Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 116(1): 168-183, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33567149

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC), an enteropathogen that colonizes in the intestine, causes severe diarrhea and hemorrhagic colitis in humans by the expression of the type III secretion system (T3SS) and Shiga-like toxins (Stxs). However, how EHEC can sense and respond to the changes in the alimentary tract and coordinate the expression of these virulence genes remains elusive. The T3SS-related genes are known to be regulated by the locus of enterocyte effacement (LEE)-encoded regulators, such as Ler, as well as non-LEE-encoded regulators in response to different environmental cues. Herein, we report that OmpR, which participates in the adaptation of E. coli to osmolarity and pH alterations, is required for EHEC infection in Caenorhabditis elegans. OmpR protein was able to directly bind to the promoters of ler and stx1 (Shiga-like toxin 1) and regulate the expression of T3SS and Stx1, respectively, at the transcriptional level. Moreover, we demonstrated that the expression of ler in EHEC is in response to the intestinal environment and is regulated by OmpR in C. elegans. Taken together, we reveal that OmpR is an important regulator of EHEC which coordinates the expression of virulence factors during gastrointestinal infection in vivo.


Asunto(s)
Proteínas Bacterianas/genética , Caenorhabditis elegans/microbiología , Escherichia coli Enterohemorrágica/patogenicidad , Toxina Shiga I/biosíntesis , Transactivadores/genética , Factores de Virulencia/biosíntesis , Animales , Proteínas Bacterianas/metabolismo , Sistema Digestivo/microbiología , Escherichia coli Enterohemorrágica/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Regiones Promotoras Genéticas/genética , Toxina Shiga I/genética , Transactivadores/biosíntesis , Transactivadores/metabolismo , Transcripción Genética/genética , Activación Transcripcional/genética , Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética
2.
Curr Top Microbiol Immunol ; 427: 91-107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31172377

RESUMEN

The bacterial flagellum is a supramolecular motility machine consisting of the basal body, the hook, and the filament. For construction of the flagellum beyond the cellular membranes, a type III protein export apparatus uses ATP and proton-motive force (PMF) across the cytoplasmic membrane as the energy sources to transport flagellar component proteins from the cytoplasm to the distal end of the growing flagellar structure. The protein export apparatus consists of a PMF-driven transmembrane export gate complex and a cytoplasmic ATPase complex. In addition, the basal body C ring acts as a sorting platform for the cytoplasmic ATPase complex that efficiently brings export substrates and type III export chaperone-substrate complexes from the cytoplasm to the export gate complex. In this book chapter, we will summarize our current understanding of molecular organization and assembly of the flagellar type III protein export apparatus.


Asunto(s)
Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/química , Proteínas Bacterianas , Flagelos , Transporte de Proteínas , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Sistemas de Secreción Tipo III/metabolismo
3.
Curr Top Microbiol Immunol ; 427: 35-66, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31218503

RESUMEN

The type III secretion system (T3SS) is one of the largest transmembrane complexes in bacteria, comprising several intricately linked and embedded substructures. The assembly of this nanomachine is a hierarchical process which is regulated and controlled by internal and external cues at several critical points. Recently, it has become obvious that the assembly of the T3SS is not a unidirectional and deterministic process, but that parts of the T3SS constantly exchange or rearrange. This article aims to give an overview on the assembly and post-assembly dynamics of the T3SS, with a focus on emerging general concepts and adaptations of the general assembly pathway.


Asunto(s)
Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas
4.
Mol Microbiol ; 111(3): 570-587, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30484918

RESUMEN

Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC-like regulators, HilD, HilC and RtsA, form a feed-forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5' UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low-aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Expresión Génica , Oxígeno/metabolismo , ARN Pequeño no Traducido/metabolismo , Salmonella typhimurium/efectos de los fármacos , Factores de Transcripción/metabolismo , Sistemas de Secreción Tipo III/biosíntesis , Regiones no Traducidas 5' , Animales , Proteínas Bacterianas/genética , Análisis Mutacional de ADN , Eliminación de Gen , Redes Reguladoras de Genes , Ratones , Hibridación de Ácido Nucleico , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , Salmonella typhimurium/genética , Factores de Transcripción/genética , Sistemas de Secreción Tipo III/genética
5.
mBio ; 9(1)2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339429

RESUMEN

Enteric pathogens employ sophisticated strategies to colonize and infect mammalian hosts. Gram-negative bacteria, such as Escherichia coli, Salmonella, and Campylobacter jejuni, are among the leading causes of gastrointestinal tract infections worldwide. The virulence strategies of many of these Gram-negative pathogens rely on type III secretion systems (T3SSs), which are macromolecular syringes that translocate bacterial effector proteins directly into the host cytosol. However, synthesis of T3SS proteins comes at a cost to the bacterium in terms of growth rate and fitness, both in the environment and within the host. Therefore, expression of the T3SS must be tightly regulated to occur at the appropriate time and place during infection. Enteric pathogens have thus evolved regulatory mechanisms to control expression of their T3SSs in response to specific environmental and host cues. These regulatory cascades integrate multiple physical and chemical signals through complex transcriptional networks. Although the power of bacterial genetics has allowed elucidation of many of these networks, the biochemical interactions between signal and sensor that initiate the signaling cascade are often poorly understood. Here, we review the physical and chemical signals that Gram-negative enteric pathogens use to regulate T3SS expression during infection. We highlight the recent structural and functional studies that have elucidated the biochemical properties governing both the interaction between sensor and signal and the mechanisms of signal transduction from sensor to downstream transcriptional networks.


Asunto(s)
Adaptación Fisiológica , Campylobacter jejuni/metabolismo , Señales (Psicología) , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Salmonella/metabolismo , Sistemas de Secreción Tipo III/biosíntesis , Campylobacter jejuni/genética , Escherichia coli/genética , Salmonella/genética
6.
FEMS Microbiol Lett ; 364(13)2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28854682

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that assembles a type III secretion system (T3SS) on its surface. The last portion of the T3SS, called the 'translocon', is composed of a filament and a pore complex that is inserted into the membrane of intestinal epithelial cells. The genes encoding the translocon (espADB) are part of the LEE4 operon. Their expression is regulated by a complex post-transcriptional mechanism that involves the processing of LEE4 mRNA by the essential endoribonuclease RNase E. Here, we report the construction of an EHEC strain (TEA028-rne) in which RNase E can be induced by adding IPTG to the culture medium. EHEC cells deficient in RNase E displayed an abnormal morphology and slower growth, in agreement with published observations in E. coli K-12. Under those conditions, EspA and EspB were produced at higher concentrations, and protein secretion still occurred. These results indicate that RNase E negatively regulates translocon protein synthesis and demonstrate the utility of E. coli strain TEA028-rne as a tool for investigating the influence of this ribonuclease on EHEC gene expression in vitro.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Endorribonucleasas/deficiencia , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/biosíntesis , Sistemas de Secreción Tipo III/biosíntesis , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN Bacteriano , Endorribonucleasas/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Isopropil Tiogalactósido/farmacología , Operón
7.
J Biol Chem ; 292(13): 5488-5498, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28196868

RESUMEN

The type III secretion system is a highly conserved virulence mechanism that is widely distributed in Gram-negative bacteria. It has a syringe-like structure composed of a multi-ring basal body that spans the bacterial envelope and a projecting needle that delivers virulence effectors into host cells. Here, we showed that the Yersinia inner rod protein YscI directly interacts with the needle protein YscF inside the bacterial cells and that this interaction depends on amino acid residues 83-102 in the carboxyl terminus of YscI. Alanine substitution of Trp-85 or Ser-86 abrogated the binding of YscI to YscF as well as needle assembly and the secretion of effectors (Yops) and the needle tip protein LcrV. However, yscI null mutants that were trans-complemented with YscI mutants that bind YscF still assembled the needle and secreted Yops, demonstrating that a direct interaction between YscF and YscI is critical for these processes. Consistently, YscI mutants that did not bind YscF resulted in greatly decreased HeLa cell cytotoxicity. Together, these results show that YscI participates in needle assembly by directly interacting with YscF.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo III/biosíntesis , Yersinia pestis/química , Sitios de Unión/genética , Muerte Celular , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/toxicidad , Yersinia pestis/patogenicidad
8.
FEMS Microbiol Lett ; 363(20)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27682417

RESUMEN

DExD/H box RNA helicases play essential roles in various biological processes in prokaryotes and eukaryotes. By screening Pseudomonas aeruginosa strains with mutations in various DExD/H box helicase genes, we identified that deaD was required for bacterial cytotoxicity and virulence in a mouse acute pneumonia model. Compared to a wild-type strain and its complementation strain, the deaD mutant induced less production of proinflammatory cytokines, neutrophil infiltration and lung damage during infection. We further found that the RNA helicase activity of DeaD was required for the expression of type III secretion system (T3SS) genes. Overexpression of ExsA, a master activator of the T3SS, restored the expression of T3SS genes as well as the virulence of the deaD mutant, suggesting that the attenuated virulence of the deaD mutant was mainly due to the defective T3SS. Overall, our results reveal a role of DeaD in the virulence of P. aeruginosa.


Asunto(s)
ARN Helicasas DEAD-box/genética , Neumonía/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/patogenicidad , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Ratones , Ratones Endogámicos BALB C , Pseudomonas aeruginosa/genética , Transactivadores/metabolismo , Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/genética
9.
Sci Rep ; 6: 28684, 2016 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-27345215

RESUMEN

Pathogenic bacteria could adjust gene expression to enable their survival in the distinct host environment. However, the mechanism by which bacteria adapt to the host environment is not well described. In this study, we demonstrated that nucleoside diphosphate kinase (Ndk) of Pseudomonas aeruginosa is critical for adjusting the bacterial virulence determinants during infection. Ndk expression was down-regulated in the pulmonary alveoli of a mouse model of acute pneumonia. Knockout of ndk up-regulated transcription factor ExsA-mediated T3S regulon expression and decreased exoproduct-related gene expression through the inhibition of the quorum sensing hierarchy. Moreover, in vitro and in vivo studies demonstrated that the ndk mutant exhibits enhanced cytotoxicity and host pathogenicity by increasing T3SS proteins. Taken together, our data reveal that ndk is a critical novel host-responsive gene required for coordinating P. aeruginosa virulence upon acute infection.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Nucleósido-Difosfato Quinasa , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Factores de Virulencia , Células A549 , Animales , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Nucleósido-Difosfato Quinasa/biosíntesis , Nucleósido-Difosfato Quinasa/genética , Infecciones por Pseudomonas/enzimología , Infecciones por Pseudomonas/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/biosíntesis , Factores de Virulencia/genética
10.
Environ Microbiol ; 17(11): 4745-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26462993

RESUMEN

Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression.


Asunto(s)
GMP Cíclico/análogos & derivados , Enterobacteriaceae/patogenicidad , Flagelos/genética , Flagelina/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Enterobacteriaceae/genética , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Polisacárido Liasas/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Sistemas de Secreción Tipo III/biosíntesis , Sistemas de Secreción Tipo III/genética , Verduras/microbiología , Virulencia/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA