Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
Viruses ; 16(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39205159

RESUMEN

The first report of African swine fever virus (ASFV) genotype II in Italy in 2022 marked the beginning of a significant invasion in at least eight Italian regions with different infection clusters. In this study, we used the multi-gene approach to investigate the epidemiological associations between ASFV strains causing cases and outbreaks in wild boar and pigs in Italy from January 2022 to the end of 2023. Our results confirm that all the tested ASFV-positive Italian samples belonged to genotype II and show high homology with genotype II ASFV sequences previously collected in Eurasian countries. Molecular characterization revealed the presence of four genetic groups in Italy. The majority of African swine fever (ASF) samples analyzed in the current study (72%) belonged to genetic group 3, which was the most representative in Europe. The results also provide evidence of the prevalence of genetic group 19 (15.9%). In addition, we identified new putative genetic groups, genetic group 25 (9.1%) and genetic group 26 (3.0%), which have never been described before. This is the first detailed report on the molecular characterization of more than 130 ASFV strains circulating in Italy.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genotipo , Filogenia , Sus scrofa , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/clasificación , Italia/epidemiología , Porcinos , Sus scrofa/virología , Brotes de Enfermedades , Epidemias , Variación Genética
2.
PLoS One ; 19(8): e0308502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39116050

RESUMEN

Wild boar population dynamics promote the increase in numbers and distribution of the species in Eurasia, leading to a rise in the interaction with human activities, as well as generating problems with the management of certain infectious diseases, most notably African swine fever (ASF). ASF virus possesses high stability in several contaminated pork and pork products that can be a source of indirect transmission to susceptible hosts habituated to anthropogenic food waste. This transmission route is a concerning threat for the dispersion of the disease, primarily into unaffected areas given the worldwide widespread distribution of the disease and the increase of wild boar contact with humans. Thus, in this study, a straightforward tool to assess the relative risk of wild boar natural populations potentially consuming food waste is presented using synthetic data. Three risk groups were defined related to urban areas, travel, and leisure. The surrounding quality of habitat of wild boar was used to obtain the relative risk of wild boar potentially consuming anthropogenic food waste. To assign the relative risk to the corresponding risk unit, we also included the population for the urban areas group, and traffic volume for the travel risk group. The leisure group had higher scaled risk scores, followed by the urban areas group. Higher risk was found in the edges of the study area where more natural landscapes are found. The implications of this risk are discussed focusing on the context of ASF transmission. The outputs can help prioritize decision-making in terms of the improvement of preventive measures against the habituation of wild boar to anthropogenic food waste and ASFV introduction in a given study area.


Asunto(s)
Fiebre Porcina Africana , Sus scrofa , Animales , Fiebre Porcina Africana/transmisión , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Porcinos , Sus scrofa/virología , Humanos , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/patogenicidad , Alimento Perdido y Desperdiciado
3.
Viruses ; 16(8)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39205248

RESUMEN

Pigs are the most common amplifying hosts of the Japanese encephalitis virus (JEV). In 2016, four residents on Tsushima Island who did not own pig farms were diagnosed with JE. Therefore, a serosurvey was conducted to estimate the risk and seroprevalence of JEV after the outbreak. Sera collected from 560 Tsushima Island residents between January and September 2017 were tested for neutralizing antibodies against JEV strains JaGAr01 (genotype 3) and Muar (genotype 5). Sera collected from six wild boars between June and July 2022 were tested. The seroprevalence rates of neutralizing antibodies against JaGAr01 and Muar were 38.8% and 24.6%, respectively. High anti-JEV neutralizing antibody titers of ≥320 were identified in 16 residents, including 3 younger than 6 years with prior JEV vaccination, 2 in their 40s, and 11 older than 70. However, no anti-JEV-specific IgM was detected. Residents who engaged in outdoor activities had higher anti-JEV antibody titers. Sera from wild boars were negative for JEV RNA, but four of six samples contained neutralizing antibodies against JEV. Therefore, JEV transmission continues on Tsushima Island, even in the absence of pig farms, and wild boars might serve as the amplifying hosts.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Sus scrofa , Enfermedades de los Porcinos , Animales , Virus de la Encefalitis Japonesa (Especie)/inmunología , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/veterinaria , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/virología , Encefalitis Japonesa/inmunología , Porcinos , Sus scrofa/virología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Estudios Seroepidemiológicos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/inmunología , Humanos , Masculino , Femenino , Genotipo , Japón/epidemiología
4.
Virol J ; 21(1): 205, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215313

RESUMEN

Lateral-shaking inducing neuro-degenerative agent virus (LindaV) is a novel member of the highly diverse genus Pestivirus within the family Flaviviridae. LindaV was first detected in Austria in 2015 and was associated with congenital tremor in piglets. Since then, the virus or specific antibodies have been found in a few further pig farms in Austria. However, the actual spatial distribution and the existence of reservoir hosts is largely unknown. Since other pestiviruses of pigs such as classical swine fever virus or atypical porcine pestivirus can also infect wild boar, the question arises whether LindaV is likewise present in the wild boar population. Therefore, we investigated the presence of neutralizing antibodies against LindaV in 200 wild boar samples collected in Southern Germany, which borders Austria. To establish a serological test system, we made use of the interchangeability of the surface glycoproteins and created a chimeric pestivirus using Bungowannah virus (species Pestivirus australiaense) as synthetic backbone. The E1 and E2 glycoproteins were replaced by the heterologous E1 and E2 of LindaV resulting in the chimera BV_E1E2_LV. Viable virus could be rescued and was subsequently applied in a neutralization test. A specific positive control serum generated against the E2 protein of LindaV gave a strong positive result, thereby confirming the functionality of the test system. All wild boar samples, however, tested negative. Hence, there is no evidence that LindaV has become highly prevalent in the wild boar population in Southern Germany.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Pestivirus , Pestivirus , Sus scrofa , Enfermedades de los Porcinos , Animales , Alemania/epidemiología , Infecciones por Pestivirus/veterinaria , Infecciones por Pestivirus/epidemiología , Infecciones por Pestivirus/virología , Sus scrofa/virología , Anticuerpos Antivirales/sangre , Porcinos , Pestivirus/genética , Pestivirus/aislamiento & purificación , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Anticuerpos Neutralizantes/sangre , Pruebas de Neutralización
5.
Virus Res ; 348: 199438, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39013518

RESUMEN

Previous studies have emphasized the necessity of surveillance and control measures for hepatitis E virus (HEV) infection in wild boars, an important reservoir of HEV. To assess the current situation of HEV infection in wild boars in Japan, this study investigated the prevalence and genetic diversity of HEV among wild boars captured in 16 prefectures of Japan during 2018-2023. Serum samples from 968 wild boars were examined for anti-HEV IgG antibodies and HEV RNA. The prevalence of anti-HEV IgG varied geographically from 0 % to 35.0 %. HEV RNA was detected in 3.6 % of boars, with prevalence varying by prefecture from 0 % to 22.2 %. Genotype 3 was the most prevalent genotype (91.9 %), followed by genotype 4 (5.4 %), with one strain closely related to genotype 6. The prevalence of HEV infection among wild boars decreased from 2018/2019 to 2022/2023 with significant declines in levels of anti-HEV IgG antibodies (14.5 % vs. 6.2 %, P < 0.0001) and HEV RNA (7.6 % vs. 1.5 %, P < 0.0001). Regional analysis showed varying trends, with no HEV RNA-positive boars found in several regions in recent years. A plausible factor contributing to the decline in HEV infection is the application of countermeasures, including installing fences to prevent intrusion into pig farms, implemented in response to the emergence of classical swine fever virus (CSFV) infection in wild boars and domestic pigs, with incidents reported annually since 2018. Further investigation is warranted to explore the association between countermeasures to CSFV infection and the decrease in HEV infection among wild boars.


Asunto(s)
Peste Porcina Clásica , Brotes de Enfermedades , Genotipo , Virus de la Hepatitis E , Hepatitis E , ARN Viral , Sus scrofa , Animales , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/aislamiento & purificación , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Hepatitis E/virología , Hepatitis E/prevención & control , Japón/epidemiología , Porcinos , Sus scrofa/virología , Peste Porcina Clásica/epidemiología , Peste Porcina Clásica/prevención & control , Peste Porcina Clásica/virología , Prevalencia , Brotes de Enfermedades/veterinaria , ARN Viral/genética , Virus de la Fiebre Porcina Clásica/genética , Virus de la Fiebre Porcina Clásica/inmunología , Virus de la Fiebre Porcina Clásica/clasificación , Filogenia , Inmunoglobulina G/sangre , Anticuerpos Antihepatitis/sangre , Variación Genética
6.
New Microbiol ; 47(2): 157-163, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023525

RESUMEN

Hepatitis E virus (HEV) infection is prevalent among domestic pigs and wild boar in Europe. This study focused on the genetic diversity of HEV subtypes 3c, 3e and 3f among swine and wild boar in Europe as well as their circulation. Phylogenetic analysis and Bayesian phylogenetic inference were applied on the selected ORF2 capsid HEV sequences to co-estimate the viral circulation, the mean evolutionary rates and the dated trees. The estimated mean values of the HEV ORF2 capsid gene evolutionary rate were 8.29 x 10-3, 5.96 x 10-3, and 1.107 x 10-2 substitutions/site/year, respectively for 3c, 3e and 3f. The majority of the HEV 3c and 3e supported clusters did not show intermixing between swine and wild boar. Thus, although the intermixing observed in a minority of HEV 3c and 3e supported clusters suggests that transmission/circulation of these subtypes between swine and wild boar can potentially occur, 3c and 3e European wild boar HEV populations remained mainly segregated. In contrast, one half of the HEV 3f supported clusters showed intermixing between swine and wild boar, providing evidence for transfer/circulation to swine. The data suggest that continued virologic surveillance in swine and wild boar is necessary, together with targeted measures to reduce the chance of HEV transmission to humans.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Filogenia , Sus scrofa , Enfermedades de los Porcinos , Animales , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/aislamiento & purificación , Porcinos , Europa (Continente) , Sus scrofa/virología , Hepatitis E/veterinaria , Hepatitis E/virología , Hepatitis E/epidemiología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Variación Genética
7.
Vopr Virusol ; 69(3): 241-254, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38996373

RESUMEN

INTRODUCTION: The rapid spread of African swine fever in the Kaliningrad region makes it necessary to use the methods of molecular epidemiology to determine the dynamics and direction of ASF spread in this region of Russia. The aim of the study was to determine single nucleotide polymorphisms within molecular markers K145R, O174L and MGF 505-5R of ASFVs isolated in Kaliningrad region and to study the circulating of the pathogen in European countries by subgenotyping and spatio-temporal clustering analysis. MATERIALS AND METHODS: Blood samples from living domestic pigs and organs from dead domestic pigs and wild boars, collected in the Kaliningrad region between 2017 and 2022 were used. Virus isolation was carried out in porcine bone-marrow primary cell culture. Amplicons of genome markers were amplified by PCR with electrophoretic detection and subsequent extraction of fragments from agarose gel. Sequencing was performed using the Sanger method. RESULTS: The circulation of two genetic clusters of ASFV isolates on the territory of the Kaliningrad has been established: epidemic (K145R-III, MGF 505-5R-II, O174L-I - 94.3% of the studied isolates) and sporadic (K145R-II, MGF 505-5R-II, O174L-I - 5.7%). CONCLUSION: The broaden molecular genetic surveillance of ASFV isolates based on sequencing of genome markers is necessary in the countries of the Eurasian continent to perform a more detailed analysis of ASF spread between countries and within regions.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genoma Viral , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/clasificación , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/epidemiología , Federación de Rusia/epidemiología , Filogenia , Polimorfismo de Nucleótido Simple , Marcadores Genéticos , Sus scrofa/virología , Análisis Espacio-Temporal
8.
PLoS One ; 19(6): e0305702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38905303

RESUMEN

Since the confirmation of African swine fever (ASF) in South Korea in 2019, its spread, predominantly in wild boars, has been a significant concern. A key factor in this situation is the lack of identification of risk factors by surveillance bias. The unique orography, characterized by high mountains, complicates search efforts, leading to overlooked or delayed case detection and posing risks to the swine industry. Additionally, shared rivers with neighboring country present a continual threat of virus entry. This study employs geospatial analysis and statistical methods to 1) identify areas at high risk of ASF occurrence but possibly under-surveilled, and 2) indicate strategic surveillance points for monitoring the risk of ASF virus entry through water bodies and basin influences. Pearson's rho test indicated that elevation (rho = -0.908, p-value < 0.001) and distance from roads (rho = -0.979, p-value < 0.001) may have a significant impact on limiting surveillance activities. A map of potential under-surveilled areas was created considering these results and was validated by a chi-square goodness-of-fit test (X-square = 208.03, df = 1, p-value < 0.001). The strong negative correlation (rho = -0.997, p-value <0.001) between ASF-positive wild boars and distance from water sources emphasizes that areas surrounding rivers are one of the priority areas for monitoring. The subsequent hydrological analyses provided important points for monitoring the risk of virus entry via water from the neighboring country. This research aims to facilitate early detection and prevent further spread of ASF.


Asunto(s)
Fiebre Porcina Africana , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Animales , Porcinos , República de Corea/epidemiología , Animales Salvajes/virología , Sus scrofa/virología , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Virus de la Fiebre Porcina Africana/patogenicidad , Monitoreo Epidemiológico/veterinaria
9.
Viruses ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932135

RESUMEN

Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection. Wild boars, which share the same genus and species as domestic pigs, are also an HEV reservoir. During our nationwide study of HEV infection in wild boar populations in Japan, a genotype 6 (HEV-6) strain, wbJHG_23, was isolated in Hyogo Prefecture in 2023. The genomic length was 7244 nucleotides, excluding the poly(A) tract. The wbJHG_23 strain exhibited the highest nucleotide identity throughout its genome with two previously reported HEV-6 strains (80.3-80.9%). Conversely, it displayed lower similarity (73.3-78.1%) with the HEV-1-5, HEV-7, and HEV-8 strains, indicating that, although closely related, the wbJHG_23 strain differs significantly from the reported HEV-6 strains and might represent a novel subtype. The wbJHG_23 strain successfully infected the human-derived cancer cell lines, PLC/PRF/5 and A549 1-1H8 cells, suggesting that HEV-6 has the potential for zoonotic infection. An infectious cDNA clone was constructed using a reverse genetics system, and a cell culture system supporting the efficient propagation of the HEV-6 strain was established, providing important tools for further studies on this genotype. Using this cell culture system, we evaluated the sensitivity of the wbJHG_23 strain to ribavirin treatment. Its good response to this treatment suggested that it could be used to treat human infections caused by HEV-6.


Asunto(s)
Genoma Viral , Virus de la Hepatitis E , Hepatitis E , Filogenia , Sus scrofa , Animales , Línea Celular , ADN Complementario/genética , Genotipo , Hepatitis E/virología , Hepatitis E/veterinaria , Hepatitis E/transmisión , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/aislamiento & purificación , Japón , ARN Viral/genética , Sus scrofa/virología , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/transmisión
10.
Arch Virol ; 169(7): 137, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847873

RESUMEN

The present study focuses on the pathological and molecular characterization of African swine fever virus (ASFV) associated with an outbreak in wild boars in two national parks in southern India in 2022-2023. Significant mortality was observed among free-ranging wild boars at Bandipur National Park, Karnataka, and Mudumalai National Park, Tamil Nadu. Extensive combing operations were undertaken in both national parks, spanning an area of around 100 km2, originating from the reported epicenter, to estimate the mortality rate. Recovered carcasses were pathologically examined, and ASFV isolates was genetically characterized. Our findings suggested spillover infection of ASFV from nearby domestic pigs, and the virus was equally pathogenic in wild boars and domestic pigs. ASFV intrusion was reported in the Northeastern region of the country, which borders China and Myanmar, whereas the current outbreak is very distantly located, in southern India. Molecular data will help in tracing the spread of the virus in the country.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Brotes de Enfermedades , Sus scrofa , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/aislamiento & purificación , India/epidemiología , Porcinos , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/mortalidad , Sus scrofa/virología , Brotes de Enfermedades/veterinaria , Filogenia , Animales Salvajes/virología
11.
Viruses ; 16(5)2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793635

RESUMEN

Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78-99.80%.


Asunto(s)
Fiebre Porcina Africana , Infecciones por Circoviridae , Circovirus , Coinfección , Enfermedades de los Porcinos , Animales , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/fisiología , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/virología , Circovirus/clasificación , Circovirus/genética , Coinfección/epidemiología , Coinfección/veterinaria , Coinfección/virología , Genoma Viral , Filogenia , Polonia/epidemiología , Prevalencia , Sus scrofa/virología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología
13.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687787

RESUMEN

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Asunto(s)
Ciervos , Flavivirus , Metagenómica , Garrapatas , Animales , Metagenómica/métodos , Japón/epidemiología , Ciervos/virología , Flavivirus/genética , Flavivirus/aislamiento & purificación , Flavivirus/clasificación , Garrapatas/virología , Filogenia , Viroma/genética , Virión/genética , Sus scrofa/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Seroepidemiológicos , Genoma Viral
14.
Viruses ; 16(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38675900

RESUMEN

Hepatitis E virus (HEV) is the main cause of acute hepatitis in humans worldwide and is responsible for a large number of outbreaks especially in Africa. Human infections are mainly caused by genotypes 1 and 2 of the genus Paslahepevirus, which are exclusively associated with humans. In contrast, viruses of genotypes 3 and 4 are zoonotic and have their main reservoir in domestic and wild pigs, from which they can be transmitted to humans primarily through the consumption of meat products. Both genotypes 3 and 4 are widespread in Europe, Asia, and North America and lead to sporadic cases of hepatitis E. However, there is little information available on the prevalence of these genotypes and possible transmission routes from animal reservoirs to humans in African countries. We therefore analysed 1086 pig sera collected in 2016/2017 in four districts in Sierra Leone for antibodies against HEV using a newly designed in-house ELISA. In addition, the samples were also analysed for HEV RNA by quantitative real-time RT-PCR. The overall seroprevalence in Sierra Leone was low with only 44 positive sera and a prevalence of 4.0%. Two serum pools were RT-PCR-positive and recovered partial sequences clustered into the genotype 3 (HEV-3) of the order Paslahepevirus, species Paslahepevirus balayani. The results are the first evidence of HEV-3 infection in pigs from Sierra Leone and demonstrate a low circulation of the virus in these animals to date. Further studies should include an examination of humans, especially those with close contact with pigs and porcine products, as well as environmental sampling to evaluate public health effects within the framework of a One Health approach.


Asunto(s)
Genotipo , Virus de la Hepatitis E , Hepatitis E , Filogenia , Enfermedades de los Porcinos , Animales , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Hepatitis E/virología , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/clasificación , Virus de la Hepatitis E/aislamiento & purificación , Virus de la Hepatitis E/inmunología , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Sierra Leona/epidemiología , Anticuerpos Antihepatitis/sangre , ARN Viral/genética , Sus scrofa/virología , Humanos
15.
J Vet Med Sci ; 86(6): 656-659, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38658334

RESUMEN

We devised a method to detect the classical swine fever virus (CSFV) in tail-wiped swabs from wild boars. The CSFV gene in swabs was detected with high sensitivity using nested real-time polymerase chain reaction (PCR), which is a combination of reverse transcription-PCR (RT-PCR) and real-time PCR. We compared CSFV gene detection from boar tissue using the conventional and our tail-wiped swab method. The tail-wiped swab method showed sensitivity and specificity of 100% (26/26) and 98.8% (172/174), respectively compared to the conventional method. Thus, the swab-based CSFV detection method was considered to have detection sensitivity comparable to that of conventional methods. Additionally, we conducted surveillance for CSFV in wild boars on Awaji Island. CSFV was detected in 10.7% (45/420) of samples.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Sus scrofa , Animales , Virus de la Fiebre Porcina Clásica/aislamiento & purificación , Virus de la Fiebre Porcina Clásica/genética , Porcinos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sus scrofa/virología , Peste Porcina Clásica/diagnóstico , Peste Porcina Clásica/virología , Cola (estructura animal)/virología , Japón , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
16.
Virol J ; 21(1): 93, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658979

RESUMEN

African swine fever virus (ASFV) is a highly contagious and fatal hemorrhagic disease of domestic pigs, which poses a major threat to the swine industry worldwide. Studies have shown that indigenous African pigs tolerate ASFV infection better than European pigs. The porcine v-rel avian reticuloendotheliosis viral oncogene homolog A (RelA) encoding a p65 kD protein, a major subunit of the NF-kB transcription factor, plays important roles in controlling both innate and adaptive immunity during infection with ASFV. In the present study, RelA genes from ASFV-surviving and symptomatic pigs were sequenced and found to contain polymorphisms revealing two discrete RelA amino acid sequences. One was found in the surviving pigs, and the other in symptomatic pigs. In total, 16 nonsynonymous SNPs (nsSNPs) resulting in codon changes were identified using bioinformatics software (SIFT and Polyphen v2) and web-based tools (MutPre and PredictSNP). Seven nsSNPs (P374-S, T448-S, P462-R, V464-P, Q478-H, L495-E, and P499-Q) were predicted to alter RelA protein function and stability, while 5 of these (P374-S, T448-S, P462-R, L495-E, and Q499-P) were predicted as disease-related SNPs.Additionally, the inflammatory cytokine levels of IFN-α, IL-10, and TNF-α at both the protein and the mRNA transcript levels were measured using ELISA and Real-Time PCR, respectively. The resulting data was used in correlation analysis to assess the association between cytokine levels and the RelA gene expression. Higher levels of IFN-α and detectable levels of IL-10 protein and RelA mRNA were observed in surviving pigs compared to healthy (non-infected). A positive correlation of IFN-α cytokine levels with RelA mRNA expression was also obtained. In conclusion, 7 polymorphic events in the coding region of the RelA gene may contribute to the tolerance of ASFV in pigs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Polimorfismo de Nucleótido Simple , Factor de Transcripción ReIA , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Porcinos , Factor de Transcripción ReIA/genética , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/genética , Fiebre Porcina Africana/inmunología , Resistencia a la Enfermedad/genética , Regulación hacia Arriba , Transcripción Genética , Análisis de Secuencia de ADN , Sus scrofa/genética , Sus scrofa/virología
17.
Emerg Infect Dis ; 30(5): 984-990, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666621

RESUMEN

We conducted a cross-sectional study in wild boar and extensively managed Iberian pig populations in a hotspot area of Crimean-Congo hemorrhagic fever virus (CCHFV) in Spain. We tested for antibodies against CCHFV by using 2 ELISAs in parallel. We assessed the presence of CCHFV RNA by means of reverse transcription quantitative PCR protocol, which detects all genotypes. A total of 113 (21.8%) of 518 suids sampled showed antibodies against CCHFV by ELISA. By species, 106 (39.7%) of 267 wild boars and 7 (2.8%) of 251 Iberian pigs analyzed were seropositive. Of the 231 Iberian pigs and 231 wild boars analyzed, none tested positive for CCHFV RNA. These findings indicate high CCHFV exposure in wild boar populations in endemic areas and confirm the susceptibility of extensively reared pigs to CCHFV, even though they may only play a limited role in the enzootic cycle.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Enfermedades de los Porcinos , Animales , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/aislamiento & purificación , España/epidemiología , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Fiebre Hemorrágica de Crimea/virología , Porcinos , Estudios Transversales , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Anticuerpos Antivirales/sangre , Estudios Seroepidemiológicos , Sus scrofa/virología , ARN Viral
18.
Emerg Infect Dis ; 30(5): 991-994, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666642

RESUMEN

African swine fever virus (ASFV) genotype II is endemic to Vietnam. We detected recombinant ASFV genotypes I and II (rASFV I/II) strains in domestic pigs from 6 northern provinces in Vietnam. The introduction of rASFV I/II strains could complicate ongoing ASFV control measures in the region.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genotipo , Filogenia , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/clasificación , Vietnam/epidemiología , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Porcinos , Sus scrofa/virología , Recombinación Genética
19.
J Vet Med Sci ; 86(5): 524-528, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38556348

RESUMEN

To conduct an epidemiological study of hepatitis E virus (HEV) in Japanese wild boars, we collected 179 serum and 162 fecal specimens from wild boars in eight Japanese prefectures; 39 of the serum samples (21.8%) were positive for anti-HEV IgG antibodies. RT-qPCR revealed HEV RNA in 11 serum samples (6.1%) and 5 fecal samples (3.1%). We obtained 412 bp of the viral genome sequences of ORF2 from five pairs of serum and fecal samples. All strains were subtype b in genotype 3 (HEV-3b) but separated into different clusters. We determined the entire genome sequence of HEV-3b strain WB0567 using a fecal specimen and isolated this strain by cell culture using PLC/PRF/5 cells. Eleven nucleotide mutations had occurred during virus replication. These results suggest that HEV-3b circulated uniformly among wild boars in Japan. Direct sequencing using a suspected animal's samples is indispensable for predicting original HEV nucleotide sequences.


Asunto(s)
Heces , Genotipo , Virus de la Hepatitis E , Hepatitis E , Sus scrofa , Enfermedades de los Porcinos , Animales , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/aislamiento & purificación , Virus de la Hepatitis E/clasificación , Japón/epidemiología , Sus scrofa/virología , Hepatitis E/veterinaria , Hepatitis E/virología , Hepatitis E/epidemiología , Heces/virología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Porcinos , Filogenia , Genoma Viral , ARN Viral/genética
20.
Braz J Microbiol ; 55(2): 1923-1929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478359

RESUMEN

Ovine gammaherpesvirus 2 (OvGHV2) is a member of Macavirus genus, subfamily Gammaherpesvirinae, family Herpesviridae, and causes sheep associated-malignant catarrhal fever (SA-MCF) in a wide range of ungulates. However, no descriptions of SA-MCF and/or infections due to OvGHV2 were identified in the wild boar (Sus scrofa). This study investigated the occurrence of OvGHV2 in the lungs (n = 44) of asymptomatic, free ranging wild boars captured in several regions of Paraná State, Southern Brazil. A PCR assay targeting the OvGHV2 tegument protein gene amplified OvGHV2 DNA in 4.55% (2/44) of the pulmonary tissues evaluated. Sequence analysis confirmed that the OvGHV2 strains herein identified have 98.4% deduced amino acid (aa) sequence identity with the prototype strain of OvGHV2 and 96.4-100% aa identity with similar strains of OvGHV2 detected in several animal species from diverse countries. These findings confirmed that these two wild boars were infected by OvGHV2, represent the first description of this infection in these animals, and add to the number of pathogens identified in this animal species. Furthermore, these findings contrast earlier descriptions of OvGHV2 in swine since in all previous reports the infected pigs demonstrated clinical manifestations of disease. Consequently, these wild boars from Southern Brazil were subclinically infected or suffered asymptomatic infections by OvGHV2.


Asunto(s)
Gammaherpesvirinae , Infecciones por Herpesviridae , Filogenia , Sus scrofa , Enfermedades de los Porcinos , Animales , Brasil , Gammaherpesvirinae/genética , Gammaherpesvirinae/aislamiento & purificación , Gammaherpesvirinae/clasificación , Sus scrofa/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Enfermedades de los Porcinos/virología , Porcinos , Pulmón/virología , ADN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA