Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.568
Filtrar
1.
J Environ Sci (China) ; 149: 139-148, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181629

RESUMEN

The dissolved organic matter (DOM) with high mobility and reactivity plays a crucial role in soil. In this study, the characteristics and phytotoxicity of DOM released from the hydrochars prepared from different feedstocks (cow manure, corn stalk and Myriophyllum aquaticum) under three hydrothermal carbonization (HTC) temperatures (180, 200 and 220°C) were evaluated. The results showed that the hydrochars had high dissolved organic carbon content (20.15 to 37.65 mg/g) and its content showed a gradual reduction as HTC temperature increased. Three fluorescent components including mixed substance of fulvic acid-like and humic acid-like substances (C1, 30.92%-58.32%), UVA humic acid-like substance (C2, 25.27%-29.94%) and protein-like substance (C3, 11.74%-41.92%) were identified in hydrochar DOM by excitation emission matrix spectra coupled with parallel factor analysis. High HTC temperature increased the relative proportion of aromatic substances (C1+C2) and humification degree of hydrochar DOM from cow manure, while it presented adverse effects on the hydrochar DOM from corn stalk and Myriophyllum. aquaticum. The principal component analysis suggested that feedstock type and HTC temperature posed significant effects on the characteristics of hydrochar DOM. Additionally, seed germination test of all hydrochar DOM demonstrated that the root length was reduced by 8.88%-26.43% in contrast with control, and the germination index values were 73.57%-91.12%. These findings provided new insights into the potential environmental effects for hydrochar application in soil.


Asunto(s)
Sustancias Húmicas , Sustancias Húmicas/análisis , Suelo/química , Temperatura , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Zea mays/efectos de los fármacos , Estiércol , Carbón Orgánico/química
2.
J Environ Sci (China) ; 149: 663-675, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181676

RESUMEN

Humic acid (HA), a principal constituent of natural organic matter (NOM), manifests ubiquitously across diverse ecosystems and can significantly influence the environmental behaviors of Cd(II) in aquatic systems. Previous studies on NOM-Cd(II) interactions have primarily focused on the immobilization of Cd(II) solids, but little is known about the colloidal stability of organically complexed Cd(II) particles in the environment. In this study, we investigated the formation of HA-Cd(II) colloids and quantified their aggregation, stability, and transport behaviors in a saturated porous media representative of typical subsurface conditions. Results from batch experiments indicated that the relative quantity of HA-Cd(II) colloids increased with increasing C/Cd molar ratio and that the carboxyl functional groups of HA dominated the stability of HA-Cd(II) colloids. The results of correlation analysis between particle size, critical aggregation concentration (CCC), and zeta potential indicated that both Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions contributed to the enhanced colloidal stability of HA-Cd(II) colloids. Column results further confirmed that the stable HA-Cd(II) colloid can transport fast in a saturated media composed of clean sand. Together, this study provides new knowledge of the colloidal behaviors of NOM-Cd(II) nanoparticles, which is important for better understanding the ultimate cycling of Cd(II) in aquatic systems.


Asunto(s)
Cadmio , Coloides , Sustancias Húmicas , Contaminantes Químicos del Agua , Sustancias Húmicas/análisis , Cadmio/química , Coloides/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Nanopartículas del Metal/química , Modelos Químicos , Nanopartículas/química
3.
J Environ Sci (China) ; 148: 409-419, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095176

RESUMEN

Sedimentation sludge water (SSW), a prominent constituent of wastewater from drinking water treatment plants, has received limited attention in terms of its treatment and utilization likely due to the perceived difficulties associated with managing SSW sludge. This study comprehensively evaluated the water quality of SSW by comparing it to a well-documented wastewater (filter backwash water (FBW)). Furthermore, it investigated the pollutant variations in the SSW during pre-sedimentation process, probed the underlying reaction mechanism, and explored the feasibility of employing a pilot-scale coagulation-sedimentation process for SSW treatment. The levels of most water quality parameters were generally comparable between SSW and FBW. During the pre-sedimentation of SSW, significant removal of turbidity, bacterial counts, and dissolved organic matter (DOM) was observed. The characterization of DOM components, molecular weight distributions, and optical properties revealed that the macromolecular proteinaceous biopolymers and humic acids were preferentially removed. The characterization of particulates indicated that high surface energy, zeta potential, and bridging/adsorption/sedimentation/coagulation capacities in aluminum residuals of SSW, underscoring its potential as a coagulant and promoting the generation and sedimentation of inorganic-organic complexes. The coagulation-sedimentation process could effectively remove pollutants from low-turbidity SSW ([turbidity]0 < 15 NTU). These findings provide valuable insights into the water quality dynamics of SSW during the pre-sedimentation process, facilitating the development of SSW quality management and enhancing its reuse rate.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/química , Material Particulado/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Sustancias Húmicas/análisis , Calidad del Agua
4.
J Environ Sci (China) ; 148: 553-566, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095188

RESUMEN

Organic matter (OM) derived from the decomposition of crop residues plays a key role as a sorbent for cadmium (Cd) immobilization. Few studies have explored the straw decomposition processes with the presence of minerals, and the effect of newly generated organo-mineral complexes on heavy metal adsorption. In this study, we investigated the variations in structure and composition during the rice straw decomposition with or without minerals (goethite and kaolinite), as well as the adsorption behavior and mechanisms by which straw decomposition affects Cd immobilization. The degree of humification of extracted straw organic matter was assessed using excitation-emission matrix (EEM) fluorescence and Ultraviolet-visible spectroscopy (UV-vis), while employing FTIR spectroscopy and XPS to characterize the adsorption mechanisms. The spectra analysis revealed the enrichment of highly aromatic and hydrophobic components, indicating that the degree of straw decomposition and humification were further intensified during incubation. Additionally, the existence of goethite (SG) accelerated the humification of OM. Sorption experiments revealed that the straw humification increased Cd adsorption capacity. Notably, SG exhibited significantly higher adsorption performance compared to the organic matter without minerals (RS) and the existence of kaolinite (SK). Further analysis using FT-IR spectroscopy and XPS verified that the primary mechanisms involved in Cd immobilization were complexion with -OH and -COOH, as well as the formation of Cd-π binds with aromatic C=C on the surface of solid OMs. These findings will facilitate understanding the interactions of the rice straw decomposing with soil minerals and its remediation effect on Cd-contaminated farmland.


Asunto(s)
Cadmio , Minerales , Oryza , Contaminantes del Suelo , Cadmio/química , Minerales/química , Oryza/química , Contaminantes del Suelo/química , Adsorción , Sustancias Húmicas/análisis , Caolín/química
5.
J Environ Sci (China) ; 147: 462-473, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003062

RESUMEN

Lake Baiyangdian is one of China's largest macrophyte - derived lakes, facing severe challenges related to water quality maintenance and eutrophication prevention. Dissolved organic matter (DOM) was a huge carbon pool and its abundance, property, and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems. In this study, Lake Baiyangdian was divided into four distinct areas: Unartificial Area (UA), Village Area (VA), Tourism Area (TA), and Breeding Area (BA). We examined the diversity of DOM properties and sources across these functional areas. Our findings reveal that DOM in this lake is predominantly composed of protein - like substances, as determined by excitation - emission matrix and parallel factor analysis (EEM - PARAFAC). Notably, the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA. Ultrahigh - resolution mass spectrometry (FT - ICR MS) unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds, suggesting that macrophytes significantly influence the material structure of DOM. DOM properties exhibited specific associations with water quality indicators in various functional areas, as indicated by the Mantel test. The connections between DOM properties and NO3N and NH3N were more pronounced in VA and BA than in UA and TA. Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.


Asunto(s)
Monitoreo del Ambiente , Lagos , Lagos/química , China , Monitoreo del Ambiente/métodos , Eutrofización , Sustancias Húmicas/análisis , Calidad del Agua , Espectrometría de Masas/métodos , Contaminantes Químicos del Agua/análisis , Ecosistema
6.
Physiol Plant ; 176(5): e14485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39237125

RESUMEN

This study focused on two aspects: to develop a selected functionally competent bacterial community, and its integrated with biostimulant humic acid and seaweed extract which was validated to enhance wheat growth and nutrient content. Wheat and maize-associated bacterial isolates (92) were screened for Plant Growth-Promoting traits (PGPts-72) and Community-Forming traits (CFts-66). 46 isolates possessed both kinds of traits, of which 20 isolates were chosen based on high Bonitur scale ratings. Based on metabolic diversity, growth rate, and compatibility, 11 isolates were grouped to make a synthetic microbial community (SM). Non-microbial biostimulants, humic acid (HA) and seaweed extract (SWE) were used, and 0.2% HA and 1% SWE were found to be optimal for bacterial and plant growth. SM integrated each with 0.2% HA and 1% SWE, leading to products SynBio1 (SM + HA) and SynBio2 (SM + SWE). Under microcosm study, SynBio1 and SynBio2 improved germination by 90.10% and 83.80%, respectively. SynBio1 increased chlorophyll content by 40.5 SPAD units, root length by 15.7%, and shoot length by 18.4%. Field level validations revealed that SynBio1 increased plant height by 15.76%, root length by 27.16%, and flag leaf length by 21.35% compared to the control. The grain yield with SynBio1 was 40.41% higher than that of the control. Macro and micronutrient analysis of seeds treated with SynBio1 showed significant improvements. These findings demonstrate the potential of integrating microbial communities with biostimulants, and they pave the way for developing novel bioinoculants for sustainable agriculture and promoting a healthier environment.


Asunto(s)
Sustancias Húmicas , Triticum , Triticum/crecimiento & desarrollo , Sustancias Húmicas/análisis , Nutrientes/metabolismo , Algas Marinas , Bacterias/metabolismo , Clorofila/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/efectos de los fármacos , Germinación/efectos de los fármacos , Microbiología del Suelo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Microbiota/efectos de los fármacos
7.
J Environ Manage ; 369: 122354, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39226814

RESUMEN

The effect of Fe3O4 nanoparticles (Fe3O4 NPs) on the electron transfer process in aerobic composting systems remains unexplored. In this study, we compared the electron transfer characteristics of DOM in sludge composting without additives (group CK) and with the addition of 50 mg/kg Fe3O4 NPs additive (group Fe). It was demonstrated that the electron transfer capacity (ETC) and electron donating capacity (EDC) of compost-derived DOM increased by 13%-29% and 40%-47%, respectively, with the addition of Fe3O4 NPs during sludge composting. Analyzing the composition and structure of DOM revealed that Fe3O4 NPs promoted the formation of humic acid-like substances and enhanced the aromatic condensation degree of DOM. Correlation analysis indicated that the increase in EDC of DOM was closely associated with the phenolic group in DOM and influenced by quinone groups and the degree of aromatization of DOM. The higher EDC and the structural evolution of DOM in group Fe reduced the bioaccessibility of Cu, Cr, Ni, Zn. This study contributes to a deeper understanding of the redox evolutionary mechanism of DOM in sludge composting and broadens the application of iron oxides additives.


Asunto(s)
Compostaje , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Sustancias Húmicas/análisis , Electrones , Compuestos Férricos/química
8.
Sci Rep ; 14(1): 17816, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090225

RESUMEN

Humic acid (HA) can substantially enhance plant growth and improve soil health. Currently, the impacts of HA concentrations variation on the development and soil quality of Panax notoginseng (Sanqi) from the forest understorey are still unclear. In this study, exogenous HA was administered to the roots of Sanqi at varying concentrations (2, 4, and 6 ml/L). Subsequently, the diversity and community structure of bacteria and fungi were assessed through high-throughput sequencing technology. The investigation further involved analyzing the interplay among the growth of sanqi, soil edaphic factors, and the microbial network stability. Our finding revealed that moderate concentrations (4 ml/L) of HA improved the fresh/dry weight of Sanqi and NO3--N levels. Compared with control, the moderate concentrations of HA had a notable impact on the bacterial and fungal communities compositions. However, there was no significant difference in the α and ß diversity of bacteria and fungi. Moreover, the abundance of beneficial bacteria (Bradyrhizobium) and harmful bacteria (Xanthobacteraceae) increased and decreased at 4 ml/L HA, respectively, while the bacterial and fungal network stability were enhanced. Structural equation model (SEM) revealed that the fresh weight of Sanqi and bacterial and fungal communities were the factors that directly affected the microbial network stability at moderate concentrations of HA. In conclusion, 4 ml/L of HA is beneficial for promoting Sanqi growth and soil quality. Our study provides a reference for increasing the yield of Sanqi and sustainable development of the Sanqi-pine agroforestry system.


Asunto(s)
Fertilizantes , Bosques , Hongos , Sustancias Húmicas , Panax notoginseng , Microbiología del Suelo , Panax notoginseng/crecimiento & desarrollo , Sustancias Húmicas/análisis , Fertilizantes/análisis , Hongos/crecimiento & desarrollo , Hongos/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Suelo/química , Microbiota/efectos de los fármacos
9.
Sci Total Environ ; 951: 175709, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39179047

RESUMEN

The mechanism by which algal organic matter (AOM) affects the clogging of ceramic emitters remains unclear, which partially reduces the operational life of agricultural water distribution systems. This paper systematically investigated the clogging phenomenon of ceramic emitters under three different AOM concentrations. The results of irrigation tests revealed that the AOM significantly affects the degree of clogging of ceramic emitters, with higher AOM concentrations leading to faster flow reduction. By analyzing the original irrigation water and effluent and characterizing the clogged emitter surface, it was demonstrated that AOM was intercepted by the ceramic emitter, forming a dense biofilm. Infrared spectroscopy analysis revealed that polysaccharides and humic substances were the main clogging components. The clogging kinetics showed that as the AOM concentration increased, the clogging of the filter cake layer gradually become dominant. Further, the mechanism of interaction between AOM and silica ceramic emitters was explored from a microscopic perspective using molecular dynamics (MD) simulation with bovine serum albumin (BSA), sodium alginate (SA), and humic acid (HA) as model clogging substances in AOM. The simulation results indicated a strong interaction between AOM molecules and silica molecules dominated by electrostatic attraction, with the strength of the interaction as SA > HA > BSA. It was hypothesized that early clogging was mainly formed by polysaccharides and humic substances combining with silica molecules, while BSA was retained later by combining with organics on the clogging layer or through size exclusion. This study provides insights into bio-clogging in microporous ceramic emitters and may offer a theoretical basis for developing measures to control emitter clogging.


Asunto(s)
Agricultura , Cerámica , Sustancias Húmicas , Agricultura/métodos , Sustancias Húmicas/análisis , Simulación de Dinámica Molecular , Eliminación de Residuos Líquidos/métodos
10.
Environ Monit Assess ; 196(9): 846, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190084

RESUMEN

Dissolved organic carbon (DOC) is an important organic substance that affects biogeochemical processes and underwater light conditions in aquatic ecosystems. To explore altitudinal variations in DOC components and water quality, 66 surface water samples were collected along an altitudinal gradient (10-1857 m) in three regions of central China, including a montane region (Enshi Prefecture) and two floodplain regions (Dongting Lake Basin and Wuhan City). DOC components were measured using a three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy, in conjunction with fluorescence regional integration (FRI) and fluorescence indices. Generally, lakes at high elevations (Enshi Prefecture) had higher DOC concentrations (a mean value of 6.43 mg L-1) than floodplain lakes in Dongting Basin (4.51 mg L-1) and Wuhan City (3.89 mg L-1). Fluorescence index (FI, a range of 1.37-1.92) and biological index (BIX, a range of 0.47-0.74) indicated that DOC mainly originated from allochthonous sources in the three regions. Enshi Prefecture had relatively lower FI and BIX values, suggestive of a larger contribution of allochthonous carbon in this montane region in comparison with the floodplain regions. Humic-like substances were more abundant than other four fluorescent components, including tyrosine-like, tryptophan-like, fulvic acid-like, microbial-like substances. Spearman rank correlation analyses showed that tryptophane-like substances were positively correlated with K+, Mg2+, and Na+, while humic-like substances were negatively correlated with these cations. Taken together, the results can improve our understanding on altitudinal variations in DOC components and potential driving forces.


Asunto(s)
Carbono , Monitoreo del Ambiente , Lagos , China , Lagos/química , Carbono/análisis , Contaminantes Químicos del Agua/análisis , Altitud , Sustancias Húmicas/análisis
11.
J Environ Qual ; 53(5): 697-710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126247

RESUMEN

Molecular properties of soil humic acid (HA) can play an important role in the mechanisms regulating plant nutrient availability. This study explores how the structure of HA is altered by long-term treatment with different forms of swine manure and how these changes may influence nutrient availability. Liquid swine manure (LSM), solid swine manure (SSM), and swine manure compost (SMC) were applied to a calcareous soil over 17 years in a long-term soil fertility study. HA was extracted from site soil samples and analyzed using fluorescence spectroscopic techniques, including a Cu2+ quenching experiment, in order to assess differences in the structure and functionality of the soil organic matter (SOM) resulting from these different treatments. Emission spectra of the SSM-HA and SMC-HA are similar, while the LSM-HA is distinct. Procedures such as parallel factor analysis (PARAFAC) decomposition of emission-excitation matrices showed that structures in the SSM-HA and SMC-HA samples have lower complexity, whereas the structures of LSM-HA are of higher complexity. Interactions with Cu2+ at different pH levels indicate that the LSM-HA shows more dynamic conformational changes as well as stronger interactions and higher quenching efficiency compared to the other treatments. Conversely, SMC-HA demonstrates relatively stable binding constant (Ka) values across different pH levels. The binding constants and quenching efficiency of SSM-HA are significantly affected by changes in pH. This study shows distinct structural characteristics of HA formed under different manure management systems and provides valuable insights into how these variations may impact nutrient dynamics in soils.


Asunto(s)
Sustancias Húmicas , Estiércol , Suelo , Sustancias Húmicas/análisis , Estiércol/análisis , Suelo/química , Animales , Porcinos , Fluorescencia , Compostaje/métodos , Espectrometría de Fluorescencia
12.
Water Sci Technol ; 90(3): 1023-1032, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141049

RESUMEN

Protecting rivers and lakes from pollution is crucial for maintaining the health of aquatic ecosystems and ensuring the well-being of both wildlife and humans. Present study intends to examine the water quality of the Suna River (Eastern Fennoscandia in the European North of Russia) to assess the ecological risk. Widespread methods for assessing water quality based on macrozoobenthos and phytoperiphoton were applied. It was found that in conditions of ultra-fresh waters with high humus content, biotic indicators may indicate pollution of water bodies that do not actually experience significant anthropogenic impact. Ratings ranging from 'poor' to 'excellent' were obtained for different stations, reflecting the influence of natural features of different sections of the river. 'Good' water quality was noted at the river stones biotopes. In river gravel, sand and silt biotopes, as well as all lake biotopes, 'mediocre' water quality was found. The low anthropogenic income on the river catchment allows us to conclude that most indices for assessing water quality significantly underestimate the results in the natural conditions of Eastern Fennoscandia. Biotic indices EPT, BBI and EBI are most accurate for assessing the water quality of rivers and lakes in Eastern Fennoscandia.


Asunto(s)
Monitoreo del Ambiente , Lagos , Ríos , Ríos/química , Federación de Rusia , Monitoreo del Ambiente/métodos , Animales , Calidad del Agua , Sustancias Húmicas/análisis , Ecosistema
13.
Water Sci Technol ; 90(3): 995-1008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141047

RESUMEN

The depth-dependent dynamics of dissolved organic matter (DOM) structure and humification in an artificial lake limits the understanding of lake eutrophication and carbon cycling. Using fluorescence regional integration (FRI) and parallel factor analysis (PARAFAC) models to analyze the 3D fluorescence spectroscopy dataset, we revealed the depth-dependent structure and vertical distribution of DOM in the estuarine and center regions of Lake Hongfeng. The percentage fluorescence response (Pi,n) showed humic acid is an important part of DOM in Lake Hongfeng. Fluorescence results show that the fulvic-like and protein-like materials in HF1-DOM located at the estuarine position showed greater variation in the middle stage, probably due to human influence and sediment suspension. Fluorescence index (PI+II+IV,n/PIII+V,n and FIC4/FIC3) can be used to indicate the degree of humification of DOM in artificial lakes. Results of each index show that the estuary is more affected by human activities, and the humification degree is significantly lower than that of the center of the lake. The evaluation index system of the humification degree of artificial lake established in this study can effectively predict the eutrophication state of the typical area of artificial lake and deeply understand the possible important influence of human activities on the carbon cycle of lake.


Asunto(s)
Sustancias Húmicas , Lagos , Lagos/química , Sustancias Húmicas/análisis , Espectrometría de Fluorescencia , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Monitoreo del Ambiente/métodos , Eutrofización
14.
Environ Res ; 259: 119518, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960351

RESUMEN

Persulfate advanced oxidation technology is widely utilized for remediating organic-contaminated groundwater. Post-remediation by persulfate oxidation, the aromaticity of dissolved organic matter (DOM) in groundwater is significantly reduced. Nevertheless, the evolution trends of aromaticity and related structural changes in DOM remained unclear. Here, we selected eight types of DOM to analyze the variation in aromaticity, molecular weight, and fluorescence characteristics during oxidation by persulfate using optical spectroscopy and parallel faction analysis combined with two-dimensional correlation spectroscopy analysis (2D PARAFAC COS). The results showed diverse trends in the changes of aromaticity and maximum fluorescence intensity (Fmax) among different types of DOM as the reaction time increases. Four types of DOM (humic acid 1S104H, fulvic acid, and natural organic matters) exhibited an initially noteworthy increase in aromaticity followed by a decrease, while others demonstrated a continuous decreasing trend (14.3%-69.4%). The overall decreasing magnitude of DOM aromaticity follows the order of natural organic matters ≈ commercial humic acid > fulvic acid > extracted humic acid. The Fmax of humic acid increased, exception of commercial humic acid. The Fmax of fulvic acid initially decreased and then increased, while that of natural organic matters exhibited a decreasing trend (86.4%). The fulvic acid-like substance is the main controlling factor for the aromaticity and molecular weight of DOM during persulfate oxidation process. The oxidation sequence of fluorophores in DOM is as follows: fulvic-like substance, microbial-derived humic-like substance, humic-like substance, and aquatic humic-like substance. The fulvic-like and microbial-derived humic-like substances at longer excitation wavelengths were more sensitive to the response of persulfate oxidation than that of shorter excitation wavelengths. This result reveals the structure evolution of DOM during persulfate oxidation process and provides further support for predicting its environmental behavior.


Asunto(s)
Oxidación-Reducción , Sulfatos , Sulfatos/química , Sustancias Húmicas/análisis , Espectrometría de Fluorescencia , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Benzopiranos/química , Agua Subterránea/química
15.
Chemosphere ; 362: 142921, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39053778

RESUMEN

The contamination of water sources by pharmaceutical compounds presents global environmental and health risks, necessitating the development of efficient water treatment technologies. In this study, the synthesis, characterization, and evaluation of a novel graphitic carbon nitride-calcined (Fe-Ca) layered double hydroxide (gC3N4-CLDH) composite for electrochemical degradation of sulfamethoxazole (SMX) in water yielded significant outcomes are reported. SEM, XRD, FTIR, and XPS analyses confirmed well-defined composite structures with unique morphology and crystalline properties. Electrochemical degradation experiments demonstrated >98% SMX removal and >75% TOC removal under optimized conditions, highlighting its effectiveness. The composite exhibited excellent mineralization efficiency across various pH levels, with superoxide radicals (O2●-) and hydroxyl radicals (●OH) identified as primary reactive oxygen species. With remarkable regeneration capability for up to 7 cycles, the gC3N4-CLDH composite emerges as a highly promising solution for sustainable water treatment. Humic acid (HA) in water significantly slows SMX degradation, suggests complicating SMX degradation with natural organic matter. Despite this, the gC3N4-CLDH composite effectively degrades SMX in groundwater and industrial wastewater, with slight efficiency reduction in the latter due to higher impurity levels. These findings highlight the complexities of treating pharmaceutical pollutants in various water types. Overall, gC3N4-CLDH's high removal efficiency, broad pH applicability, sustainability, and mechanistic insights provide a solid foundation for future research and real-world environmental applications.


Asunto(s)
Grafito , Sulfametoxazol , Contaminantes Químicos del Agua , Purificación del Agua , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Sulfametoxazol/química , Grafito/química , Aguas Residuales/química , Hidróxidos/química , Agua Subterránea/química , Técnicas Electroquímicas , Sustancias Húmicas/análisis , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/análisis
16.
Waste Manag ; 187: 207-217, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059157

RESUMEN

Seaweed waste, abundant and rich in plant-stimulating properties, has the potential to be transformed into valuable soil amendments through proper composting and utilization management. Given its low carbon-to-nitrogen ratio, co-composting seaweed with carbon-rich cornstarch dregs is an effective strategy. However, the potential application of co-composting largely depends on the efficiency of the composting and the quality of the product. This study explores the effects of adding 10 % corn stalk biochar to a co-composting system of seaweed and cornstarch dregs, alongside varying buffering capacities of phosphates (KH2PO4 and K2HPO4·3H2O-KH2PO4) and MgO, on the degradation efficiency of organic matter, nitrogen transformation, and humification. The results indicate that the addition of biochar and salts enhances the oxygen utilization rate (OUR) and cellulase activity during the thermophilic phase. Additionally, X-ray diffraction (XRD) and parallel factor analysis (PARAFAC) demonstrate more intense solubilization and transformation of proteinaceous substances, along with cellulose degradation. These processes are crucial for enhancing organic matter degradation and humification, significantly boosting degradation (with an increase of 28.6 % to 33.8 %) and humification levels (HA/FA increased by 37.1 % to 49.6 %). Specifically, groups with high buffering capacity significantly promote the formation of NO3--N and NH4+-N, and a higher degree of humification, creating an optimal environment for significantly improving nitrogen retention (increased by 4.80 %). Additionally, this treatment retains and slightly enhances the plant-stimulating properties of seaweed. These findings underscore the potential of integrating biochar with specific ratios of phosphates and MgO to enhance composting efficiency and product quality while preserving the plant-stimulating effects of seaweed.


Asunto(s)
Carbón Orgánico , Compostaje , Óxido de Magnesio , Nitrógeno , Fosfatos , Algas Marinas , Algas Marinas/química , Carbón Orgánico/química , Óxido de Magnesio/química , Compostaje/métodos , Zea mays , Almidón/química , Sustancias Húmicas/análisis , Suelo/química
17.
Environ Geochem Health ; 46(9): 350, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073511

RESUMEN

Dissolved organic matter (DOM), a pivotal component in the global carbon cycle, plays a crucial role in maintaining the productivity and functionality of aquatic ecosystems. However, the driving factors of variations in the properties of riverine DOM in tropical islands still remain unclear. In this study, the spatiotemporal response of the optical characteristics of riverine DOM to seasonality and land use on Hainan Island in southern China was investigated. Our results revealed that DOM in the rivers of Hainan Island exhibited a relatively high proportion of fulvic acid and demonstrated strong terrestrial sources. The optical properties of DOM exhibited significant variations both seasonally and spatially. Land use exerted a dominant influence on riverine DOM. Specifically, during the wet season, riverine DOM exhibited larger molecular weight, increased chromophoric DOM (CDOM) abundance, and higher Fmax compared to the dry season. Furthermore, riverine DOM influenced by grassland and farmland showed higher CDOM abundance, Fmax, and humification degree in contrast to those impacted by forest and urban. Random forest and correlation analysis results indicated that grassland and farmland enhanced the Fmax of DOM by increasing levels of TP, NO3--N, Chl a, and NH4+-N in the dry season. However, during the wet season, the increased Fmax of DOM induced by grassland and farmland relied on the increments of Chl a and TP concentrations. This study improves our understanding of the spatiotemporal fluctuations of DOM in the rivers of Hainan Island, highlighting the effects of season and land use on DOM. It offers valuable support for improving water quality and contributes to enhancing human comprehension of the global carbon cycle.


Asunto(s)
Monitoreo del Ambiente , Ríos , Estaciones del Año , Ríos/química , China , Monitoreo del Ambiente/métodos , Islas , Clima Tropical , Análisis Espacio-Temporal , Sustancias Húmicas/análisis , Agricultura , Compuestos Orgánicos/análisis , Benzopiranos/análisis
18.
Chemosphere ; 363: 142942, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059636

RESUMEN

The study investigates the efficiency of air-gap membrane distillation (AGMD) in water recovery and antibiotics removal from wastewater, focusing on high-concentration scenarios. Experimental findings reveal enhanced membrane performance with increasing the feed temperature, resulting in vapor permeate fluxes of up to 5 kg/m2.h at higher temperatures. Despite experiencing flux reduction caused by fouling from humic acid (HA) in the feed antibiotics solution, the antibiotics consistently maintain near-complete rejection rates (>99%) over 48 h. The foulant on the membrane surface was illustrated by SEM imaging. To know the temperature polarization and the fouling resistance, mathematical modeling was used, and it validates experimental results, elucidating temperature polarization effects and mass transfer coefficients. An increase in feed flow rates reduced thermal boundary layers, enhancing heat flux. Higher temperatures reduced HA fouling resistance. Therefore, AGMD proves effective in water recovery and antibiotics removal, with mathematical models aiding fouling understanding for future research and detailed computational fluid dynamics (CFD) models.


Asunto(s)
Antibacterianos , Destilación , Sustancias Húmicas , Membranas Artificiales , Aguas Residuales , Contaminantes Químicos del Agua , Sustancias Húmicas/análisis , Antibacterianos/química , Antibacterianos/análisis , Destilación/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Modelos Teóricos , Temperatura , Hidrodinámica
19.
Int J Biol Macromol ; 276(Pt 1): 133610, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960268

RESUMEN

Poly (vinyl alcohol) (PVA), as an excellent degradable plastic feedstock, is limited by its diminishing stability in wet environment, low strength, thermal instability and nonopaque properties. In response to these concerns, a PVA/demethylated lignin-based supramolecular plastic (DPVA-HA-Fe-5) was designed and produced from PVA, demethylated lignin (DL), humic acid (HA) and Fe3+ ions via a simple casting method. As compared with pure PVA plastic, the tensile strength of DPVA-HA-Fe-5 were increased by 411 % to 410.61 MPa, and the breaking strain was increased by 149 % to 239.47 %. Notably, the hydrophobicity of DPVA-HA-Fe-5 was also significantly improved. Although in highly humid environment (stored in RH = 100 % for 10 days) or in alkaline organic solvent (stored in pyridine for 3 h), DPVA-HA-Fe-5 also showed excellent mechanical strengths of 302.9 and 222.99 MPa, respectively, which are equivalent or even superior to the most of commercial petroleum-based plastics. Moreover, the prepared plastics showed an outstanding UV resistance and shading performance, and about 98.3 % protection against ultraviolet radiation B rays and 90.7 % protection against visible light were obtained. In short, the introduction of lignin to improve the performance of PVA-based plastic is a feasible method, and it could facilitate the development of high-value utilization of lignin.


Asunto(s)
Lignina , Alcohol Polivinílico , Resistencia a la Tracción , Agua , Lignina/química , Alcohol Polivinílico/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Plásticos/química , Sustancias Húmicas/análisis , Metilación , Rayos Ultravioleta
20.
Environ Res ; 261: 119682, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067800

RESUMEN

Sediment-derived dissolved organic matter (SDOM) is instrumental in the cycling of nutrients and heavy metals within lakes, influencing ecological balance and contaminant distribution. Given the influence of photodegradation on the alteration and breakdown of SDOM, further understanding of this process is essential. In this research, the properties of the SDOM photodegradation process and its metal-binding reactions in Nansi Lake were analyzed using the EEM-PARAFAC and 2D-SF/FTIR-COS techniques. Our study identified three sorts of humic-like components and one protein-like component in SDOM, with the humic-like material accounting for 71.3 ± 5.19% of the fluorescence intensity (Fmax). Photodegradation altered the abundance and structure of SDOM, with a 41.6 ± 5.82% decrease in a280 and a 29.1 ± 9.31% reduction in Fmax after 7 days, notably reducing the protein-like component C4 by 54.0 ± 5.17% and the humic-like component C2 by 48.5 ± 2.54%, which led to SDOM being formed with lower molecular weight and aromaticity. After photodegradation, the LogKCu values for humic-like and protein-like substances decreased (humic-like C2: LogKCu: 1.35 ± 0.10-1.11 ± 0.15, protein-like C4: 1.49 ± 0.14-1.29 ± 0.34), yet the preferential binding sequence of protein-like materials and specific functional groups with Cu2+ such as aliphatic C-OH, amide (I) C=O and polysaccharide C-O groups remained unaltered. Our results enhance the knowledge of light-induced SDOM alterations and offer insights into SDOM-metal interactions in aquatic ecosystems.


Asunto(s)
Sedimentos Geológicos , Lagos , Fotólisis , Contaminantes Químicos del Agua , Lagos/química , China , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Sustancias Húmicas/análisis , Compuestos Orgánicos/química , Metales/química , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA