Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.376
Filtrar
1.
Cell Mol Life Sci ; 81(1): 385, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235496

RESUMEN

Cisplatin-induced renal tubular injury largely restricts the wide-spread usage of cisplatin in the treatment of malignancies. Identifying the key signaling pathways that regulate cisplatin-induced renal tubular injury is thus clinically important. PARVB, a focal adhesion protein, plays a crucial role in tumorigenesis. However, the function of PARVB in kidney disease is largely unknown. To investigate whether and how PARVB contributes to cisplatin-induced renal tubular injury, a mouse model (PARVB cKO) was generated in which PARVB gene was specifically deleted from proximal tubular epithelial cells using the Cre-LoxP system. In this study, we found depletion of PARVB in proximal tubular epithelial cells significantly attenuates cisplatin-induced renal tubular injury, including tubular cell death and inflammation. Mechanistically, PARVB associates with transforming growth factor-ß-activated kinase 1 (TAK1), a central regulator of cell survival and inflammation that is critically involved in mediating cisplatin-induced renal tubular injury. Depletion of PARVB promotes cisplatin-induced TAK1 degradation, inhibits TAK1 downstream signaling, and ultimately alleviates cisplatin-induced tubular cell damage. Restoration of PARVB or TAK1 in PARVB-deficient cells aggravates cisplatin-induced tubular cell injury. Finally, we demonstrated that PARVB regulates TAK1 protein expression through an E3 ligase ITCH-dependent pathway. PARVB prevents ITCH association with TAK1 to block its ubiquitination. Our study reveals that PARVB deficiency protects against cisplatin-induced tubular injury through regulation of TAK1 signaling and indicates targeting this pathway may provide a novel therapeutic strategy to alleviate cisplatin-induced kidney damage.


Asunto(s)
Cisplatino , Quinasas Quinasa Quinasa PAM , Ratones Noqueados , Transducción de Señal , Cisplatino/efectos adversos , Cisplatino/toxicidad , Animales , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Transducción de Señal/efectos de los fármacos , Ratones , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Antineoplásicos/farmacología , Antineoplásicos/efectos adversos , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales
2.
Nat Commun ; 15(1): 7963, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261453

RESUMEN

Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin ß1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin ß1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin ß1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.


Asunto(s)
Senescencia Celular , Nefropatías Diabéticas , Factor XII , Integrina beta1 , Receptores del Activador de Plasminógeno Tipo Uroquinasa , Animales , Femenino , Humanos , Masculino , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/genética , Factor XII/metabolismo , Factor XII/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Túbulos Renales/metabolismo , Túbulos Renales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Transducción de Señal
3.
Cell Mol Life Sci ; 81(1): 404, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39277835

RESUMEN

Proliferation of renal tubular epithelial cells (TEC) is essential for restoring tubular integrity and thereby to support renal functional recovery from kidney ischemia/reperfusion (KI/R) injury. Activation of transcriptional factor c-Myc promotes TEC proliferation following KI/R; however, the mechanism regarding c-Myc activation in TEC is incompletely known. Heat shock protein A12A (HSPA12A) is an atypic member of HSP70 family. In this study, we found that KI/R decreased HSPA12A expression in mouse kidneys and TEC, while ablation of HSPA12A in mice impaired TEC proliferation and renal functional recovery following KI/R. Gain-of-functional studies demonstrated that HSPA12A promoted TEC proliferation upon hypoxia/reoxygenation (H/R) through directly interacting with c-Myc and enhancing its nuclear localization to upregulate expression of its target genes related to TEC proliferation. Notably, c-Myc was lactylated in TEC after H/R, and this lactylation was enhanced by HSPA12A overexpression. Importantly, inhibition of c-Myc lactylation attenuated the HSPA12A-induced increases of c-Myc nuclear localization, proliferation-related gene expression, and TEC proliferation. Further experiments revealed that HSPA12A promoted c-Myc lactylation via increasing the glycolysis-derived lactate generation in a Hif1α-dependent manner. The results unraveled a role of HSPA12A in promoting TEC proliferation and facilitating renal recovery following KI/R, and this role of HSPA12A was achieved through increasing lactylation-mediated c-Myc activation. Therefore, targeting HSPA12A in TEC might be a viable strategy to promote renal functional recovery from KI/R injury in patients.


Asunto(s)
Proliferación Celular , Células Epiteliales , Proteínas HSP70 de Choque Térmico , Túbulos Renales , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-myc , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Humanos , Riñón/metabolismo , Riñón/patología
4.
Ren Fail ; 46(2): 2369342, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39230047

RESUMEN

Sepsis represents an organ dysfunction resulting from the host's maladjusted response to infection, and can give rise to acute kidney injury (AKI), which significantly increase the morbidity and mortality of septic patients. This study strived for identifying a novel therapeutic strategy for patients with sepsis-induced AKI (SI-AKI). Rat tubular epithelial NRK-52E cells were subjected to lipopolysaccharide (LPS) exposure for induction of in-vitro SI-AKI. The expressions of E1A binding protein p300 (EP300) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in NRK-52E cells were assessed by western blot and qRT-PCR, and their interaction was explored by chromatin immunoprecipitation performed with antibody for H3K27 acetylation (H3K27ac). The effect of them on SI-AKI-associated mitochondrial dysfunction of tubular epithelial cells was investigated using transfection, MTT assay, TUNEL staining, 2',7'-Dichlorodihydrofluorescein diacetate probe assay, Mitosox assay, and JC-1 staining. MTHFD2 and EP300 were upregulated by LPS exposure in NRK-52E cells. LPS increased the acetylation of H3 histone in the MTHFD2 promoter region, and EP300 suppressed the effect of LPS. EP300 ablation inhibited the expression of MTHFD2. MTHFD2 overexpression antagonized LPS-induced viability reduction, apoptosis promotion, reactive oxygen species overproduction, and mitochondrial membrane potential collapse of NRK-52E cells. By contrast, MTHFD2 knockdown and EP300 ablation brought about opposite consequences. Furthermore, MTHFD2 overexpress and EP300 ablation counteracted each other's effect in LPS-exposed NRK-52E cells. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction of tubular epithelial cells in SI-AKI.


Asunto(s)
Lesión Renal Aguda , Proteína p300 Asociada a E1A , Células Epiteliales , Lipopolisacáridos , Metilenotetrahidrofolato Deshidrogenasa (NADP) , Mitocondrias , Animales , Ratas , Acetilación , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Proteína p300 Asociada a E1A/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Células Epiteliales/metabolismo , Mitocondrias/metabolismo , Línea Celular , Histonas/metabolismo , Apoptosis , Sepsis/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Regulación hacia Arriba
5.
J Agric Food Chem ; 72(36): 19667-19679, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39219293

RESUMEN

The potential threat of cadmium (Cd)-induced acute kidney injury (AKI) is increasing. In this study, our primary goal was to investigate the individual roles played by mTOR complexes, specifically mTORC1 and mTORC2, in Cd-induced apoptosis in mouse kidney cells. We constructed a mouse model with specific deletion of Raptor/Rictor renal cells. Inhibitors and activators of mTORC1 or mTORC2 were also applied. The effects of protein kinase B (AKT) activation and autophagy were studied. Both mTORC1 and mTORC2 were found to mediate the antiapoptotic mechanism of renal cells by regulating the AKT activity. Inhibition of mTORC1 or mTORC2 exacerbated Cd-induced kidney cell apoptosis, suggesting that both proteins exert antiapoptotic effects under Cd exposure. We further found that the AKT activation plays a key role in mTORC1/TORC2-mediated antiapoptosis, protecting Cd-exposed kidney cells from apoptosis. We also found that mTOR activators inhibited excessive autophagy, alleviated apoptosis, and promoted cell survival. These findings provide new insights into the regulatory mechanisms of mTOR in renal diseases and provide a theoretical basis for the development of novel therapeutic strategies to treat renal injury.


Asunto(s)
Lesión Renal Aguda , Apoptosis , Cadmio , Células Epiteliales , Túbulos Renales , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteínas Proto-Oncogénicas c-akt , Animales , Cadmio/toxicidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Apoptosis/efectos de los fármacos , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/tratamiento farmacológico , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Túbulos Renales/efectos de los fármacos , Túbulos Renales/citología , Túbulos Renales/metabolismo , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Autofagia/efectos de los fármacos , Línea Celular , Ratones Endogámicos C57BL
6.
PLoS One ; 19(9): e0307390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240899

RESUMEN

Worldwide incidence of kidney diseases has been rising. Thus, recent research has focused on zebrafish, whose fast development and innate regeneration capacity allow identifying factors influencing renal processes. Among these poorly studied factors are extracellular matrix (ECM) proteins like Fibronectin (Fn) essential in various tissues but not yet evaluated in a renal context. We utilized early nat and han zebrafish mutant embryos and carrier adults to investigate Fn's role during kidney development and regeneration. The locus natter (nat) encodes Fn and the locus han encodes Hand2, which results in increased Fn deposition. Our results show that Fn impacts identity maintenance and morphogenesis during development and influences conditions for neonephrogenic cluster formation during regeneration. Histological analysis revealed disrupted pronephric structures and increased blood cell accumulation in Fn mutants. Despite normal expression of specification markers (pax2, ATPα1a.1), structural abnormalities were evident. Differences between wild-type and mutation-carriers suggest a haploinsufficiency scenario. These findings reveal a novel function for ECM in renal development and regeneration, with potential implications for understanding and treating kidney diseases.


Asunto(s)
Fibronectinas , Pronefro , Regeneración , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pronefro/metabolismo , Pronefro/embriología , Fibronectinas/metabolismo , Fibronectinas/genética , Mesonefro/metabolismo , Mutación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Túbulos Renales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética
7.
BMC Nephrol ; 25(1): 297, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251943

RESUMEN

BACKGROUND: Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS: The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS: HG induced an increase in the expression of P4HB and TGFß, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFß/SMAD3-related proteins in HK-2 cells. CONCLUSION: P4HB regulated the TGFß/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.


Asunto(s)
Células Epiteliales , Transición Epitelial-Mesenquimal , Fibrosis , Glucosa , Túbulos Renales , Proteína-Arginina N-Metiltransferasas , Proteínas Represoras , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta , Humanos , Proteína smad3/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glucosa/farmacología , Glucosa/toxicidad , Glucosa/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Factor de Crecimiento Transformador beta/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Línea Celular , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Especies Reactivas de Oxígeno/metabolismo
8.
FASEB J ; 38(17): e23875, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39229897

RESUMEN

Polycystic kidney disease (PKD) is a common hereditary kidney disease. Although PKD occurrence is associated with certain gene mutations, its onset regulatory mechanisms are still not well understood. Here, we first report that the key enzyme geranylgeranyl diphosphate synthase (GGPPS) is specifically expressed in renal tubular epithelial cells of mouse kidneys. We aimed to explore the role of GGPPS in PKD. In this study, we established a Ggppsfl/fl:Cdh16cre mouse model and compared its phenotype with that of wild-type mice. A Ggpps-downregulation HK2 cell model was also used to further determine the role of GGPPS. We found that GGPPS was specifically expressed in renal tubular epithelial cells of mouse kidneys. Its expression also increased with age. Low GGPPS expression was observed in human ADPKD tissues. In the Ggppsfl/fl:Cdh16cre mouse model, Ggpps deletion in renal tubular epithelial cells induced the occurrence and development of renal tubule cystic dilation and caused the death of mice after birth due to abnormal renal function. Enhanced proliferation of cyst-lining epithelial cells was also observed after the knockout of Ggpps. These processes were related to the increased rate of Rheb on membrane/cytoplasm and hyperactivation of mTORC1 signaling. In conclusion, the deficiency of GGPPS in kidney tubules induced the formation of renal cysts. It may play a critical role in PKD pathophysiology. A novel therapeutic strategy could be designed according to this work.


Asunto(s)
Túbulos Renales , Animales , Ratones , Túbulos Renales/metabolismo , Túbulos Renales/patología , Humanos , Farnesiltransferasa/metabolismo , Farnesiltransferasa/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/metabolismo , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Ratones Noqueados , Línea Celular , Complejos Multienzimáticos
9.
Nat Commun ; 15(1): 7368, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191768

RESUMEN

The kidney tubules constitute two-thirds of the cells of the kidney and account for the majority of the organ's metabolic energy expenditure. Acute tubular injury (ATI) is observed across various types of kidney diseases and may significantly contribute to progression to kidney failure. Non-invasive biomarkers of ATI may allow for early detection and drug development. Using the SomaScan proteomics platform on 434 patients with biopsy-confirmed kidney disease, we here identify plasma biomarkers associated with ATI severity. We employ regional transcriptomics and proteomics, single-cell RNA sequencing, and pathway analysis to explore biomarker protein and gene expression and enriched biological pathways. Additionally, we examine ATI biomarker associations with acute kidney injury (AKI) in the Kidney Precision Medicine Project (KPMP) (n = 44), the Atherosclerosis Risk in Communities (ARIC) study (n = 4610), and the COVID-19 Host Response and Clinical Outcomes (CHROME) study (n = 268). Our findings indicate 156 plasma proteins significantly linked to ATI with osteopontin, macrophage mannose receptor 1, and tenascin C showing the strongest associations. Pathway analysis highlight immune regulation and organelle stress responses in ATI pathogenesis.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , COVID-19 , Osteopontina , Proteómica , Humanos , Lesión Renal Aguda/sangre , Proteómica/métodos , Masculino , Biomarcadores/sangre , Femenino , Persona de Mediana Edad , COVID-19/sangre , Osteopontina/sangre , Tenascina/sangre , Tenascina/genética , Tenascina/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Anciano , Adulto , SARS-CoV-2 , Análisis de la Célula Individual , Proteínas Sanguíneas/metabolismo
10.
Ren Fail ; 46(2): 2393262, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39192578

RESUMEN

Acute kidney injury (AKI) is a systemic clinical syndrome increasing morbidity and mortality worldwide in recent years. Renal tubular epithelial cells (TECs) death caused by mitochondrial dysfunction is one of the pathogeneses. The imbalance of mitochondrial quality control is the main cause of mitochondrial dysfunction. Mitochondrial quality control plays a crucial role in AKI. Mitochondrial quality control mechanisms are involved in regulating mitochondrial integrity and function, including antioxidant defense, mitochondrial quality control, mitochondrial DNA (mtDNA) repair, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Currently, many studies have used mitochondrial dysfunction as a targeted therapeutic strategy for AKI. Therefore, this review aims to present the latest research advancements on mitochondrial dysfunction in AKI, providing a valuable reference and theoretical foundation for clinical prevention and treatment of this condition, ultimately enhancing patient prognosis.


Asunto(s)
Lesión Renal Aguda , ADN Mitocondrial , Mitocondrias , Mitofagia , Humanos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Mitocondrias/metabolismo , Túbulos Renales/patología , Dinámicas Mitocondriales , Estrés Oxidativo , Células Epiteliales/metabolismo , Animales , Antioxidantes/uso terapéutico
11.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125764

RESUMEN

NIBV is an acute and highly contagious virus that has a major impact on the poultry industry. Wogonin, as a flavonoid drug, has antiviral effects, but there have been no reports indicating its role in renal injury caused by NIBV infection. The aim of this study is to investigate the antiviral effect of wogonin against NIBV. Renal tubular epithelial cells were isolated and cultured, and divided into four groups: Con, Con+Wog, NIBV and NIBV+Wog. We found that wogonin significantly inhibited the copy number of NIBV and significantly alleviated NIBV-induced cell apoptosis and necrosis. Moreover, wogonin inhibited the reduction in mitochondrial membrane potential and the aberrant opening of mPTP caused by NIBV. In conclusion, wogonin can protect renal tubular epithelial cells from damage by inhibiting the replication of NIBV and preventing mitochondrial apoptosis and necroptosis induced by NIBV.


Asunto(s)
Apoptosis , Pollos , Células Epiteliales , Flavanonas , Túbulos Renales , Necroptosis , Animales , Flavanonas/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Células Epiteliales/metabolismo , Necroptosis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Túbulos Renales/virología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/citología , Túbulos Renales/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antivirales/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/tratamiento farmacológico , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Replicación Viral/efectos de los fármacos , Células Cultivadas
12.
Sci Rep ; 14(1): 18323, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112634

RESUMEN

High volume hemofiltration (HVHF) could remove from plasma inflammatory mediators involved in sepsis-associated acute kidney injury (SA-AKI). The IVOIRE trial did not show improvements of outcome and organ dysfunction using HVHF. The aim of this study was to evaluate in vitro the biological effects of plasma of patients treated by HVHF or standard volume hemofiltration (SVHF). We evaluated leukocyte adhesion, apoptosis and functional alterations of endothelial cells (EC) and tubular epithelial cells (TEC). In vitro data were correlated with plasma levels of TNF-α, Fas-Ligand (FasL), CD40-Ligand (CD40L), von Willebrand Factor (vWF) and endothelial-derived microparticles. An experimental model of in vitro hemofiltration using LPS-activated blood was established to assess cytokine mass adsorption during HVHF or SVHF. Plasma concentrations of TNF-ɑ, FasL, CD40L and von Willebrand Factor (vWF) were elevated at the start (d1h0) of both HVHF and SVHF, significantly decreased after 6 h (d1h6), remained stable after 12 h (d1h12) and then newly increased at 48 h (d3h0). Plasma levels of all these molecules were similar between HVHF- and SVHF-treated patients at all time points considered. In addition, the levels of endothelial microparticles remained always elevated, suggesting the presence of a persistent microvascular injury. Plasma from septic patients induced leukocyte adhesion on EC and TEC through up-regulation of adhesion receptors. Moreover, on EC, septic plasma induced a cytotoxic and anti-angiogenic effect. On TEC, septic plasma exerted a direct pro-apoptotic effect via Fas up-regulation and caspase activation, loss of polarity, altered expression of megalin and tight junction molecules with an impaired ability to internalize albumin. The inhibition of plasma-induced cell injury was concomitant to the decrease of TNF-α, Fas-Ligand and CD40-Ligand levels. The protective effect of both HVHF and SVHF was time-limited, since a further increase of circulating mediators and plasma-induced cell injury was observed after 48 h (d3h0). No significant difference of EC/TEC damage were observed using HVHF- or SVHF-treated plasma. The in vitro hemofiltration model confirmed the absence of a significant modulation of cytokine adsorption between HVHF and SVHF. In comparison to SVHF, HVHF did not increase inflammatory cytokine clearance and did not reverse the detrimental effects of septic plasma-induced EC and TEC injury. Further studies using adsorptive membranes are needed to evaluate the potential role of high dose convective therapies in the limitation of the harmful activity of plasma soluble factors involved in SA-AKI.Trial registration IVOIRE randomized clinical trial; ClinicalTrials.gov (NCT00241228) (18/10/2005).


Asunto(s)
Células Endoteliales , Células Epiteliales , Hemofiltración , Sepsis , Humanos , Sepsis/terapia , Células Endoteliales/metabolismo , Hemofiltración/métodos , Células Epiteliales/metabolismo , Masculino , Lesión Renal Aguda/terapia , Lesión Renal Aguda/etiología , Femenino , Persona de Mediana Edad , Apoptosis , Anciano , Túbulos Renales/metabolismo , Citocinas/metabolismo , Citocinas/sangre , Adhesión Celular
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(8): 673-680, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39215665

RESUMEN

Objective To investigate the effects and underlying mechanisms of tetratricopeptide repeat domain 36 (TTC36) on injury of HK2 renal tubular epithelial cell. Methods HK2 stable cell lines expressing either TTC36 and an empty vector control-CMV-Flag were generated with lentivirus . The mRNA expression level of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase(iNOS), interleukin 6(IL-6), C-C motif chemokine ligand 2(CCL2), IL-1ß, inhibitor of nuclear factor κB α(IκBα) and nuclear factor κB p65(NF-κB p65) were analyzed by real time quantitative PCR (qRT-PCR). Flow cytometry was used to quantify cell apoptosis. Cell proliferation was evaluated by using cell counting kit-8(CCK-8) assay. The protein expression levels of iNOS, TNF-α, caspase-3, cleaved-caspase-3(c-caspase-3), Bcl2 associated X protein(BAX), proliferating cell nuclear antigen (PCNA), zonula occludens 1(ZO-1), IκBα, NF-κB p65, and phosphorylated NF-κB p65(p-NF-κB p65) were determined by Western blot analysis. IκBα protein expression level was further analyzed by Western blot after being treated with cycloheximide (CHX) and MG132. Results Compared with the control group, the expression of inflammatory molecules were reduced after the overexpression of TTC36 in HK2 cells. TTC36 inhibited the apoptosis of HK2 cells, and the expression of apoptosis-related proteins c-caspase-3 and BAX were significantly decreased in the TTC36 overexpression group. Upregulation of TTC36 promoted cell proliferation and strengthened the expressions of PCNA and ZO-1. Meanwhile, the expression of IκBα was significantly increased, while that of NF-κB p65 and p-NF-κB p65 was markedly downregulated. Furthermore, TTC36 overexpression substantially prolonged the half-life of IκBα in HK2 cells after being treated with CHX. MG132 could restore the changes of IκBα caused by overexpression of TTC36. Conclusion Overexpression of TTC36 inhibits the inflammatory response of HK2 cells, reduces cell apoptosis, promotes proliferation, and strengthens tight junctions. The mechanism may be to inhibit the activation of NF-κB signaling pathway by enhancing the expression of IκBα, thereby reducing the cell damage caused by inflammatory response.


Asunto(s)
Apoptosis , Proliferación Celular , Inhibidor NF-kappaB alfa , FN-kappa B , Transducción de Señal , Humanos , Transducción de Señal/efectos de los fármacos , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Inflamación/genética , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Túbulos Renales/metabolismo , Túbulos Renales/citología
14.
Metabolism ; 159: 155978, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097161

RESUMEN

AIMS: Renal fibrosis is a common feature in various chronic kidney diseases (CKD). Tubular cell damage is a main characterization which results from dysregulated fatty acid oxidation (FAO) and lipid accumulation. Cannabinoid Receptor 2 (CB2) contributes to renal fibrosis, however, its role in FAO dysregulation in tubular cells is not clarified. In this study, we found CB2 plays a detrimental role in lipid metabolism in tubular cells. METHODS: CB2 knockout mice were adopted to establish a folic acid-induced nephropathy (FAN) model. CB2-induced FAO dysfunction, lipid deposition, and fibrogenesis were assessed in vivo and vitro. To explore molecular mechanisms, ß-catenin inhibitors and peroxisome proliferator-activated receptor alpha (PPARα) activators were also used in CB2-overexpressed cells. The mediative role of ß-catenin in CB2-inhibited PPARα and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) activation was analyzed. RESULTS: CB2 activates ß-catenin signaling, resulting in the suppression of PPARα/PGC-1α axis. This decreased FAO functions and led to lipid droplet formation in tubular cells. CB2 gene ablation effectively mitigated FAO dysfunction, lipid deposition and uremic toxins accumulation in FAN mice, consequently retarding renal fibrosis. Additionally, inhibition to ß-catenin or PPARα activation could greatly inhibit lipid accumulation and fibrogenesis induced by CB2. CONCLUSIONS: This study highlights CB2 disrupts FAO in tubular cells through ß-catenin activation and subsequent inhibition on PPARα/PGC-1α activity. Targeted inhibition on CB2 offers a perspective therapeutic strategy to fight against renal fibrosis.


Asunto(s)
Fibrosis , Túbulos Renales , Metabolismo de los Lípidos , PPAR alfa , Receptor Cannabinoide CB2 , Animales , Masculino , Ratones , beta Catenina/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/etiología , Túbulos Renales/patología , Túbulos Renales/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , PPAR alfa/metabolismo , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/genética
15.
Sci Rep ; 14(1): 19443, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169052

RESUMEN

Cisplatin-induced nephrotoxicity restricts its clinical use against solid tumors. The present study elucidated the pharmacological effects of Renogrit, a plant-derived prescription medicine, using cisplatin-induced human renal proximal tubular (HK-2) cells and Caenorhabditis elegans. Quantification of phytochemicals in Renogrit was performed on HPTLC and UHPLC platforms. Renogrit was assessed in vitro in HK-2 cells post-exposure to clinically relevant concentration of cisplatin. It was observed that renoprotective properties of Renogrit against cisplatin-induced injury stem from its ability to regulate renal injury markers (KIM-1, NAG levels; NGAL mRNA expression), redox imbalance (ROS generation; GST levels), and mitochondrial dysfunction (mitochondrial membrane potential; SKN-1, HSP-60 expression). Renogrit was also found to modulate apoptosis (EGL-1 mRNA expression; protein levels of p-ERK, p-JNK, p-p38, c-PARP1), necroptosis (intracellular calcium accumulation; RIPK1, RIPK3, MLKL mRNA expression), mitophagy (lysosome population; mRNA expression of PINK1, PDR1; protein levels of p-PINK1, LC3B), and inflammation (IL-1ß activity; protein levels of LXR-α). More importantly, Renogrit treatment did not hamper normal anti-proliferative effects of cisplatin as observed from cytotoxicity analysis on MCF-7, A549, SiHa, and T24 human cancer cells. Taken together, Renogrit could be a potential clinical candidate to mitigate cisplatin-induced nephrotoxicity without compromising the anti-neoplastic properties of cisplatin.


Asunto(s)
Apoptosis , Caenorhabditis elegans , Cisplatino , Mitofagia , Cisplatino/efectos adversos , Cisplatino/toxicidad , Animales , Humanos , Mitofagia/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Extractos Vegetales/farmacología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Túbulos Renales/patología , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Antineoplásicos/efectos adversos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología
16.
Anal Chem ; 96(37): 14853-14859, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39213638

RESUMEN

The etiology and pathological complexity of acute kidney injury (AKI) pose great challenges for early diagnosis, typing, and personalized treatment. It is an important reason for poor prognosis and high mortality of AKI. In order to provide a relatively noninvasive diagnostic and typing method for AKI, we proposed the pathological changes of albumin permeability after glomerular injury and reabsorption efficiency after tubular injury as potential entry points. Thus, a renal tubule labeling fluorescent dye which features albumin concentration-related fluorescence intensity was used to fit these pathological changes. Utilizing this fluorescence assay, we realized urinary tract obstruction imaging as early as 12 h after morbidity. For glomerular and tubular injury discrimination, compared to a healthy control, membranous nephropathy as a representative glomerular injury resulted in enhanced fluorescence intensity of the kidney due to increased albumin penetration, while renal tubular injury caused insufficient dye reabsorption to exhibit weakened fluorescence intensity. The significant differences demonstrated the feasibility of this approach for fluorescence imaging-based AKI typing in vivo.


Asunto(s)
Lesión Renal Aguda , Colorantes Fluorescentes , Glomérulos Renales , Túbulos Renales , Animales , Túbulos Renales/patología , Túbulos Renales/lesiones , Túbulos Renales/metabolismo , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Colorantes Fluorescentes/química , Glomérulos Renales/patología , Glomérulos Renales/metabolismo , Glomérulos Renales/lesiones , Fluorometría/métodos , Ratones , Imagen Óptica , Humanos , Masculino
17.
Sci Rep ; 14(1): 18146, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103417

RESUMEN

Urate nephropathy, a common complication of hyperuricemia, has garnered increasing attention worldwide. However, the exact pathogenesis of this condition remains unclear. Currently, inflammation is widely accepted as the key factor in urate nephropathy. Therefore, the aim of this study was to elucidate the interaction of lincRNA-p21/AIF-1/CMPK2/NLRP3 via exosomes in urate nephropathy. This study evaluated the effect of lincRNA-p21/AIF-1/CMPK2/NLRP3 using clinical data collected from patients with urate nephropathy and human renal tubular epithelial cells (HK2) cultured with different concentrations of urate. In clinical research section, the level of lincRNA-p21/AIF-1 in exosomes of urine in patients with hyperuricemia or urate nephropathy was found to be increased, particularly in patients with urate nephropathy. In vitro study section, the level of exosomes, inflammation, autophagy, and apoptosis was increased in HK2 cells induced by urate. Additionally, the expression of lincRNA-p21, AIF-1, CMPK2, and NLRP3 was upregulated in exosomes and HK2 cells. Furthermore, manipulating the activity of lincRNA-p21, AIF-1, CMPK2, and NLRP3 through overexpression or interference vectors regulated the level of inflammation, autophagy, and apoptosis in HK2 cells. In conclusion, the pathway of lincRNA-p21/AIF-1/CMPK2/NLRP3 contributed to inflammation, autophagy, and apoptosis of human renal tubular epithelial cell induced by urate via exosomes. Additionally, the specific exosomes in urine might serve as novel biomarkers for urate nephropathy.


Asunto(s)
Apoptosis , Autofagia , Células Epiteliales , Exosomas , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Largo no Codificante , Ácido Úrico , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Úrico/metabolismo , Exosomas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Inflamación/metabolismo , Inflamación/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Línea Celular , Masculino , Factor Inductor de la Apoptosis/metabolismo , Femenino , Persona de Mediana Edad , Hiperuricemia/metabolismo , Hiperuricemia/orina , Proteínas de Unión al Calcio , Proteínas de Microfilamentos
18.
EBioMedicine ; 107: 105294, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39178744

RESUMEN

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.


Asunto(s)
Lesión Renal Aguda , Células Epiteliales , Túbulos Renales , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Humanos , Células Epiteliales/metabolismo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Animales , Biomarcadores , Fibrosis , Regeneración
19.
Int Immunopharmacol ; 141: 112794, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137626

RESUMEN

In China, the Astragalus membranaceus root is used to treat chronic kidney disease. Astragaloside IV (AS-IV), the primary bioactive compound, exhibits anti-inflammatory and antioxidative properties; however, its renoprotective mechanism in diabetic kidney disease (DKD) remains unclear. The study aimed to investigate the protective effects of AS-IV on DKD revealing the underlying mechanisms. We established an early diabetic rat model by feeding a high-fat diet and administering low-dose streptozotocin. Twelve weeks post-treatment, renal function was evaluated using functional assays, histological analyses, immunohistochemistry, western blotting, and transmission electron microscopy. HK-2 cells exposed to high glucose conditions were used to examine the effect of AS-IV on oxidative stress, iron levels, reactive oxygen species (ROS), and lipid peroxidation. Network pharmacology, proteomics, molecular docking, and molecular dynamics simulation techniques were employed to elucidate the role of AS-IV in DKD. The results revealed that AS-IV effectively enhanced renal function and mitigated disease pathology, oxidative stress, and ferroptosis markers in DKD rats. In HK-2 cells, AS-IV lowered the levels of lipid peroxides, Fe2+, and glutathione, indicating the repair of ferroptosis-related mitochondrial damage. AS-IV reduced mitochondrial ROS while enhancing mitochondrial membrane potential and ATP production, indicating its role in combating mitochondrial dysfunction. Overall, in silico analyses revealed that AS-IV interacts with HMOX1, FTH1, and TFR1 proteins, supporting its efficacy in alleviating renal injury by targeting mitochondrial dysfunction and ferroptosis. AS-IV may play a renoprotective role by regulating mitochondrial dysfunction and inhibiting. HMOX1/FTH1/TFR1-induced ferroptosis. Accordingly, AS-IV could be developed for the clinical treatment of DKD-related renal injury.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Células Epiteliales , Ferroptosis , Túbulos Renales , Mitocondrias , Saponinas , Triterpenos , Animales , Ferroptosis/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Línea Celular , Túbulos Renales/patología , Túbulos Renales/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Ratas Sprague-Dawley , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular
20.
Sci Rep ; 14(1): 19311, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164435

RESUMEN

Autoimmune related kidney diseases (ARKDs), including minimal change nephropathy (MCN), membranous nephropathy (MN), IgA nephropathy (IgAN), and lupus nephritis (LN), significantly affect renal function. These diseases are characterized by the formation of local immune complexes and the subsequent activation of the complement system, leading to kidney damage and proteinuria. Despite the known patterns of glomerular injury, the specific molecular mechanisms that contribute to renal tubular damage across ARKDs remain underexplored. Laser capture microdissection and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to conduct a comparative proteomic analysis of renal tubular tissues from formalin-fixed paraffin-embedded samples. The cohort comprised of 10 normal controls (NC), 5 MCN, 4 MN, 17 IgAN, and 21 LN patients. Clinical parameters and histopathological assessments were integrated with proteomic findings to comprehensively investigate underlying pathogenic processes. Clinical evaluation indicated significant glomerular damage, as reflected by elevated urinary protein levels and reduced plasma albumin levels in patients with ARKD. Histological analyses confirmed varying degrees of tubular damage and deposition of immune complexes. Proteomic analyses identified significant changes in protein expression, particularly in complement components (C3, C4A, C4B, C8G, CFB, and SERPINA1) and mitochondrial proteins (ATP5F1E and ATP5PD), highlighting the common alterations in the complement system and mitochondrial proteins across ARKDs. These alterations suggest a novel complement-mitochondrial-epithelial-mesenchymal transition (EMT) pathway axis that contributes to tubular damage in ARKDs. Notably, significant alterations in CFB in tubular ARKD patients were revealed, implicating it as a therapeutic target. This study underscores the importance of complement activation and mitochondrial dysfunction in the pathogenesis of ARKDs, and proposes CFB as a potential therapeutic target to inhibit complement activation and mitigate tubular damage. Future research should validate the complement-mitochondrial-EMT pathway axis and explore the effects and mechanisms of CFB inhibitors in alleviating ARKD progression.


Asunto(s)
Activación de Complemento , Mitocondrias , Proteómica , Humanos , Proteómica/métodos , Femenino , Masculino , Adulto , Mitocondrias/metabolismo , Persona de Mediana Edad , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Espectrometría de Masas en Tándem , Captura por Microdisección con Láser , Proteínas del Sistema Complemento/metabolismo , Cromatografía Liquida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA