromolecules ; 25(8): 4856-4866, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38958474

RESUMEN

The pursuit of renewable and eco-friendly raw materials for biobased materials is a growing field. This study utilized ellagitannin and cellulose microfibrils derived from rambutan peel waste alongside gelatin to develop eco-conscious hydrogels. The cellulose/gelatin hydrogels were formulated in two weight ratios (0.5:1 to 1:1), and the influence of gelatin on the chemical composition and rheology was studied. Composite hydrogels, functionalized with an ellagitannin-rich extract, exhibited a remarkable enhancement of up to 14-fold in compressive strength. The hydrogels also demonstrated antimicrobial properties, reducing the Staphylococcus aureus colony count within 24 h. The hydrogel, derived from rambutan peel waste, is biocompatible and could potentially be explored for biomedical applications such as drug delivery systems, and wound dressings. This suggests that it might offer significant value for sustainable materials science, although specific applications have yet to be tested.


Asunto(s)
Celulosa , Gelatina , Hidrogeles , Taninos Hidrolizables , Staphylococcus aureus , Taninos Hidrolizables/química , Taninos Hidrolizables/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Gelatina/química , Celulosa/química , Staphylococcus aureus/efectos de los fármacos , Microfibrillas/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Reología , Antibacterianos/química , Antibacterianos/farmacología
6.
Eur J Pharmacol ; 977: 176750, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897439

RESUMEN

Dementia treatment has become a global research priority, driven by the increase in the aging population. Punicalagin, the primary polyphenol found in pomegranate fruit, exhibits a variety of benefits. Today, a growing body of research is showing that punicalagin is a nutraceutical for the prevention of mild cognitive impairment (MCI). However, a comprehensive review is still lacking. The aim of this paper is to provide a comprehensive review of the physicochemical properties, origin and pharmacokinetics of punicalagin, while emphasizing the significance and mechanisms of its potential role in the prevention and treatment of MCI. Preclinical and clinical studies have demonstrated that Punicalagin possesses the potential to effectively target and enhance the treatment of MCI. Potential mechanisms by which punicalagin alleviates MCI include antioxidative damage, anti-neuroinflammation, promotion of neurogenesis, and modulation of neurotransmitter interactions. Overall, punicalagin is safer and shows potential as a therapeutic compound for the prevention and treatment of MCI, although more rigorous randomized controlled trials involving large populations are required.


Asunto(s)
Disfunción Cognitiva , Suplementos Dietéticos , Taninos Hidrolizables , Granada (Fruta) , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/uso terapéutico , Taninos Hidrolizables/química , Humanos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/prevención & control , Granada (Fruta)/química , Animales , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
7.
J Org Chem ; 89(12): 9098-9102, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38861461

RESUMEN

We report the first total synthesis of scleropentaside D, a unique C-glycosidic ellagitannin, from the ketal derivative of scleropentaside A employing site-selective O4-protection of C-acyl glycoside and copper-catalyzed oxidative coupling reaction of galloyl groups as the key steps. Our study confirms the proposed structure of this natural product, scleropentaside D, and demonstrates its effectiveness as an inhibitor of α-glycosidase.


Asunto(s)
Taninos Hidrolizables , Taninos Hidrolizables/química , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/síntesis química , Estructura Molecular , Glicósidos/química , Glicósidos/síntesis química , Glicósidos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Catálisis
8.
Int J Biol Macromol ; 273(Pt 1): 133111, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876238

RESUMEN

In this study, we developed punicalagin-loaded antimicrobial films based on soy protein isolate (SPI) and apple pectin (AP). The AP was derived from apple pomace waste while the punicalagin was obtained from pomegranate peel. Punicalagin was identified to exist in both α- and ß-isomers, with the ß-type being predominant. The composite films were characterized using scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Our results demonstrated that the incorporation of AP significantly enhanced the mechanical strength, heat resistance, and barrier properties of the films. Moreover, the composite films integrated with punicalagin exhibited excellent antimicrobial activities against Staphylococcus aureus (with a minimum bactericidal concentration value of 0.25 %), Escherichia coli (with a minimum bactericidal concentration value of 0.50 %), and Aspergillus niger. Finally, these antimicrobial film solutions were tested as coatings on strawberries and found to have significantly better effects on reducing weight loss, improving shelf-life, and maintaining the freshness of strawberries compared to coatings without punicalagin. The results indicate that antimicrobial coatings loaded with punicalagin hold great promise as multifunctional active packaging materials for fruit preservation.


Asunto(s)
Películas Comestibles , Conservación de Alimentos , Fragaria , Taninos Hidrolizables , Malus , Pectinas , Proteínas de Soja , Proteínas de Soja/química , Fragaria/química , Pectinas/química , Pectinas/farmacología , Malus/química , Taninos Hidrolizables/química , Taninos Hidrolizables/farmacología , Conservación de Alimentos/métodos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Staphylococcus aureus/efectos de los fármacos , Embalaje de Alimentos/métodos , Escherichia coli/efectos de los fármacos
9.
Biomolecules ; 14(6)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38927069

RESUMEN

The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.


Asunto(s)
Enterocitos , Taninos Hidrolizables , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Células CACO-2 , Enterocitos/efectos de los fármacos , Enterocitos/metabolismo , Humanos , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/química , Estrés Oxidativo/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo
10.
Int J Pharm ; 660: 124333, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38866080

RESUMEN

Geraniin (GE), an ellagitannin (ET) renowned for its promising health advantages, faces challenges in its practical applications due to its limited bioavailability. This innovative and novel formulation of GE and soy-phosphatidylcholine (GE-PL) complex has the potential to increase oral bioavailability, exhibiting high entrapment efficiency of 100.2 ± 0.8 %, and complexation efficiency of 94.6 ± 1.1 %. The small particle size (1.04 ± 0.11 µm), low polydispersity index (0.26 ± 0.02), and adequate zeta potential (-26.1 ± 0.12 mV), indicate its uniformity and stability. Moreover, the formulation also demonstrates improved lipophilicity, reduced aqueous and buffer solubilities, and better partition coefficient. It has been validated by various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies. Oral bioavailability and pharmacokinetics of free GE and GE-PL complex investigated in rabbits demonstrated enhanced plasma concentration of ellagic acid (EA) compared to free GE. Significantly, GE, whether in its free form or as part of the GE-PL complex, was not found in the circulatory system. However, EA levels were observed at 0.5 h after administration, displaying two distinct peaks at 2 ± 0.03 h (T1max) and 24 ± 0.06 h (T2max). These peaks corresponded to peak plasma concentrations (C1max and C2max) of 588.82 ng/mL and 711.13 ng/mL respectively, signifying substantial 11-fold and 5-fold enhancements when compared to free GE. Additionally, it showed an increased area under the curve (AUC), the elimination half-life (t1/2, el) and the elimination rate constant (Kel). The formulation of the GE-PL complex prolonged the presence of EA in the bloodstream and improved its absorption, ultimately leading to a higher oral bioavailability. In summary, the study highlights the significance of the GE-PL complex in overcoming the bioavailability limitations of GE, paving the way for enhanced therapeutic outcomes and potential applications in drug delivery and healthcare.


Asunto(s)
Disponibilidad Biológica , Glucósidos , Taninos Hidrolizables , Animales , Conejos , Taninos Hidrolizables/farmacocinética , Taninos Hidrolizables/química , Taninos Hidrolizables/administración & dosificación , Glucósidos/farmacocinética , Glucósidos/química , Glucósidos/administración & dosificación , Glucósidos/sangre , Administración Oral , Masculino , Tamaño de la Partícula , Fosfatidilcolinas/química , Solubilidad , Química Farmacéutica/métodos , Ácido Elágico/farmacocinética , Ácido Elágico/química , Ácido Elágico/administración & dosificación , Ácido Elágico/sangre , Taninos/química , Taninos/farmacocinética , Taninos/administración & dosificación
11.
Food Funct ; 15(13): 7189-7199, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38895881

RESUMEN

Some strains of Lactiplantibacillus plantarum produce specific tannases that could enable the metabolism of ellagitannins into more bioavailable phenolic metabolites, thereby promoting the health effects of these polyphenols. However, the metabolic ability of these strains remains poorly understood. In this study, we analyzed the ability of broad esterase-producing (Est_1092+) and extracellular tannase-producing (TanA+) strains to convert a wide assortment of ellagitannins from camu-camu (Myrciaria dubia) fruit. To this end, forty-three strains were screened to identify and sequence (WGS) those producing Est_1092. In addition, six previously reported TanA+ strains were included in the study. Each strain (Est_1092+ or TanA+) was inoculated into a minimal culture medium supplemented with an aqueous camu-camu extract. After fermentation, supernatants were collected for semi-quantification of ellagitannins and their metabolites by mass spectrometry. For analysis, the strains were grouped according to their enzyme type and compared with an Est_1092 and TanA-lacking strain. Out of the forty-three isolates, three showed Est_1092 activity. Of the Est_1092+ and TanA+ strains, only the latter hydrolyzed the tri-galloyl-HHDP-glucose and various isomers of HHDP-galloyl-glucose, releasing HHDP-glucose and gallic acid. TanA+ strains also transformed three isomers of di-HHDP-galloyl-glucose, liberating di-HHDP-glucose and gallic acid. Overall, TanA+ strains released 3.6-4.9 times more gallic acid than the lacking strain. In addition, those exhibiting gallate decarboxylase activity pursued gallic acid metabolism to release pyrogallol. Neither Est_1092+ nor TanA+ strains transformed ellagitannin-core structures. In summary, TanA+ L. plantarum strains have the unique ability to hydrolyze a wide range of galloylated ellagitannins, releasing phenolic metabolites with additional health benefits.


Asunto(s)
Biotransformación , Hidrolasas de Éster Carboxílico , Taninos Hidrolizables , Taninos Hidrolizables/metabolismo , Taninos Hidrolizables/química , Hidrolasas de Éster Carboxílico/metabolismo , Fermentación , Proteínas Bacterianas/metabolismo , Frutas , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología
12.
Molecules ; 29(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893299

RESUMEN

The pomegranate processing industry generates worldwide enormous amounts of by-products, such as pomegranate peels (PPs), which constitute a rich source of phenolic compounds. In this view, PPs could be exploited as a sustainable source of ellagic acid, which is a compound that possesses various biological actions. The present study aimed at the liberation of ellagic acid from its bound forms via ultrasound-assisted alkaline hydrolysis, which was optimized using response surface methodology. The effects of duration of sonication, solvent:solid ratio, and NaOH concentration on total phenol content (TPC), antioxidant activity, and punicalagin and ellagic acid content were investigated. Using the optimum hydrolysis conditions (i.e., 32 min, 1:48 v/w, 1.5 mol/L NaOH), the experimental responses were found to be TCP: 4230 ± 190 mg GAE/100 g dry PPs; AABTS: 32,398 ± 1817 µmol Trolox/100 g dry PPs; ACUPRAC: 29,816 ± 1955 µmol Trolox/100 g dry PPs; 59 ± 3 mg punicalagin/100 g dry PPs; and 1457 ± 71 mg ellagic acid/100 g dry PPs. LC-QTOF-MS and GC-MS analysis of the obtained PP extract revealed the presence of various phenolic compounds (e.g., ellagic acid), organic acids (e.g., citric acid), sugars (e.g., fructose) and amino acids (e.g., glycine). The proposed methodology could be of use for food, pharmaceutical, and cosmetics applications, thus reinforcing local economies.


Asunto(s)
Antioxidantes , Ácido Elágico , Granada (Fruta) , Ácido Elágico/química , Granada (Fruta)/química , Hidrólisis , Antioxidantes/química , Fenoles/química , Fenoles/análisis , Extractos Vegetales/química , Taninos Hidrolizables/química , Frutas/química
13.
Molecules ; 29(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38792262

RESUMEN

Chebulae Fructus (CF) is known as one of the richest sources of hydrolyzable tannins (HTs). In this study, ultra-performance liquid chromatography coupled with a photodiode array detector method was established for simultaneous determination of the 12 common phenolcarboxylic and tannic constituents (PTCs). Using this method, quantitative analysis was accomplished in CF and other four adulterants, including Terminaliae Belliricae Fructus, Phyllanthi Fructus, Chebulae Fructus Immaturus, and Canarii Fructus. Based on a quantitative analysis of the focused compounds, discrimination of CF and other four adulterants was successfully accomplished by hierarchical cluster analysis and principal component analysis. Additionally, the total contents of the 12 compounds that we focused on in this study were unveiled as 148.86 mg/g, 96.14 mg/g, and 18.64 mg/g in exocarp, mesocarp, and endocarp and seed of CF, respectively, and PTCs were witnessed to be the most abundant in the exocarp of CF. Noticeably, the HTs (chebulagic acid, chebulanin acid, chebulinic acid, and punicalagin) were observed to be ultimately degraded to chebulic acid, gallic acid, and ellagic acid during sunlight-drying of the fresh fruits. As a result, our study indicated that CF and its adulterants could be distinguished by the observed 12 PTCs, which were mainly distributed in the exocarp of the fruits. The HTs were prone to degrade into the three simple phenolcarboxylic acids during drying or processing, allowing us to obtain a more comprehensive understanding of the PTCs, with great significance in the improved quality of CF and related products.


Asunto(s)
Frutas , Taninos Hidrolizables , Taninos Hidrolizables/química , Taninos Hidrolizables/análisis , Frutas/química , Cromatografía Líquida de Alta Presión , Terminalia/química , Taninos/análisis , Taninos/química , Extractos Vegetales/química , Extractos Vegetales/análisis
14.
J Ethnopharmacol ; 332: 118356, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38763372

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Parasitic infections impose a significant burden on public health worldwide. European pharmacopoeia records and ethnopharmacological studies indicate that Hagenia abyssinica (Bruce) J.F. Gmel. has traditionally been used to treat a variety of parasitic infections, while the potential antiparasitic compounds remain ambiguous. AIM OF THE STUDY: Acetylcholinesterase (AChE), lactate dehydrogenases (LDH), and glutathione reductase (GR) are the key target enzymes in the survival of parasites. The aim of our work was to screen antiparasitic compounds targeting AChE, LDH, and GR from H. abyssinica. MATERIALS AND METHODS: Ultrafiltration-liquid chromatography-mass spectrometry (UF-LC-MS) combined with molecular docking was used in this study. Therein, the alamarBlue® and Ellman's methods were employed to reveal the antitrypanosomal effect and AChE inhibitory activity. Meanwhile, the UF-LC-MS was carried out to screen the potential active compounds from H. abyssinica. Subsequently, molecular docking was performed to evaluate the binding mechanisms of these active compounds with AChE, LDH, and GR. Finally, the AChE inhibitory activity of potential inhibitors was detected in vitro. RESULTS: H. abyssinica exhibited significant antitrypanosomal and AChE inhibitory activity. Corilagin, brevifolin carboxylic acid, brevifolin, quercetin, and methyl ellagic acid were recognized as potential AChE inhibitors by UF-LC-MS, while methyl brevifolin carboxylate was identified as AChE, LDH, and GR multi-target inhibitor, with binding degree ranged from 20.96% to 49.81%. Molecular docking showed that these potential inhibitors had a strong affinity with AChE, LDH, and GR, with binding energies ranging from -6.98 to -9.67 kcal/mol. These findings were further supported by the observation that corilagin, quercetin, brevifolin carboxylic acid, and methyl brevifolin carboxylate displayed significant AChE inhibitory activity compared with the positive control (gossypol, 0.42 ± 0.04 mM), with IC50 values of 0.15 ± 0.05, 0.56 ± 0.03, 0.99 ± 0.01, and 1.02 ± 0.03 mM, respectively. CONCLUSIONS: This study confirms the antiparasitic potential of H. abyssinica, supporting the traditional use of H. abyssinica in local ethnopharmacology to treat parasites. At the same time, corilagin, brevifolin carboxylic acid, brevifolin, quercetin, methyl ellagic acid, and methyl brevifolin carboxylate exert their anti-parasitic effects by inhibiting AChE, LDH, and GR, and they are expected to be natural lead compounds for the treatment of parasitic diseases.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Glutatión Reductasa , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Extractos Vegetales , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glutatión Reductasa/antagonistas & inhibidores , Glutatión Reductasa/metabolismo , Acetilcolinesterasa/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , Ultrafiltración , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Antiparasitarios/farmacología , Antiparasitarios/química , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/química , Cromatografía Líquida con Espectrometría de Masas
15.
Chem Pharm Bull (Tokyo) ; 72(4): 349-359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556326

RESUMEN

Ellagitannins, a class of polyphenols with divergent structures, have attracted considerable attention from synthetic organic chemists. The basic structures in ellagitannins contain esters of D-glucose with galloyl or hexahydroxyldiphenoyl groups, as well as diaryl ether structures. Thus, the synthesis methodologies of such components have been developed by various groups, including our group. This review describes the synthetic methods reported by our group during 2017-2023, aimed at increasing the number of ellagitannins that can be chemically synthesized. In addition, recent related reports are introduced.


Asunto(s)
Taninos Hidrolizables , Polifenoles , Taninos Hidrolizables/química , Polifenoles/química
16.
J Nat Prod ; 87(4): 652-663, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38359463

RESUMEN

Castanea sativa wood is a rich source of hydrolyzable tannins, known for their diverse bioactivities. To investigate these bioactive properties further, it is crucial to isolate and characterize hydrophilic compounds effectively. To address this issue, we developed a centrifugal partition chromatography (CPC) method and applied it to an aqueous C. sativa wood extract. We determined the partition coefficients (KD) of the six major compounds using four butanol-/water-based biphasic solvent systems. Initially, we utilized the n-butanol/propanol/water (3:1:4, v/v/v) systems for the first fractionation step. Subsequently, we employed the water/methyl tert-butyl ether/butanol/acetone (8:5:3:4, v/v/v/v) system to fractionate moderately and highly hydrophilic fractions. We calculated the KD values for major compounds of the most hydrophilic fractions using the butanol/ethanol/water (4:1:5, v/v/v) and butanol/isopropanol/water (2:1:3, v/v/v) systems. In total, we isolated 23 compounds through a combination of CPC, size exclusion chromatography, and preparative HPLC. Among these compounds, six have never been previously described. We characterized them by 1D and 2D NMR experiments and high-resolution mass spectroscopy acquisitions.


Asunto(s)
Fagaceae , Taninos Hidrolizables , Taninos Hidrolizables/química , Taninos Hidrolizables/aislamiento & purificación , Fagaceae/química , Estructura Molecular , Madera/química , Extractos Vegetales/química
17.
Yakugaku Zasshi ; 144(2): 183-195, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38296496

RESUMEN

Tannins are a group of polyphenols that possess the ability to precipitate proteins, causing an undesirable astringent taste by interacting with salivary peptides. This interaction deactivates the digestive enzymes; therefore, tannins are considered as plant defense substances. The health benefits of tannins and related polyphenols in foods and beverages have been demonstrated by biological and epidemiological studies; however, their metabolism in living plants and the chemical changes observed during processing of foods and medicinal herbs raises some questions. This review summarizes our studies concerning dynamic changes observed in tannins. Ellagitannins present in the young leaves of Camellia japonica and Quercus glauca undergo oxidative degradation as the leaves mature. Similar oxidative degradation is also observed in whiskey when it is kept for aging in oak barrels, and in decaying wood caused by fungi in natural forests. In contrast, ellagitannins have been observed to undergo reduction in the leaves of Carpinus, Castanopsis, and Triadica species as the leaves mature. This phenomenon of reductive metabolism in leaves enabled us to propose a new biosynthetic pathway for the most fundamental ellagitannin acyl groups, which was also supported by biomimetic synthetic studies. Polyphenols undergo dynamic changes during the process of food processing. Catechin in tea leaves undergo oxidation upon mechanical crushing to generate black tea polyphenols. Though detailed production mechanisms of catechin dimers have been elucidated, structures of thearubigins (TRs), which are complex mixtures of oligomers, remain ambiguous. Our recent studies suggested that catechin B-ring quinones couple with catechin A-rings during the process of oligomerization.


Asunto(s)
Catequina , Taninos , Taninos/química , Taninos/metabolismo , Taninos Hidrolizables/química , Taninos Hidrolizables/metabolismo , Catequina/química , Catequina/metabolismo , Polifenoles , Té/química , Oxidación-Reducción
18.
Int J Biol Macromol ; 253(Pt 7): 127485, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37863140

RESUMEN

Tannins, also known as plant polyphenols (PPs), are secondary metabolites widely existing in higher plants and are a kind of natural renewable resource with wide distribution, variety and quantity. Tannin has become an important class of fine chemicals due to the easily modified molecular structure and the properties of antibacterial and antioxidant, combining with protein and complexing with metal ion. Besides being used for tanning leather, tannins are also widely used in wood adhesive, concrete water-reducing agents, oil drilling fluid viscosity-reducing agents, pharmaceutical, mineral processing, water treatment, gas desulfurization, metal anticorrosion, wood anticorrosion, printing and dyeing, liquor clarification, oil antioxidant, daily chemical products and other products preparation. There are two groups of tannins: condensed tannins (CTs) (flavonoid-derived proanthocyanidins) and hydrolysable tannins (HTs) (gallic acid ester-derived). Tannins can form complexes with metals through the ortho-dihydroxyphenolic group(s), especially with transition metals. The structure-activity relationships, stoichiometry, and origin of the insolubility of which were emphasized. Furthermore, this paper proposed an in-depth discussion of the associations of tannins-metal complexes in human health, environment and industries.


Asunto(s)
Proantocianidinas , Taninos , Humanos , Taninos/química , Antioxidantes/farmacología , Antioxidantes/química , Sustancias Reductoras , Polifenoles , Taninos Hidrolizables/química
19.
Molecules ; 28(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37513244

RESUMEN

Food, feed and beverage processing brings tannins into contact with macromolecules, such as proteins and polysaccharides, leading to different chemical and physical interactions. The interactions of tannins with proteins are well known but less is known about the affinity of tannins to polysaccharides. We used bacterial cellulose from nata de coco as a model compound to investigate how tannins and cellulose interact by adsorption measurements using UPLC-DAD. We also explored how the structure of tannins influences these interactions. The model tannins included nine individual structurally different hydrolysable tannins (HTs) and eight well-defined proanthocyanidin (PA) fractions with different monomeric units, mean degree of polymerization and both A- and B-type linkages. Tannins were found to have both strong and weak interactions with bacterial cellulose, depending on the exact structure of the tannin. For HTs, the main structural features affecting the interactions were the structural flexibility of the HT molecule and the number of free galloyl groups. For PAs, prodelphinidins were found to have a higher affinity to cellulose than procyanidins. Similarly to HTs, the presence of free galloyl groups in galloylated PAs and the flexibility of the PA molecule led to a stronger interaction. Adsorption measurements by UPLC-DAD proved to be a sensitive and rapid tool to evaluate the affinity of tannins to cellulose.


Asunto(s)
Celulosa , Taninos , Taninos/química , Extractos Vegetales/química , Taninos Hidrolizables/química , Polisacáridos
20.
Chemistry ; 29(41): e202301096, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37162021

RESUMEN

Stachyurin and casuarinin are ellagitannins, a class of polyphenols that exhibit various biological activities that have an impact on human health. Casuarinin is a stachyurin stereoisomer. These compounds contain the characteristic C-glycosidic bond between the open-chain d-glucose and the phenol aromatic ring. Therefore, chemical elucidation of the C-glycosidic bond reactivity is required to exploit their multiple bioactivities. This study developed a method for the divergent synthesis of stachyurin and casuarinin via the α-selective C-glycosylation as well as the ß-selective introduction of the oxygen functional group, focusing on structural specificity. The proposed method applies to the syntheses of stachyurin and casuarinin analogues, thereby facilitating the utilisation of their beneficial bioactivities.


Asunto(s)
Glucosa , Taninos Hidrolizables , Humanos , Taninos Hidrolizables/química , Fenoles/química , Polifenoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA