Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126.729
Filtrar
1.
Methods Mol Biol ; 2848: 259-267, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240528

RESUMEN

Controlled release or controlled drug delivery comprises the set of techniques and approaches to improve bioavailability through improved safety and/or efficacy using a carrier material for the molecule of interest. The predictability and tunability of these carriers make them ideal for protection, localization, and sustained presentation of a wide range of therapeutics, including growth factors implicated in cell survival and regeneration. Here we provide a method for encapsulating epidermal growth factor in a degradable polymer matrix for delivery to the cornea. Additional notes are included to demonstrate the wide-ranging capabilities of such methods for other materials, therapeutic agents, and sites of action within the eye.


Asunto(s)
Supervivencia Celular , Preparaciones de Acción Retardada , Supervivencia Celular/efectos de los fármacos , Humanos , Regeneración , Factor de Crecimiento Epidérmico/metabolismo , Animales , Córnea/metabolismo , Córnea/citología , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Portadores de Fármacos/química
2.
J Ethnopharmacol ; 336: 118714, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181289

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY: The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS: We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS: Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS: These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.


Asunto(s)
Supervivencia Celular , Mitocondrias , Neuronas , Fármacos Neuroprotectores , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Adenosina Trifosfato/metabolismo , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Relación Dosis-Respuesta a Droga , Superóxidos/metabolismo
3.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182701

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ratas , Células PC12 , Masculino , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
4.
J Ethnopharmacol ; 336: 118722, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182704

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Triptolide is a major bioactive and toxic ingredient isolated from the traditional Chinese herb Tripterygium wilfordii (T. wilfordii) Hook F. It exhibits potent antitumor, immunosuppressive, and anti-inflammatory biological activities; however, its clinical application is hindered by severe systemic toxicity. Two preparations of T. wilfordii, including T. wilfordii glycoside tablets and T. wilfordii tablets, containing triptolide, are commonly used in clinical practice. However, their adverse side effects, particularly hepatotoxicity, limit their safe use. Therefore, it is crucial to discover potent and specific detoxification medicines for triptolide. AIM OF THE STUDY: This study aimed to investigate the detoxification effects and potential mechanism of action of spironolactone on triptolide-induced hepatotoxicity to provide a potential detoxifying strategy for triptolide, thereby promoting the safe applications of T. wilfordii preparations in clinical settings. MATERIALS AND METHODS: Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and crystal violet staining. Nuclear fragmentation was visualized using 4',6-diamidino-2-phenylindole (DAPI) staining, and protein expression was analyzed by Western blotting. The inhibitory effect of spironolactone on triptolide-induced hepatotoxicity was evaluated by examining the effects of spironolactone on serum alanine aminotransferase and aspartate aminotransferase levels, as well as liver pathology in a mouse model of triptolide-induced acute hepatotoxicity. Furthermore, a survival assay was performed to investigate the effects of spironolactone on the survival rate of mice exposed to a lethal dose of triptolide. The effect of spironolactone on triptolide-induced global transcriptional repression was assessed through 5-ethynyl uridine staining. RESULTS: Triptolide treatment decreased the cell viability, increased the nuclear fragmentation and the cleaved caspase-3 levels in both hepatoma cells and hepatocytes. It also increased the alanine aminotransferase and aspartate aminotransferase levels, induced the hepatocyte swelling and necrosis, and led to seven deaths out of 11 mice. The above effects could be mitigated by pretreatment with spironolactone. Additionally, molecular mechanism exploration unveiled that spironolactone inhibited triptolide-induced DNA-directed RNA polymerase II subunit RPB1 degradation, consequently increased the fluorescence intensity of 5-ethynyl uridine staining for nascent RNA. CONCLUSIONS: This study shows that spironolactone exhibits a potent detoxification role against triptolide hepatotoxicity, through inhibition of RPB1 degradation induced by triptolide and, in turn, retardation of global transcriptional inhibition in affected cells. These findings suggest a potential detoxification strategy for triptolide that may contribute to the safe use of T. wilfordii preparations.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diterpenos , Compuestos Epoxi , Fenantrenos , Espironolactona , Compuestos Epoxi/toxicidad , Fenantrenos/toxicidad , Fenantrenos/farmacología , Diterpenos/farmacología , Diterpenos/toxicidad , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Ratones , Espironolactona/farmacología , Masculino , Humanos , Supervivencia Celular/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Células Hep G2
5.
J Ethnopharmacol ; 336: 118632, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39069028

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lobostemon fruticosus (L.) H.Buek is a perennial and woody shrub of the Boraginaceae family, found in the Cape region of South Africa. The leaves and twigs are used to treat dermatological conditions such as wounds, burns, ringworm, erysipelas and eczema. Anti-inflammatory, antibacterial, antiviral and anti-proliferative activities of L. fruticosus have been reported. However, there is a void in research which reports on the wound healing properties of this plant. AIM OF THE STUDY: Aligned with the traditional use of L. fruticosus, our study aimed to use in vitro and in vivo bioassays to confirm the wound healing potential of the plant. MATERIALS AND METHODS: An aqueous methanol extract (80% v/v) of L. fruticosus was prepared using a sample collected from the Western Cape Province of South Africa and chromatographically profiled by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay was performed to determine the non-toxic concentrations of the extract for subsequent use in the in vitro scratch assay. Both the human keratinocyte (HaCaT) and fibroblast (BJ-5ta) cell lines were employed in the in vitro scratch assay. The in vivo caudal fin amputation assay was used to assess the wound healing potential of L. fruticosus, by monitoring fin regeneration in zebrafish larvae treated with the plant extract at various concentrations. RESULTS: Six major compounds were tentatively identified in the L. fruticosus extract namely; globoidnan A, globoidnan B, rutin, rabdosiin, sagerinic acid and rosmarinic acid. The potentially toxic pyrrolizidine alkaloids were also identified and quantitatively confirmed to be present at a low concentration of 119.58 ppm (m/m). Treatment of HaCaT and BJ-5ta cells with the plant extract in the scratch assay resulted in an increase in cell migration, which translates to accelerated wound closure. After 24 hr treatment with 100 µg/mL of extract, wound closure was recorded to be 91.1 ± 5.7% and 94.1 ± 1.3% for the HaCaT and BJ-5ta cells, respectively, while the untreated (medium) controls showed 72.3 ± 3.3% and 73.0 ± 4.3% for the two cell lines, respectively. Complete wound closure was observed between 24 and 36 hr, while the untreated control group did not achieve 100% wound closure by the end of the observation period (48 hr). In vivo, the crude extract at 100 µg/mL accelerated zebrafish caudal fin regeneration achieving 100.5 ± 3.8% regeneration compared to 68.3 ± 6.6% in the untreated control at two days post amputation. CONCLUSIONS: The study affirms the wound healing properties, as well as low toxicity of L. fruticosus using both in vitro and in vivo assays, which supports the traditional medicinal use. Other in vitro assays that target different mechanisms involved in wound healing should be investigated to support the current findings.


Asunto(s)
Boraginaceae , Extractos Vegetales , Cicatrización de Heridas , Pez Cebra , Cicatrización de Heridas/efectos de los fármacos , Animales , Extractos Vegetales/farmacología , Humanos , Boraginaceae/química , Bioensayo , Línea Celular , Queratinocitos/efectos de los fármacos , Sudáfrica , Células HaCaT , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
6.
Gene ; 932: 148904, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39218415

RESUMEN

BACKGROUND: Cervical cancer, primarily caused by HPV infection, remains a global health concern. Current treatments face challenges including drug resistance and toxicity. This study investigates combining E5-siRNA with chemotherapy drugs, Oxaliplatin and Ifosfamide, to enhance treatment efficacy in HPV-16 positive cervical cancer cells, targeting E5 oncoprotein to overcome limitations of existing therapies. METHODS: The CaSki cervical cancer cell line was transfected with E5-siRNA, and subsequently treated with Oxaliplatin/Ifosfamide. Quantitative real-time PCR was employed to assess the expression of related genes including p53, MMP2, Nanog, and Caspases. Cell apoptosis, cell cycle progression, and cell viability were evaluated using Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, stemness ability was determined through a colony formation assay, and cell motility was assessed by wound healing assay. RESULTS: E5-siRNA transfection significantly reduced E5 mRNA expression in CaSki cells compared to the control group. The MTT assay revealed that monotherapy with E5-siRNA, Oxaliplatin, or Ifosfamide had moderate effects on cell viability. However, combination therapy showed synergistic effects, reducing the IC50 of Oxaliplatin from 11.42 × 10-8 M (45.36 µg/ml) to 6.71 × 10-8 M (26.66 µg/ml) and Ifosfamide from 12.52 × 10-5 M (32.7 µg/ml) to 8.206 × 10-5 M (21.43 µg/ml). Flow cytometry analysis demonstrated a significant increase in apoptosis for combination treatments, with apoptosis rates rising from 11.02 % (Oxaliplatin alone) and 16.98 % (Ifosfamide alone) to 24.8 % (Oxaliplatin + E5-siRNA) and 34.9 % (Ifosfamide + E5-siRNA). The sub-G1 cell population increased from 15.7 % (Oxaliplatin alone) and 18 % (Ifosfamide alone) to 21.9 % (Oxaliplatin + E5-siRNA) and 27.1 % (Ifosfamide + E5-siRNA), indicating cell cycle arrest. The colony formation assay revealed a substantial decrease in the number of colonies following combination treatment. qRT-PCR analysis showed decreased expression of stemness-related genes CD44 and Nanog, and migration-related genes MMP2 and CXCL8 in the combination groups. Apoptosis-related genes Casp-3, Casp-9, and pP53 showed increased expression following combination therapy, while BAX expression increased and BCL2 expression decreased relative to the control. CONCLUSION: The study demonstrates that combining E5-siRNA with Oxaliplatin or Ifosfamide enhances the efficacy of chemotherapy in HPV-16 positive cervical cancer cells. This synergistic approach effectively targets multiple aspects of cancer cell behavior, including proliferation, apoptosis, migration, and stemness. The findings suggest that this combination strategy could potentially allow for lower chemotherapy doses, thereby reducing toxicity while maintaining therapeutic efficacy. This research provides valuable insights into targeting HPV E5 as a complementary approach to existing therapies focused on E6 and E7 oncoproteins, opening new avenues for combination therapies in cervical cancer treatment.


Asunto(s)
Apoptosis , Papillomavirus Humano 16 , Ifosfamida , Oxaliplatino , ARN Interferente Pequeño , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología , Oxaliplatino/farmacología , Femenino , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Ifosfamida/farmacología , Apoptosis/efectos de los fármacos , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Supervivencia Celular/efectos de los fármacos , Proteínas Oncogénicas Virales/genética , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
Biomaterials ; 312: 122719, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088912

RESUMEN

Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.


Asunto(s)
Supervivencia Celular , Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Fenotipo , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/patología , Microambiente Tumoral/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo/métodos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Médula Ósea/patología , Médula Ósea/efectos de los fármacos , Nicho de Células Madre/efectos de los fármacos , Células de la Médula Ósea/citología , Masculino , Diferenciación Celular/efectos de los fármacos , Femenino
8.
Anal Chim Acta ; 1325: 343090, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244300

RESUMEN

BACKGROUND: Curcumin has been used in traditional medicine because of its pharmacological activity, including antioxidant, antibacterial, anticancer, and anticarcinogenic properties. Therefore, sensitive and selective monitoring of curcumin is highly demand for practical application. RESULTS: In this study, we describe the construction of a fluorescence method for curcumin assay based on nitrogen-doped MoS2 quantum dots (N-MoS2 QDs). The N-MoS2 QDs are constructed by a solvothermal method using sodium molybdate and Cys as precursors. With the addition of curcumin, the bright blue fluorescence of N-MoS2 QDs is quenched by the inner filter effect (IFE). The QDs emitted bright blue fluorescence and could be quenched by the addition of curcumin via IFE. The dynamic range is the range of 0.1-10 µM for curcumin detection, with a detection limit of 59 nM. N-MoS2 QDs were applied for curcumin assay in real samples with good recovery. In addition, the N-MoS2 QDs exhibited relative low cytotoxicity and could be applied for fluorescence-based imaging in biological samples. SIGNIFICANCE: Our study indicates that the sensor possesses good selectivity to monitor curcumin in water samples, human urine samples, ginger powder samples, mustard samples, and curry samples with satisfactory recoveries. The N-MoS2 QDs possess less cytotoxicity with excellent biocompatibility and were applied for in vitro cell imaging.


Asunto(s)
Curcumina , Disulfuros , Colorantes Fluorescentes , Molibdeno , Nitrógeno , Puntos Cuánticos , Curcumina/química , Curcumina/farmacología , Puntos Cuánticos/química , Molibdeno/química , Humanos , Disulfuros/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Nitrógeno/química , Imagen Óptica , Límite de Detección , Espectrometría de Fluorescencia , Supervivencia Celular/efectos de los fármacos
9.
Eur J Histochem ; 68(3)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252536

RESUMEN

Medical treatment with low ozone concentrations proved to exert therapeutic effects in various diseases by inducing a cytoprotective antioxidant response through the nuclear factor erythroid derived-like 2 (Nrf2) transcription factor pathway. Low ozone doses are increasingly administered to oncological patients as a complementary treatment to mitigate some adverse side-effects of antitumor treatments. However, a widespread concern exists about the possibility that the cytoprotective effect of Nrf2 activation may confer drug resistance to cancer cells or at least reduce the efficacy of antitumor agents. In this study, the effect of low ozone concentrations on tamoxifen-treated MCF7 human breast cancer cells has been investigated in vitro by histochemical and molecular techniques. Results demonstrated that cell viability, proliferation and migration were generally similar in tamoxifen-treated cells as in cells concomitantly treated with tamoxifen and ozone. Notably, low ozone concentrations were unable to overstimulate the antioxidant response through the Nfr2 pathway, thus excluding a possible ozone-driven cytoprotective effect that would lead to increased tumor cell survival during the antineoplastic treatment. These findings, though obtained in an in vitro model, support the hypothesis that low ozone concentrations do not interfere with the tamoxifen-induced effects on breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Supervivencia Celular , Ozono , Tamoxifeno , Humanos , Tamoxifeno/farmacología , Ozono/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Células MCF-7 , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Movimiento Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Antineoplásicos Hormonales/farmacología
10.
Folia Med Cracov ; 64(1): 39-52, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39254580

RESUMEN

BACKGROUND: Kidney diseases are a major global health problem affecting millions of people. Despite this, there is as yet no effective drug therapy improving outcome in patients with renal disease. The aim of this study was to examine the nephroprotective effect of α-lipoic acid (ALA) in vitro and to examine the effect of ALA administered in vivo on the production of reactive sulfur species (RSS), including hydrogen sulfide (H2S) and compounds containing sulfane sulfur. METHODS: The effect of ALA was studied in vitro by determining the viability of human embryonic kidney cells (HEK293) in normoxic and hypoxic conditions as well as in vivo in two groups of chronic kidney disease (CKD) patients: non-dialyzed (ND) and undergoing continuous ambulatory peritoneal dialysis (PD) after 30 days of ALA supplementation. RESULTS: The results revealed that the viability of HEK293 cells was significantly decreased by hypoxic conditions, while ALA administered during hypoxia increased the viability to the level observed in normoxic conditions. Studies performed in plasma of CKD patients after ALA supplementation suggested that ALA did not affect the parameters of oxidative stress, while significantly increased the level of reactive sulfane sulfur in both ND and PD patients suffering from CKD. The results suggest that ALA can exert nephroprotective effects which are related to sulfane sulfur production.


Asunto(s)
Insuficiencia Renal Crónica , Ácido Tióctico , Humanos , Ácido Tióctico/farmacología , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Células HEK293 , Masculino , Femenino , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Persona de Mediana Edad , Antioxidantes/farmacología , Sulfuro de Hidrógeno/farmacología
11.
Carbohydr Polym ; 346: 122666, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245476

RESUMEN

The rising prevalence of bone injuries has increased the demand for minimally invasive treatments. Microbead hydrogels, renowned for cell encapsulation, provide a versatile substrate for bone tissue regeneration. They deliver bioactive agents, support cell growth, and promote osteogenesis, aiding bone repair and regeneration. In this study, we synthesized superparamagnetic iron oxide nanoparticles (Sp) coated with a calcium phosphate layer (m-Sp), achieving a distinctive flower-like micro-cluster morphology. Subsequently, sodium alginate (SA) microbead hydrogels containing m-Sp (McSa@m-Sp) were fabricated using a dropping gelation strategy. McSa@m-Sp is magnetically targetable, enhance cross-linking, control degradation rates, and provide strong antibacterial activity. Encapsulation studies with MC3T3-E1 cells revealed enhanced viability and proliferation. These studies also indicated significantly elevated alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, as confirmed by Alizarin Red S (ARS) and Von Kossa staining, along with increased collagen production within the McSa@m-Sp microbead hydrogels. Immunocytochemistry (ICC) and gene expression studies supported the osteoinductive potential of McSa@m-Sp, showing increased expression of osteogenic markers including RUNX-2, collagen-I, osteopontin, and osteocalcin. Thus, McSa@m-Sp microbead hydrogels offer a promising strategy for multifunctional scaffolds in bone tissue engineering.


Asunto(s)
Alginatos , Regeneración Ósea , Fosfatos de Calcio , Proliferación Celular , Hidrogeles , Osteogénesis , Alginatos/química , Alginatos/farmacología , Animales , Ratones , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Regeneración Ósea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Línea Celular , Nanopartículas Magnéticas de Óxido de Hierro/química , Antibacterianos/farmacología , Antibacterianos/química
12.
Carbohydr Polym ; 346: 122640, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245504

RESUMEN

Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 µm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.


Asunto(s)
Antibacterianos , Vendajes , Quitosano , Escherichia coli , Staphylococcus aureus , Andamios del Tejido , Cicatrización de Heridas , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Andamios del Tejido/química , Antibacterianos/farmacología , Antibacterianos/química , Animales , Ratones , Fibroblastos/efectos de los fármacos , Porosidad , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Reactivos de Enlaces Cruzados/química , Humanos
13.
Carbohydr Polym ; 346: 122647, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245532

RESUMEN

Incorporating 5-aminosalicylic acid (5-ASA) into a colon-specific carrier is crucial for treating inflammatory bowel diseases (IBD), as it enhances therapeutic efficacy, targets the affected regions directly, and minimizes side effects. This study evaluated the impact of incorporating cellulose nanofibers (CNF) on the in vitro and in vivo biological performance of retrograded starch/pectin (RS/P) microparticles (MPs) containing 5-ASA. Using Fourier Transform Infrared (FTIR) Spectroscopy, shifts in the spectra of retrograded samples containing CNF were observed with increasing CNF proportions, suggesting the establishment of new supramolecular interactions. Liquid absorption exhibited pH-dependent behaviors, with reduced absorption in simulated gastric fluid (∼269 %) and increased absorption in simulated colonic fluid (∼662 %). Increasing CNF concentrations enhanced mucoadhesion in porcine colonic sections, with a maximum force of 3.4 N at 50 % CNF. Caco-2 cell viability tests showed biocompatibility across all tested concentrations (0.0625-2.0000 mg/mL). Evaluation of intestinal permeability in Caco-2 cell monolayers demonstrated up to a tenfold increase in 5-ASA permeation, ranging from 29 % to 48 %. An in vivo study using Galleria mellonella larvae, with inflammation induced by LPS, showed reduction of inflammation. Given the scalability of spray-drying, these findings suggest the potential of CNF-incorporated RS/P microparticles for targeted 5-ASA delivery in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Mesalamina , Nanofibras , Pectinas , Almidón , Mesalamina/química , Mesalamina/farmacología , Mesalamina/administración & dosificación , Animales , Células CACO-2 , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Nanofibras/química , Nanofibras/toxicidad , Porcinos , Pectinas/química , Almidón/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Supervivencia Celular/efectos de los fármacos , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/administración & dosificación
14.
Luminescence ; 39(9): e4885, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238366

RESUMEN

Near-infrared (NIR) fluorescent probes with aggregation-induced emission (AIE) properties are of great significance in cell imaging and cancer therapy. However, the complexity of its synthesis, poor photostabilities, and expensive raw materials still pose some obstacles to their practical application. This study reported an AIE luminescent material with red emission and its application in in vitro imaging and photodynamic therapy (PDT) study. This material has the characteristics of simple synthesis, large Stokes shift, good photostabilities, and excellent lipid droplets-specific testing ability. Interestingly, this red-emitting material can effectively produce reactive oxygen species (ROS) under white light irradiation, further achieving PDT-mediated killing of cancer cells. In conclusion, this study demonstrates a simple approach to synthesize NIR AIE probes with both imaging and therapeutic effects, providing an ideal architecture for constructing long-wavelength emission AIE materials.


Asunto(s)
Colorantes Fluorescentes , Rayos Infrarrojos , Gotas Lipídicas , Fotoquimioterapia , Especies Reactivas de Oxígeno , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Gotas Lipídicas/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Supervivencia Celular/efectos de los fármacos , Imagen Óptica , Estructura Molecular , Células HeLa
15.
Luminescence ; 39(9): e4892, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239788

RESUMEN

Herein, we describe the design and development of a new cell-permeable aggregation-induced emission (AIE) active 3-ethoxysalicylaldimine-based symmetrical azine molecule HDBE. The synthesized compound underwent comprehensive investigation of different spectroscopic methods, like NMR, mass and single crystal X-ray diffraction analysis. The fluorophore HDBE exhibited the bright orange colour AIE behaviour in THF-H2O mixture. The drastic enhancement of emission was achieved upon adding the water to the THF solution of HDBE, with a concentration of 90%. Along with the dynamic light scattering (DLS) and quantum yield measurements, the formation of aggregates was also verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Further, HDBE demonstrated excited state intramolecular proton transfer (ESIPT) characteristics in different polarity of solvents, which was corroborated by absorption, emission and lifetime spectroscopical investigations. The detailed scrutiny of X-ray structure of HDBE displayed the two strong intramolecular hydrogen bonding interactions, while solid-state fluorescent spectra showed dual emission that corresponds to enol and keto form confirming the ESIPT feature. Further, the synthesized AIE molecule was non-toxic and cell-permeable, making it easy to label as a biomarker in live HeLa cells via fluorescent bioimaging. These studies offer a quick and easy way to develop both AIE and ESIPT-coupled molecules for live cell bioimaging applications.


Asunto(s)
Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Células HeLa , Imagen Óptica , Estructura Molecular , Color , Protones , Supervivencia Celular/efectos de los fármacos
16.
Biointerphases ; 19(5)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39235276

RESUMEN

In order to properly satisfy biomedical constraints for cardiovascular applications, additively manufactured NiTi scaffolds required further process and metallurgical engineering. Additively manufactured NiTi materials for cardiovascular use will have to undergo surface finishing in order to minimize negative surface interactions within the artery. In this study, we sought to understand biocompatibility from chemically etched additively manufactured NiTi scaffolds by laser powder bed fusion (LPBF). Although two distinct oxide films were created in the surface etching process (labeled CP-A and CP-B), no qualitative changes in microroughness were seen between the two conditions. CP-A possessed significantly less Ni at the surface (0.19 at. %) than the CP-B group (3.30 at. %), via x-ray photoelectron spectroscopy, alongside a concomitant shift in the O1 s peak presentation alluding to a greater formation of a Ni based oxide in the CP-B group. Our live dead staining revealed significant toxicity and reduced cellular attachment for the CP-B group, in addition to inducing more cell lysis (20.9 ± 5.1%), which was significantly increased when compared to CP-A (P < 0.01). Future practices of manufacturing NiTi scaffolds using LPBF should focus on producing surface films that are not only smooth, but free of cytotoxic Ni based oxides.


Asunto(s)
Materiales Biocompatibles , Níquel , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Níquel/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Óxidos/química , Óxidos/farmacología , Ensayo de Materiales , Supervivencia Celular/efectos de los fármacos , Espectroscopía de Fotoelectrones , Adhesión Celular/efectos de los fármacos , Andamios del Tejido/química
17.
Sci Rep ; 14(1): 20822, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242631

RESUMEN

A new type of hybrid polymer particles capable of carrying the cytostatic drug doxorubicin and labeled with a gallium compound was prepared. These microparticles consist of a core and a hydrogel shell, which serves as the structural matrix. The shell can be employed to immobilize gallium oxide hydroxide (GaOOH) nanoparticles and the drug, resulting in hybrid beads with sizes of approximately 3.81 ± 0.09 µm. The microparticles exhibit the ability to incorporate a remarkably large amount of doxorubicin, approximately 0.96 mg per 1 mg of the polymeric carrier. Additionally, GaOOH nanoparticles can be deposited within the hydrogel layer at an amount of 0.64 mg per 1 mg of the carrier. These nanoparticles, resembling rice grains with an average size of 593 nm by 155 nm, are located on the surface of the polymer carrier. In vitro studies on breast and colon cancer cell lines revealed a pronounced cytotoxic effect of the hybrid polymer particles loaded with doxorubicin, indicating their potential for cancer therapies. Furthermore, investigations on doping the hybrid particles with the Ga-68 radioisotope demonstrated their potential application in positron emission tomography (PET) imaging. The proposed structures present a promising theranostic platform, where particles could be employed in anticancer therapies while monitoring their accumulation in the body using PET.


Asunto(s)
Doxorrubicina , Galio , Hidrogeles , Nanopartículas , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Humanos , Galio/química , Nanopartículas/química , Hidrogeles/química , Portadores de Fármacos/química , Línea Celular Tumoral , Radioisótopos de Galio/química , Tomografía de Emisión de Positrones , Hidróxidos/química , Supervivencia Celular/efectos de los fármacos , Tamaño de la Partícula
18.
J Ovarian Res ; 17(1): 181, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244585

RESUMEN

Ovarian cancer is the second most common and lethal gynecologic malignancy. Among natural product-based therapy, the honeybee products, particularly propolis, serve a valuable source contributing directly to human nutrition and health.In the present study, we determined the chemical composition of different types of propolis originating from Egypt, Germany and France using liquid chromatography-tandem mass spectrometry. The compounds identified belong to different metabolite classes, including flavonoids, cinnamic acid, chalcones, terpenoids, phenolic lipids, stilbenes, phenolic compounds, carbohydrates, vitamins, coumarins, polyprenylated benzophenone, benzoic acids, fatty acid methyl ester, and coumaric acid, and their derivatives. The most active extract is from France then Egypt and Germany.Afterwards, we treated the human ovarian cancer cells, OVCAR4, with different concentrations (1-400 µg/mL) of variable propolis types supplemented or not with vitamin D (0.0015-0.15 µg/mL) in order to evaluate the efficacy and the cytotoxic activities of our local P as compared to other types collected from different geographic regions. Importantly, the combinatorial treatment of OVCAR4 cancer cells with propolis and vitamin D in the same concentration ranges resulted in enhanced cell viability inhibition. Furthermore, such co-supplementation with vitamin D inhibits predominately the proliferative activity of cell population with the French propolis type as manifested by Ki67 expression, while it reduces considerably its expression, particularly with the German type, followed by the Egyptian one.Nowadays, scientists are interested by natural products which have risen to the forefront of drug discovery. Chemically characterized propolis showing cell viability inhibition and antiproliferative potential seems a valuable extract for further consideration as anti-carcinogenic agent.


Asunto(s)
Neoplasias Ováricas , Própolis , Vitamina D , Própolis/farmacología , Própolis/química , Humanos , Femenino , Vitamina D/farmacología , Vitamina D/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Egipto , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos
19.
Carbohydr Polym ; 346: 122575, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245478

RESUMEN

Many neurodegenerative and psychiatric malignancies like Parkinson' disease (PD) originate from an imbalance of 17ß-Estradiol (E2) in the human brain. However, the peripheral side effects of the usage of E2 for PD therapy and less understanding of the molecular mechanism hinder establishing its neurotherapeutic potential. In the present work, systemic side effects were overcome by targeted delivery using Dopamine receptor D3 (DRD3) conjugated E2-loaded chitosan nanoparticles (Ab-ECSnps) that showed a promising delivery to the brain. E2 is a specific calpain inhibitor that fosters neurodegeneration by disrupting mitochondrial function, while B-cell-specific Moloney murine leukemia virus integration region 1 (BMI1), an epigenetic regulator, is crucial in preserving mitochondrial homeostasis. We showed the administration of Ab-ECSnps inhibits calpain's translocation into mitochondria while promoting the translocation of BMI1 to mitochondria, thereby conferring neurotherapeutic benefits by enhancing cell viability, increasing mitochondrial DNA copy number, and preserving mitochondrial membrane potential. Further, we showed a novel molecular mechanism of BMI1 regulation by calpain that might contribute to maintaining mitochondrial homeostasis for attenuating PD. Concomitantly, Ab-ECSnps showed neurotherapeutic potential in the in vivo PD model. We showed for the first time that our brain-specific targeted delivery might regulate calpain-mediated BMI1 expression, thereby preserving mitochondrial homeostasis to alleviate PD.


Asunto(s)
Calpaína , Quitosano , Mitocondrias , Nanopartículas , Enfermedad de Parkinson , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Calpaína/metabolismo , Calpaína/genética , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Nanopartículas/química , Quitosano/química , Humanos , Ratones , Epigénesis Genética/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Supervivencia Celular/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
20.
Toxicology ; 508: 153931, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39222830

RESUMEN

Metastasis contributes to the increased mortality rate of cancer, but the intricate mechanisms remain unclear. Cancer cells from a primary tumor invade nearby tissues and access the lymphatic or circulatory system. If these cells manage to survive and extravasate from the vasculature into distant tissues and ultimately adapt to survive, they will proliferate and facilitate malignant tumor formation. Traditional two-dimensional (2D) cell cultures offer a rapid and convenient method for validating the efficacy of anticancer drugs within a reasonable cost range, but their utility is limited because of tumors' high heterogeneity in vivo and spatial complexities. Three-dimensional (3D) cell cultures that mimic the physiological conditions of cancer cells in vivo have gained considerable interest. In these cultures, cells assemble into spheroids through gravity, magnetic forces, or their low-adhesion to the plates. Although these approaches address some of the limitations of 2D cultures, they often require a considerable amount of time and cost. Therefore, this study aims to enhance the effectiveness of 3D culture techniques by using microfluidic systems to provide a high-throughput and sensitive pipeline for drug screening. Using these systems, we studied the effects of lanthanide elements, which have garnered interest in cancer treatment, on spheroid formation and cell spreading. Our findings suggest that these elements alter the compactness of cell spheroids and decrease cell mobility.


Asunto(s)
Elementos de la Serie de los Lantanoides , Esferoides Celulares , Esferoides Celulares/efectos de los fármacos , Humanos , Elementos de la Serie de los Lantanoides/toxicidad , Elementos de la Serie de los Lantanoides/farmacología , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Supervivencia Celular/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Ensayos de Selección de Medicamentos Antitumorales/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA