Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.028
Filtrar
1.
Methods Mol Biol ; 2852: 47-64, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39235736

RESUMEN

Electrochemical approaches, along with miniaturization of electrodes, are increasingly being employed to detect and quantify nucleic acid biomarkers. Miniaturization of the electrodes is achieved through the use of screen-printed electrodes (SPEs), which consist of one to a few dozen sets of electrodes, or by utilizing printed circuit boards. Electrode materials used in SPEs include glassy carbon (Chiang H-C, Wang Y, Zhang Q, Levon K, Biosensors (Basel) 9:2-11, 2019), platinum, carbon, and graphene (Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ, ACS Appl Mater Interfaces 7:2979-2985, 2015). There are numerous modifications to the electrode surfaces as well (Cheng FF, He TT, Miao HT, Shi JJ, Jiang LP, Zhu JJ, ACS Appl Mater Interfaces 7:2979-2985, 2015). These approaches offer distinct advantages, primarily due to their demonstrated superior limit of detection without amplification. Using the SPEs and potentiostats, we can detect cells, proteins, DNA, and RNA concentrations in the nanomolar (nM) to attomolar (aM) range. The focus of this chapter is to describe the basic approach adopted for the use of SPEs for nucleic acid measurement.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Electrodos , Grafito , Grafito/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Ácidos Nucleicos/análisis , Humanos , ADN/análisis
2.
Clin Chim Acta ; 564: 119923, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153652

RESUMEN

Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Detección Precoz del Cáncer , Técnicas Electroquímicas , Humanos , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , Detección Precoz del Cáncer/métodos , Femenino , Biomarcadores de Tumor/análisis
3.
Clin Chim Acta ; 564: 119946, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39214394

RESUMEN

Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , MicroARNs , Neoplasias Ováricas , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Femenino , Técnicas Biosensibles/métodos , MicroARNs/análisis , MicroARNs/genética
4.
Food Chem ; 462: 140693, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208722

RESUMEN

A rapid photoelectrochemical (PEC) sensor was constructed for nitrite detection in food based on the one-step chemical etching strategy of BiOCl/Zn0.5Cd0.5S (BOC/ZCS) nanocomposites by nitrite. BOC/ZCS heterojunction was prepared by a simple coprecipitation method, and it was found that BOC/ZCS showed significant photoelectrochemical (PEC) activity. The results of this study confirmed that the decrease in the photocurrent of the sensor was linked to the etching of ZCS by nitrite under acidic conditions. Under optimized conditions, the BOC/ZCS-based PEC sensor showed good analytical properties for detecting nitrite, with linear ranges of 1-100 µM and 100-600 µM. The detection limit of the sensor was 0.41 µM (S/N = 3). Excellent repeatability, reproducibility, low background noise, and immunity to interference were demonstrated using the proposed system, and satisfactory results were achieved for the nitrite assay using real samples. These results demonstrate a new method for nitrite detection developed using the proposed PEC sensor.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Nitritos , Nitritos/análisis , Técnicas Electroquímicas/instrumentación , Bismuto/química , Zinc/química , Zinc/análisis , Nanocompuestos/química , Procesos Fotoquímicos , Contaminación de Alimentos/análisis
5.
Food Chem ; 462: 140947, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208736

RESUMEN

Excess nitrites are potentially threatening to human health, so it is urgent to develop accurate and sensitive methods. The development of sensors can provide early warning of possible hazards and alert people to protect public health. This work presents an NiSx@MoS2-composite with excellent electrochemical activity, representing a key finding for highly sensitive NO2- detection and sensor development. With the assistance of NiSx@MoS2, this electrochemical sensor has excellent quantitative detection performance. It has a wide detection range (0.0001-0.0020 mg/mL) and a low detection limit (1.863*10-5 mg/mL) for NO2-. This electrochemical sensor maintains excellent specificity among numerous interferences, and it completes the accurate detection of different real food samples. Pleasingly, the electrochemical sensor has satisfactory repeatability stability, and potential for practical applications. It would demonstrate tremendous potential in scientific dietary guidance, food safety detection and other fields.


Asunto(s)
Disulfuros , Técnicas Electroquímicas , Límite de Detección , Molibdeno , Molibdeno/química , Técnicas Electroquímicas/instrumentación , Disulfuros/química , Nitritos/análisis , Contaminación de Alimentos/análisis
6.
Food Chem ; 462: 140939, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208731

RESUMEN

Phoxim, extensively utilized in agriculture as an organothiophosphate insecticide, has the potential to cause neurotoxicity and pose human health hazards. In this study, an electrochemical enzyme biosensor based on Ti3C2 MXene/MoS2@AuNPs/AChE was constructed for the sensitive detection of phoxim. The two-dimensional multilayer structure of Ti3C2 MXene provides a robust framework for MoS2, leading to an expansion of the specific surface area and effectively preventing re-stacking of Ti3C2 MXene. Additionally, the synergistic effect of self-reduced grown AuNPs with MoS2 further improves the electrical conductivity of the composites, while the robust framework provides a favorable microenvironment for immobilization of enzyme molecules. Ti3C2 MXene/MoS2@AuNPs electrochemical enzyme sensor showed a significant response to phoxim in the range of 1 × 10-13 M to 1 × 10-7 M with a detection limit of 5.29 × 10-15 M. Moreover, the sensor demonstrated excellent repeatability, reproducibility, and stability, thereby showing its promising potential for real sample detection.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Frutas , Oro , Nanopartículas del Metal , Nanocompuestos , Compuestos Organotiofosforados , Titanio , Oro/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Frutas/química , Nanopartículas del Metal/química , Técnicas Biosensibles/instrumentación , Compuestos Organotiofosforados/análisis , Titanio/química , Límite de Detección , Contaminación de Alimentos/análisis , Molibdeno/química , Insecticidas/análisis , Insecticidas/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química
7.
Food Chem ; 462: 140959, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208733

RESUMEN

In this study, we focused on the successful construction of [(4,4'-bipy/P2Mo17Co)6] modified electrodes using the layer-by-layer assembly method for the sensitive detection of sulfathiazole (ST). The redox reaction between ST and the metal ions in the modified layer leads to the transfer of electrons, resulting in the generation of the electrical signal. The introduction of 4,4'-bipyridine (4,4'-bipy) enhanced the molecular recognition of ST by the modified electrode. Under the combined effect of P2Mo17Co and 4,4'-bipy, the sensor exhibited good performance for ST detection (LOD: 0.5616 µM, linear ST concentration range: 0-50 µM). The spiked recoveries of the two groups were 84.4%-103.2% and 90.9%-109.4% for the determination of ST residues in large yellow croaker and South American white shrimp, respectively. In addition, the electrode showed excellent performance in terms of stability, reproducibility, and anti-interference ability.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Sulfatiazol , Técnicas Electroquímicas/instrumentación , Animales , Sulfatiazol/química , Contaminación de Alimentos/análisis , Sulfatiazoles/química , Sulfatiazoles/análisis , Límite de Detección , Penaeidae/química , Oxidación-Reducción
8.
Food Chem ; 462: 140922, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213967

RESUMEN

Rapid screening for foodborne pathogens is crucial for food safety. A rapid and one-step electrochemical sensor has been developed for the detection of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Salmonella typhimurium (S. typhimurium). Through the construction of aptamer/two-dimensional carboxylated Ti3C2Tx (2D C-Ti3C2Tx)/two-dimensional Zn-MOF (2D Zn-MOF) composites, the recognition elements, signal tags, and signal amplifiers are integrated on the electrode surface. Pathogens are selectively captured using the aptamer, which increases the impedance of the electrode surface,leads to a decrease in the 2D Zn-MOF current. Bacteria can be rapidly quantified using a one-step detection method and the replacement of aptamers. The detection limits for E. coli, S. aureus, and S. typhimurium are 6, 5, and 5 CFU·mL-1, respectively. The sensor demonstrated reliable detection capabilities in real-sample testing. Therefore, the one-step sensor based on the 2D Zn-MOF and 2D C-Ti3C2Tx has significant application value in the detection of foodborne pathogens.


Asunto(s)
Técnicas Electroquímicas , Escherichia coli , Salmonella typhimurium , Staphylococcus aureus , Zinc , Staphylococcus aureus/aislamiento & purificación , Salmonella typhimurium/aislamiento & purificación , Zinc/análisis , Escherichia coli/aislamiento & purificación , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/instrumentación , Estructuras Metalorgánicas/química , Microbiología de Alimentos , Titanio/química , Límite de Detección , Electrodos , Contaminación de Alimentos/análisis
9.
Food Chem ; 462: 141063, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226640

RESUMEN

In this research, the TT-COF(Fe)@NH2-CNTs was innovatively prepared through a post-modification synthetic process functionalized TT-COF@NH2-CNTs with active site (Fe), where TT-COF@NH2-CNTs was prepared via a one-pot strategy using 5,10,15,20-tetrakis (para-aminophenyl) porphyrin (TTAP), 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene (TTF) and aminated carbon nanotubes (NH2-CNTs) as raw materials. The complex TT-COF(Fe)@NH2-CNTs material possessed porous structures, outstanding conductivity and rich catalytic sites. Thus, it can be adopted to construct electrochemical sensor with glassy carbon electrode (GCE). The TT-COF(Fe)@NH2-CNTs/GCE can selectively detect luteolin (Lu) with a wide linear plot ranging from 0.005 to 3 µM and a low limit of detection (LOD) of 1.45 nM (S/N = 3). The Lu residues in carrot samples were determined using TT-COF(Fe)@NH2-CNTs sensor and UV-visible (UV-Vis) approach. This TT-COF(Fe)@NH2-CNTs/GCE sensor paves the way for the quantification of Lu through a cost-efficient and sensitive electrochemical approach, which can make a significant step in the sensing field based on crystalline COFs.


Asunto(s)
Técnicas Electroquímicas , Luteolina , Nanotubos de Carbono , Nanotubos de Carbono/química , Luteolina/química , Luteolina/análisis , Técnicas Electroquímicas/instrumentación , Límite de Detección , Estructuras Metalorgánicas/química , Contaminación de Alimentos/análisis , Dominio Catalítico
10.
Food Chem ; 462: 140962, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241683

RESUMEN

Nitrite is a common ingredient in the industry and agriculture; it is everywhere, like water, food, and surroundings. Recently, several approaches have been developed to measure the nitrite levels. So, this review was presented as a summary of many approaches utilized to detect the nitrite. Furthermore, the types of information that may be acquired using these methodologies, including optic and electrical signals, were discussed. In electrical signal methods, electrochemical sensors are usually developed using different materials, including carbon, polymers, oxides, and hydroxides. At the same time, optic signals receiving techniques involve utilizing fluorescence chromatography, absorption, and spectrometry instruments. Furthermore, these methodologies' benefits, drawbacks, and restrictions are examined. Lastly, due to the efficiency and fast means of electrochemical detectors, it was suggested that they can be used for detecting nitrite in food safety. Futuristic advancements in the techniques used for nitrite determination are subsequently outlined.


Asunto(s)
Técnicas Electroquímicas , Análisis de los Alimentos , Contaminación de Alimentos , Nitritos , Nitritos/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Contaminación de Alimentos/análisis , Análisis de los Alimentos/métodos , Análisis de los Alimentos/instrumentación
11.
J Environ Sci (China) ; 149: 288-300, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181643

RESUMEN

Structural regulation of Pd-based electrocatalytic hydrodechlorination (EHDC) catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging. Herein, a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam (NF), which can inductive regulation of Pd for improving the EHDC performance. The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound, respectively. The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface, which optimizied the binding of EHDC intermediates. Additionally, the Mn-doped interlayer acted as a promoter for generating H* and accelerating the EHDC reaction. This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.


Asunto(s)
Manganeso , Níquel , Paladio , Catálisis , Paladio/química , Manganeso/química , Níquel/química , Técnicas Electroquímicas/métodos , Electrodos , Clorofenoles/química , Halogenación
12.
J Environ Sci (China) ; 148: 139-150, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095153

RESUMEN

Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Oro , Grafito , Nanopartículas del Metal , Paraquat , Grafito/química , Paraquat/análisis , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Límite de Detección , Carbono/química , Contaminantes Químicos del Agua/análisis , Herbicidas/análisis
13.
J Environ Sci (China) ; 148: 38-45, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095173

RESUMEN

Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.


Asunto(s)
Electrodos , Hierro , Nitratos , Fosfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Nitratos/química , Hierro/química , Fosfatos/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Técnicas Electroquímicas/métodos
14.
Anal Chim Acta ; 1325: 343120, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244306

RESUMEN

The present study elucidates the effectiveness of a molecularly imprinted polyacrylonitrile-imbued graphite-base electrode (MAN@G) for the selective detection of folic acid (FA) in food samples. The prime objective of the recognition and quantification of vitamin compounds like FA is the overall quality assessment of vegetables and fruits. The cost-effective, reproducible, and durable MAN@G electrode has been fabricated using acrylonitrile (AN) as the monomer and FA as the template over graphite-base. The characterization of the synthesized MAN@G electrode material has been accomplished by utilizing UV-visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). A tri-electrode system based on differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques was employed to explore the analytical performance of the synthesized electrode. Rigorous analyses divulged that a widespread linearity window could be exhibited by the electrode under an optimized experimental environment, ranging from 20 µM to 400 µM concentrations with an acceptable lower limit of detection (LOD) and limit of quantification (LOQ) of 18 nM, and 60 nM respectively. Additionally, this electrode exhibits high reproducibility, good stability, and high repeatability, with RSD values of 1.72 %, 1.32 %, and 1.19 %, respectively. The detection efficacy of the proposed electrode has been further examined in food extracts, namely orange, spinach, papaya, soybean, and cooked rice, which endorsed high accuracy compared to the high-performance liquid chromatography (HPLC) method. Moreover, the statistical results obtained from the t-test analysis were also satisfactory for the FA concentrations present in those five samples.


Asunto(s)
Resinas Acrílicas , Técnicas Electroquímicas , Electrodos , Ácido Fólico , Grafito , Grafito/química , Resinas Acrílicas/química , Ácido Fólico/análisis , Impresión Molecular , Límite de Detección , Análisis de los Alimentos/métodos , Polímeros Impresos Molecularmente/química , Frutas/química
15.
Mikrochim Acta ; 191(10): 578, 2024 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-39242473

RESUMEN

Detecting dopamine (DA) in biological samples is vital to understand its crucial role in numerous physiological processes, such as motion, cognition, and reward stimulus. In this work, p-type graphene on sapphire, synthesized via chemical vapor deposition, serves as substrate for the preparation of p-type Cu2-xS films through solid-phase sulfurization. The optimized Cu2-xS/graphene heterostructure, prepared at 250 °C using a 15-nm copper film sulfurized for 2 h, exhibits superior electron transfer performance, ideal for electrochemical sensing. It is confirmed that the spontaneous charge transfer from graphene to Cu2-xS, higher Cu(II)/Cu(I) ratio (~ 0.8), and the presence of well-defined nanocrystalline structures with an average size of ~ 35 nm in Cu2-xS significantly contribute to the improved electron transfer of the heterostructure. The electrochemical sensor based on Cu2-xS/graphene heterostructure demonstrates remarkable sensitivity towards DA, with a detection limit as low as 100 fM and a dynamic range greater than 109 from 100 fM to 100 µM. Additionally, it exhibits excellent selectivity even in the presence of uric acid and ascorbic acid 100 times higher, alongside notable storage and measurement stability and repeatability. Impressively, the sensor also proves capable of detecting DA concentrations as low as 100 pM in rat serum, showcasing its potential for clinically relevant analytes and promising applications in sensitive, selective, reliable, and efficient point-of-care diagnostics.


Asunto(s)
Cobre , Dopamina , Técnicas Electroquímicas , Grafito , Límite de Detección , Dopamina/sangre , Dopamina/análisis , Cobre/química , Grafito/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Animales , Ratas , Técnicas Biosensibles/métodos , Electrodos
16.
Mikrochim Acta ; 191(10): 580, 2024 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243287

RESUMEN

A wearable potentiometric device is reported based on an innovative butterfly-like paper-based microfluidic system, allowing for continuous monitoring of pH and Na+ levels in sweat during physical activity. Specifically, the use of the butterfly-like configuration avoids evaporation phenomena and memory effects, enabling precise and timely biomarker determination in sweat. Two ad hoc modified screen-printed electrodes were embedded in the butterfly-like paper-based microfluidics, and the sensing device was further integrated with a portable and miniaturized potentiostat, leveraging Bluetooth technology for efficient data transmission. First, the paper-based microfluidic configuration was tested for optimal fluidic management to obtain optimized performance of the device. Subsequently, the two electrodes were individually tested to detect the two biomarkers, namely pH and Na+. The results demonstrated highly promising near-Nernstian (0.056 ± 0.002 V/dec) and super-Nernstian (- 0.080 ± 0.003 V/pH) responses, for Na+ and pH detection, respectively. Additionally, several important parameters such as storage stability, interferents, and memory effect by hysteresis study were also investigated. Finally, the butterfly-like paper-based microfluidic wearable device was tested for Na+ and pH monitoring during the physical activity of three volunteers engaged in different exercises, obtaining a good correlation between Na+ increase and dehydration phenomena. Furthermore, one volunteer was tested through a cardiopulmonary test, demonstrating a correlation between sodium Na+ increase and the energetic effort by the volunteer. Our wearable device highlights the high potential to enable early evaluation of dehydration and open up new opportunities in sports activity monitoring.


Asunto(s)
Papel , Sodio , Sudor , Dispositivos Electrónicos Vestibles , Sudor/química , Humanos , Concentración de Iones de Hidrógeno , Sodio/análisis , Electrodos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Dispositivos Laboratorio en un Chip
17.
Mikrochim Acta ; 191(10): 570, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218927

RESUMEN

Loofah sponge-like carbon nanofibers (LF-Co,N/CNFs) were utilized as a carrier for Ru(bpy)32+, and then combined with CdS to create a novel solid-state electrochemiluminescence sensor capable of detecting trace amounts of fenpropathrin. LF-Co,N/CNFs, obtained through the high-temperature pyrolysis of ZIF-67 coaxial electrospinning fibers, were characterized by a loofah-like morphology and exhibited a significant specific surface area and porosity. Apart from serving as a carrier, LF-Co,N/CNFs also functioned as a luminescence accelerator, enhancing the system's luminescence efficiency by facilitating electron transmission and reducing the transmission distance. The inclusion of CdS in the luminescence reaction, in conjunction with Ru(bpy)32+, further boosted the sensor's luminescence signal. The resulting sensor demonstrated a satisfactory signal, with fenpropathrin causing significant quenching of the ECL signal. Under optimized conditions, a linear relationship between the signal quench value and fenpropathrin concentration in the range 1 × 10-12 to 1 × 10-6 M was observed, with a detection limit of 3.3 × 10-13 M (S/N = 3). This developed sensor is characterized by its simplicity, sensitivity, and successful application in detecting fenpropathrin in real samples. The study not only presents a straightforward detection platform for fenpropathrin but also introduces new avenues for the rapid determination of various food contaminants, thereby expanding the utility of carbon fibers in electrochemiluminescence sensors.


Asunto(s)
Carbono , Técnicas Electroquímicas , Límite de Detección , Mediciones Luminiscentes , Nanofibras , Nanofibras/química , Mediciones Luminiscentes/métodos , Carbono/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Animales , Contaminación de Alimentos/análisis , Compuestos de Cadmio/química , Piretrinas/análisis , Compuestos Organometálicos
18.
Mikrochim Acta ; 191(10): 572, 2024 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225952

RESUMEN

Cubic hollow-structured NiCo-LDH was synthesized using a solvothermal method. Subsequently, clay-like Ti3C2Tx MXenes were electrostatically self-assembled with NiCo layered double hydroxides (NiCo-LDH) to form composites featuring three-dimensional porous heterostructures. The composites were characterized using SEM, TEM, XRD, XPS, and FT-IR spectroscopy. Ti3C2Tx MXenes exhibit excellent electrical conductivity and hydrophilicity, providing abundant binding sites for NiCo-LDH, thereby promoting an increase in ion diffusion channels. The formation of three-dimensional porous heterostructural composites enhances charge transport, significantly improving sensor sensitivity and response speed. Consequently, the sensor demonstrates excellent electrochemical detection capability for quercetin (Qu), with a detection range of 0.1-20 µM and a detection limit of 23 nM. Additionally, it has been applied to the detection of Qu in natural plants such as onion, golden cypress, and chrysanthemum. The recovery ranged from 97.6 to 102.28%.


Asunto(s)
Técnicas Electroquímicas , Hidróxidos , Límite de Detección , Quercetina , Titanio , Quercetina/análisis , Quercetina/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Porosidad , Hidróxidos/química , Titanio/química , Cobalto/química , Electrodos
19.
Water Environ Res ; 96(9): e11118, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223779

RESUMEN

Textile wastewater, laden with persistent dyes and non-biodegradable organics, poses a challenge for treatment in common effluent treatment plants (CETPs) using conventional methods. Pre-treatment of textile effluents is essential to ensure compatibility with CETPs. The present study employed three-dimensional (3D) aluminum and graphite electrodes for a sequential electro-coagulation and electro-Fenton (EC + EF) process. An experimental plan of 25 experiments was constructed using Taguchi method. The combination resulted in high removal efficiencies: 99.91% for color, 93.20% for chemical oxygen demand (COD), and 91.75% for total organic carbon (TOC) for the operating parameters; for EC, current density (J): 20 mA/cm2, time (t): 45 min, speed of rotation (N): 55 rpm; and for EF, current density (J): 25 mA/cm2, time (t): 50 min, iron concentration: 40 mg/L. Post-treatment, the wastewater exhibited an enhanced biodegradability index of 0.875, rendering it suitable for CETPs. There was an increase of 11% in the total energy consumption when energy spent during rotation and aeration at the time of EC and EF, respectively, were considered. This energy increases the cost and is not accounted for, in previous research. The energy consumption in kWh per g of COD removed at optimum condition for the hybrid treatment was 0.0314, which is lower than the energy consumption by other electrochemical processes employing plate electrodes. This indicates that 3D electrodes are more energy efficient than plate electrodes. PRACTITIONER POINTS: Hybrid electrochemical processes can be used as pre-treatment method for textile effluents. Three-dimensional electrodes improve removal rates with lower energy consumption. Significant color, COD, and TOC abatement were noted post-hybrid treatment of textile wastewater. Biodegradability of the textile effluent improves after the hybrid treatment.


Asunto(s)
Hierro , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Hierro/química , Industria Textil , Residuos Industriales , Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno/química , Textiles , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno
20.
Mikrochim Acta ; 191(10): 600, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283551

RESUMEN

A cortisol biosensor was developed based on double-conducting polymer nanowires, which exhibits excellent conductivity, resistance to biological contamination, and outstanding sensing performance. The biosensor employs dual-mode electrochemical techniques, namely, differential pulse voltammetry (DPV) and chronoamperometry (CA), for the sensitive and low fouling detection of the glucocorticoid hormone cortisol. Experimental results demonstrated that the linear detection range of the biosensor in DPV mode was 1.0 × 10-14-1.0 × 10-8 M, with a detection limit of 0.131 × 10-14 M. In CA mode, the biosensor exhibited a detection range of 1.0 × 10-13-1.0 × 10-7 M and a detection limit of 0.313 × 10-13 M. The biosensor was successfully utilized for the rapid detection of cortisol in human saliva. The combination of a high-specificity cortisol aptamer and functionalized double-conducting polymer nanowires ensured the exceptional specificity and sensitivity of the biosensor in detecting real biological samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Hidrocortisona , Límite de Detección , Nanocables , Polímeros , Saliva , Saliva/química , Hidrocortisona/análisis , Nanocables/química , Técnicas Biosensibles/métodos , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Polímeros/química , Aptámeros de Nucleótidos/química , Conductividad Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA