Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48.520
Filtrar
1.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181639

RESUMEN

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Asunto(s)
Proteínas Fúngicas , Lipasa , Poliésteres , Lipasa/metabolismo , Lipasa/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Poliésteres/química , Poliésteres/metabolismo , Biodegradación Ambiental , Simulación de Dinámica Molecular , Hidrólisis , Modelos Químicos
2.
Methods Mol Biol ; 2856: 281-292, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283459

RESUMEN

Biomolecules contain various heterogeneities in their structures and local chemical properties, and their functions emerge through the dynamics encoded by these heterogeneities. Molecular dynamics model-based studies will greatly contribute to the elucidation of such chemical/mechanical structure-dynamics-function relationships and the mechanisms that generate them. Coarse-grained molecular dynamics models with appropriately designed nonuniform local interactions play an important role in considering the various phenomena caused by large molecular complexes consisting of various proteins and DNA such as nuclear chromosomes. Therefore, in this chapter, we will introduce a method for constructing a coarse-grained molecular dynamics model that simulates the global behavior of each chromosome in the nucleus of a mammalian cell containing many giant chromosomes.


Asunto(s)
Núcleo Celular , Simulación de Dinámica Molecular , Núcleo Celular/metabolismo , Núcleo Celular/química , Animales , Humanos , Cromosomas/química , ADN/química , ADN/metabolismo , Mamíferos
3.
Methods Mol Biol ; 2856: 309-324, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283461

RESUMEN

Polymer modeling has been playing an increasingly important role in complementing 3D genome experiments, both to aid their interpretation and to reveal the underlying molecular mechanisms. This chapter illustrates an application of Hi-C metainference, a Bayesian approach to explore the 3D organization of a target genomic region by integrating experimental contact frequencies into a prior model of chromatin. The method reconstructs the conformational ensemble of the target locus by combining molecular dynamics simulation and Monte Carlo sampling from the posterior probability distribution given the data. Using prior chromatin models at both 1 kb and nucleosome resolution, we apply this approach to a 30 kb locus of mouse embryonic stem cells consisting of two well-defined domains linking several gene promoters together. Retaining the advantages of both physics-based and data-driven strategies, Hi-C metainference can provide an experimentally consistent representation of the system while at the same time retaining molecular details necessary to derive physical insights.


Asunto(s)
Teorema de Bayes , Cromatina , Simulación de Dinámica Molecular , Animales , Ratones , Cromatina/genética , Cromatina/química , Cromatina/metabolismo , Genoma , Genómica/métodos , Método de Montecarlo , Células Madre Embrionarias de Ratones/metabolismo
4.
J Environ Sci (China) ; 149: 574-584, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181669

RESUMEN

The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol (SOA). However, to date, the reactivity of C2 Criegee intermediates (CH3CHOO) in areas contaminated with acidic gas remains poorly understood. Herein, high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations are used to explore the reaction of CH3CHOO and H2SO4 both in the gas phase and at the air-water interface. In the gas phase, the addition reaction of CH3CHOO with H2SO4 to generate CH3HC(OOH)OSO3H (HPES) is near-barrierless, regardless of the presence of water molecules. BOMD simulations show that the reaction at the air-water interface is even faster than that in the gas phase. Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters, meanwhile the oligomerization reaction of CH3CHOO with HPES in the gas phase is both thermochemically and kinetically favored. Also, it is noted that the interfacial HPES- ion can attract H2SO4, NH3, (COOH)2 and HNO3 for particle formation from the gas phase to the water surface. Thus, the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions, but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.


Asunto(s)
Ácidos Sulfúricos , Ácidos Sulfúricos/química , Aerosoles , Modelos Químicos , Contaminantes Atmosféricos/química , Simulación de Dinámica Molecular , Atmósfera/química
5.
Structure ; 32(9): 1281-1287, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241758

RESUMEN

Conformational dynamics is crucial for the biological function of RNA molecules and for their potential as therapeutic targets. This meeting report outlines key "take-home" messages that emerged from the presentations and discussions during the CECAM workshop "RNA dynamics from experimental and computational approaches" in Paris, June 26-28, 2023.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN , ARN/metabolismo , ARN/química , Biología Computacional/métodos , Humanos
6.
Physiol Plant ; 176(5): e14515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252390

RESUMEN

Cytochrome P450 enzyme (CYP)-catalyzed functional group transformations are pivotal in the biosynthesis of metabolic intermediates and products, as exemplified by the CYP-catalyzed C7-hydroxylation and the subsequent C7-C8 bond cleavage reaction responsible for the biosynthesis of the well-known antitumor monoterpene indole alkaloid (MIA) camptothecin. To determine the key amino acid residues responsible for the catalytic selectivity of the CYPs involved in MIA biosynthesis, we characterized the enzymes CYP72A728 and CYP72A729 as stereoselective 7-deoxyloganic acid 7-hydroxylases (7DLHs). We then conducted a comparative analysis of the amino acid sequences and the predicted structures of the CYP72A homologs involved in camptothecin biosynthesis, as well as those of the CYP72A homologs implicated in the pharmaceutically significant MIAs biosynthesis in Catharanthus roseus. The crucial amino acid residues for the catalytic selectivity of the CYP72A-catalyzed reactions were identified through fragmental and individual residue replacement, catalytic activity assays, molecular docking, and molecular dynamic simulations analysis. The fragments 1 and 3 of CYP72A565 were crucial for its C7-hydroxylation and C7-C8 bond cleavage activities. Mutating fragments 1 and 2 of CYP72A565 transformed the bifunctional CYP72A565 into a monofunctional 7DLH. Evolutionary analysis of the CYP72A homologs suggested that the bifunctional CYP72A in MIA-producing plants may have evolved into a monofunctional CYP72A. The gene pairs CYP72A728-CYP72A610 and CYP72A729-CYP72A565 may have originated from a whole genome duplication event. This study provides a molecular basis for the CYP72A-catalyzed hydroxylation and C-C bond cleavage activities of CYP72A565, as well as evolutionary insights of CYP72A homologs involved in MIAs biosynthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides Indólicos/metabolismo , Catharanthus/enzimología , Catharanthus/genética , Catharanthus/metabolismo , Catálisis , Alcaloides de Triptamina Secologanina/metabolismo , Evolución Molecular , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Hidroxilación , Simulación de Dinámica Molecular , Monoterpenos/metabolismo , Filogenia
7.
Carbohydr Polym ; 346: 122570, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245477

RESUMEN

This study investigated the influence of Konjac Glucomannan (KGM) with varying degrees of polymerization (DKGMx) on the gelatinization and retrogradation characteristics of wheat starch, providing new insights into starch-polysaccharide interactions. This research uniquely focuses on the effects of DKGMx, utilizing multidisciplinary approaches including Rapid Visco Analysis (RVA), Differential Scanning Calorimetry (DSC), rheological testing, Low-Field Nuclear Magnetic Resonance (LF-NMR), and molecular simulations to assess the effects of DKGMx on gelatinization temperature, viscosity, structural changes post-retrogradation, and molecular interactions. Our findings revealed that higher degrees of polymerization (DP) of DKGMx significantly enhanced starch's pasting viscosity and stability, whereas lower DP reduced viscosity and interfered with retrogradation. High DP DKGMx promoted retrogradation by modifying moisture distribution. Molecular simulations revealed the interplay between low DP DKGMx and starch molecules. These interactions, characterized by increased hydrogen bonds and tighter binding to more starch chains, inhibited starch molecular rearrangement. Specifically, low DP DKGMx established a dense hydrogen bond network with starch, significantly restricting molecular mobility and rearrangement. This study provides new insights into the role of the DP of DKGMx in modulating wheat starch's properties, offering valuable implications for the functional improvement of starch-based foods and advancing starch science.


Asunto(s)
Mananos , Polimerizacion , Almidón , Triticum , Triticum/química , Almidón/química , Viscosidad , Mananos/química , Enlace de Hidrógeno , Reología , Simulación de Dinámica Molecular , Rastreo Diferencial de Calorimetría
8.
Carbohydr Polym ; 346: 122668, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245519

RESUMEN

Gelation is a critical property of citrus pectin. However, the roles played by neutral sugar side-chains on acid-induced pectin gelation remain poorly understood. Herein, galactan- or/and arabinan-eliminated pectins (P-G, P-A, and P-AG) were used to investigate the effects of side-chains on gelation. The gel hardness values of citrus pectin, P-G, P-A, and P-AG were 42.6, 39.9, 5.3, and 2.1 g, respectively, suggesting that arabinan contributed more to gelation than galactan. We next found that arabinan branches promoted pectin chain entanglement more effectively than arabinan backbones. Destabilizer addition experiments showed that hydrogen bonding, electrostatic interaction, and hydrophobic interaction were the main forces affecting pectin gel networks and strength, which was further validated by molecular dynamic simulations. The total number of hydrogen bonds between the arabinan branches and galactan/HG (65.7) was significantly higher than that between the arabinan backbones and galactan/HG (39.1), indicating that arabinan branches predominated in terms of such interactions. This study thus elucidated the roles played by neutral-sugar side-chains, especially the arabinan branches of acid-induced pectin gels, in term of enhancing high-methoxyl pectin gelation, and offers novel insights into the structure-gelling relationships of citrus pectin.


Asunto(s)
Geles , Enlace de Hidrógeno , Pectinas , Pectinas/química , Geles/química , Polisacáridos/química , Simulación de Dinámica Molecular , Citrus/química , Interacciones Hidrofóbicas e Hidrofílicas
9.
Food Res Int ; 194: 114930, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232541

RESUMEN

Ripened pu-erh tea is known to have beneficial hypoglycemic properties. However, it remains unclear whether the bioactive peptides produced during fermentation are also related to hypoglycemic potential. This study aimed to identify hypoglycemic peptides in ripened pu-erh tea and to elucidate their bioactive mechanisms using physicochemical property prediction, molecular docking, molecular dynamics simulations, and cell experiments. Thirteen peptides were identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Among them, AADTDYRFS (AS-9) and AGDGTPYVR (AR-9) exhibited high α-glucosidase inhibitory activity, with half-maximal inhibitory concentration (IC50) values of 0.820 and 3.942 mg/mL, respectively. Molecular docking and dynamics simulations revealed that hydrogen bonding, hydrophobic interactions, and van der Waals forces assist peptides AS-9 and AR-9 in forming stable and tight complexes with α-glucosidase. An insulin-resistance (IR)-HepG2 cell model was established. AS-9 was non-toxic to IR-HepG2 cells and significantly increased the glucose consumption capacity, hexokinase, and pyruvate kinase activities of IR-HepG2 cells (p < 0.05). AS-9 alleviated glucose metabolism disorders and ameliorated IR by activating the IRS-1/PI3K/Akt signaling pathway and increasing the expression levels of MDM2, IRS-1, Akt, PI3K, GLUT4, and GSK3ß genes. In addition, no hemolysis of mice red blood cells red blood cells occurred at concentrations below 1 mg/mL. This work first explored hypoglycemic peptides in ripened pu-erh tea, providing novel insights for enhancing its functional value.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Péptidos , , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Animales , Té/química , Humanos , Células Hep G2 , Péptidos/química , Péptidos/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Ratones , Simulación de Dinámica Molecular , Resistencia a la Insulina , Transducción de Señal/efectos de los fármacos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Espectrometría de Masas en Tándem , alfa-Glucosidasas/metabolismo , Fermentación
10.
Food Res Int ; 194: 114883, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232555

RESUMEN

In this research, accelerated aroma release experiments and malvidin-3-O-glucoside copigmentation experiments in model red wine solutions were designed to investigate the abilities and molecular mechanisms of mannoproteins in modulating olfactory/chromatic properties of red wines. Results indicate that under orthonasal condition, mannoprotein MP2 was promising aroma modulator due to its predictable behaviors in expelling and retaining the aroma compounds during different periods. Low field nuclear magnetic resonance and molecular dynamic simulation proved that the modulation ability of MP2 should be explained by its transitionary interacting preferences with water/aroma compound molecules. Retronasal results show that the release of aroma compounds and olfactory perceptions were irregular and difficult to predict, probably due to the complexity of the retronasal condition. All mannoproteins protected malvidin-3-O-glucoside and quercetin via the formation of binary/ternary complexes, and quercetin was found prior to be protected than malvidin-3-O-glucoside. Principal mannoprotein A0A6C1DV26 might be the critical malvidin-3-O-glucoside protector. With the presence of quercetin, principal mannoproteins B3LQU1/B5VL26 in mannoprotein MP1 might exhibit intramolecular and/or intermolecular mechanisms that strengthened the hyperchromic effect, thus enhanced the copigmentation.


Asunto(s)
Antocianinas , Glucósidos , Glicoproteínas de Membrana , Vino , Vino/análisis , Glucósidos/química , Glicoproteínas de Membrana/metabolismo , Antocianinas/química , Odorantes/análisis , Quercetina/química , Percepción Olfatoria , Simulación de Dinámica Molecular , Humanos
11.
Elife ; 132024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240197

RESUMEN

Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2's strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.


Asunto(s)
Descubrimiento de Drogas , Conformación Proteica , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular , Unión Proteica , Simulación de Dinámica Molecular , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Ligandos , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo
12.
PLoS One ; 19(9): e0307877, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240891

RESUMEN

Tuberculosis(TB) of the Central nervous system (CNS) is a rare and highly destructive disease. The emergence of drug resistance has increased treatment difficulty, leaving the Bacillus Calmette-Guérin (BCG) vaccine as the only licensed preventative immunization available. This study focused on identifying the epitopes of PknD (Rv0931c) and Rv0986 from Mycobacterium tuberculosis(Mtb) strain H37Rv using an in silico method. The goal was to develop a therapeutic mRNA vaccine for preventing CNS TB. The vaccine was designed to be non-allergenic, non-toxic, and highly antigenic. Codon optimization was performed to ensure effective translation in the human host. Additionally, the secondary and tertiary structures of the vaccine were predicted, and molecular docking with TLR-4 was carried out. A molecular dynamics simulation confirmed the stability of the complex. The results indicate that the vaccine structure shows effectiveness. Overall, the constructed vaccine exhibits ideal physicochemical properties, immune response, and stability, laying a theoretical foundation for future laboratory experiments.


Asunto(s)
Simulación por Computador , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis , Tuberculosis del Sistema Nervioso Central , Humanos , Mycobacterium tuberculosis/inmunología , Tuberculosis del Sistema Nervioso Central/prevención & control , Tuberculosis del Sistema Nervioso Central/inmunología , Vacunas contra la Tuberculosis/inmunología , Epítopos/inmunología , Epítopos/química , Vacunas de ARNm , Vacunas Sintéticas/inmunología
13.
PLoS One ; 19(9): e0309553, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39241014

RESUMEN

Cation conducting channelrhodopsins (ChRs) are a popular tool used in optogenetics to control the activity of excitable cells and tissues using light. ChRs with altered ion selectivity are in high demand for use in different cell types and for other specialized applications. However, a detailed mechanism of ion permeation in ChRs is not fully resolved. Here, we use complementary experimental and computational methods to uncover the mechanisms of cation transport and valence selectivity through the channelrhodopsin chimera, C1C2, in the high- and low-conducting open states. Electrophysiology measurements identified a single-residue substitution within the central gate, N297D, that increased Ca2+ permeability vs. Na+ by nearly two-fold at peak current, but less so at stationary current. We then developed molecular models of dimeric wild-type C1C2 and N297D mutant channels in both open states and calculated the PMF profiles for Na+ and Ca2+ permeation through each protein using well-tempered/multiple-walker metadynamics. Results of these studies agree well with experimental measurements and demonstrate that the pore entrance on the extracellular side differs from original predictions and is actually located in a gap between helices I and II. Cation transport occurs via a relay mechanism where cations are passed between flexible carboxylate sidechains lining the full length of the pore by sidechain swinging, like a monkey swinging on vines. In the mutant channel, residue D297 enhances Ca2+ permeability by mediating the handoff between the central and cytosolic binding sites via direct coordination and sidechain swinging. We also found that altered cation binding affinities at both the extracellular entrance and central binding sites underly the distinct transport properties of the low-conducting open state. This work significantly advances our understanding of ion selectivity and permeation in cation channelrhodopsins and provides the insights needed for successful development of new ion-selective optogenetic tools.


Asunto(s)
Calcio , Channelrhodopsins , Simulación de Dinámica Molecular , Sodio , Sodio/metabolismo , Calcio/metabolismo , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/química , Animales , Transporte Iónico , Humanos , Células HEK293 , Activación del Canal Iónico
14.
PLoS One ; 19(9): e0308308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39241083

RESUMEN

BACKGROUND: The increasing prevalence of diabetes and the side effects associated with current medications necessitate the development of novel candidate drugs targeting alpha-glucosidase as a potential treatment option. METHODS: This study employed computer-aided drug design techniques to identify potential alpha-glucosidase inhibitors from the PubChem database. Molecular docking was used to evaluate 81,197 compounds, narrowing the set for further analysis and providing insights into ligand-target interactions. An ADMET study assessed the pharmacokinetic properties of these compounds, including absorption, distribution, metabolism, excretion, and toxicity. Molecular dynamics simulations validated the docking results. RESULTS: 9 compounds were identified as potential candidate drugs based on their ability to form stable complexes with alpha-glucosidase and their favorable pharmacokinetic profiles, three of these compounds were subjected to the molecular dynamics, which showed stability throughout the entire 100 ns simulation. CONCLUSION: These findings suggest promising new alpha-glucosidase inhibitors for diabetes treatment. Further validation through in vitro and in vivo studies is recommended to confirm their efficacy and safety.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Triazoles , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Triazoles/química , Triazoles/farmacología , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Humanos , Simulación por Computador , Diseño de Fármacos
15.
Sci Rep ; 14(1): 20787, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242661

RESUMEN

Ferroptosis is an important pathological mechanism of chronic heart failure (CHF). This study aimed to investigate the protective mechanism of Astragaloside IV (AS-IV) on CHF rats by integrating bioinformatics and ferroptosis. CHF-related targets and ferroptosis-related targets were collected. After the intersection, the common targets were obtained. The PPI network of the common targets was constructed, and topological analysis of the network was carried out. The target with the highest topological parameter values was selected as the key target. The key target p53 was obtained through bioinformatics analysis, and its molecular docking model with AS-IV was obtained, as well as molecular dynamics simulation analysis. The rat models of CHF after myocardial infarction were established by ligation of left coronary artery and treated with AS-IV for 4 weeks. AS-IV treatment significantly improved cardiac function in CHF rats, improved cardiomyocyte morphology and myocardial fibrosis, reduced mitochondrial damage, decreased myocardial MDA and Fe2+ content, increased GSH content, inhibited the expression of p53 and p-p53, and up-regulated the expression of SLC7A11 and GPX4. In conclusion, AS-IV improved cardiac function in CHF rats, presumably by regulating p53/SLC7A11/GPX4 signaling pathway and inhibiting myocardial ferroptosis.


Asunto(s)
Biología Computacional , Ferroptosis , Insuficiencia Cardíaca , Saponinas , Triterpenos , Animales , Ferroptosis/efectos de los fármacos , Triterpenos/farmacología , Saponinas/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Ratas , Biología Computacional/métodos , Masculino , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Enfermedad Crónica , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Simulación de Dinámica Molecular , Miocardio/metabolismo , Miocardio/patología
16.
Hereditas ; 161(1): 31, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243097

RESUMEN

BACKGROUND: Previous clinical and basic studies have revealed that ginseng might have cardioprotective properties against anthracycline-induced cardiotoxicity (AIC). However, the underlying mechanism of ginseng action against AIC remains insufficiently understood. The aim of this study was to explore the related targets and pathways of ginseng against AIC using network pharmacology, molecular docking, cellular thermal shift assay (CETSA) and molecular dynamics (MD) simulations. RESULTS: Fourteen drug-disease common targets were identified. Enrichment analysis showed that the AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathway were potentially involved in the action of ginseng against AIC. Molecular docking demonstrated that the core components including Kaempferol, beta-Sitosterol, and Fumarine had notable binding activity with the three core targets CCNA2, STAT1, and ICAM1. Furthermore, the stable complex of STAT1 and Kaempferol with favorable affinity was further confirmed by CETSA and MD simulation. CONCLUSIONS: This study suggested that ginseng might exert their protective effects against AIC through the derived effector compounds beta-Sitosterol, Kaempferol and Fumarine by targeting CCNA2, STAT1, and ICAM1, and modulating AGE-RAGE in diabetic complications, fluid shear stress and atherosclerosis, and TNF signaling pathways.


Asunto(s)
Antraciclinas , Cardiotoxicidad , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Panax , Panax/química , Antraciclinas/efectos adversos , Antraciclinas/química , Antraciclinas/toxicidad , Humanos , Sitoesteroles/farmacología , Sitoesteroles/química , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Quempferoles/farmacología , Quempferoles/química , Transducción de Señal/efectos de los fármacos
17.
Elife ; 122024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222068

RESUMEN

Aquaporin-0 (AQP0) tetramers form square arrays in lens membranes through a yet unknown mechanism, but lens membranes are enriched in sphingomyelin and cholesterol. Here, we determined electron crystallographic structures of AQP0 in sphingomyelin/cholesterol membranes and performed molecular dynamics (MD) simulations to establish that the observed cholesterol positions represent those seen around an isolated AQP0 tetramer and that the AQP0 tetramer largely defines the location and orientation of most of its associated cholesterol molecules. At a high concentration, cholesterol increases the hydrophobic thickness of the annular lipid shell around AQP0 tetramers, which may thus cluster to mitigate the resulting hydrophobic mismatch. Moreover, neighboring AQP0 tetramers sandwich a cholesterol deep in the center of the membrane. MD simulations show that the association of two AQP0 tetramers is necessary to maintain the deep cholesterol in its position and that the deep cholesterol increases the force required to laterally detach two AQP0 tetramers, not only due to protein-protein contacts but also due to increased lipid-protein complementarity. Since each tetramer interacts with four such 'glue' cholesterols, avidity effects may stabilize larger arrays. The principles proposed to drive AQP0 array formation could also underlie protein clustering in lipid rafts.


Asunto(s)
Acuaporinas , Colesterol , Microdominios de Membrana , Simulación de Dinámica Molecular , Esfingomielinas , Colesterol/metabolismo , Colesterol/química , Acuaporinas/química , Acuaporinas/metabolismo , Microdominios de Membrana/metabolismo , Microdominios de Membrana/química , Esfingomielinas/química , Esfingomielinas/metabolismo , Animales , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Multimerización de Proteína , Cristalino/química , Cristalino/metabolismo , Conformación Proteica
18.
Proc Natl Acad Sci U S A ; 121(37): e2322155121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226345

RESUMEN

Utilizing molecular dynamics and free energy perturbation, we examine the relative binding affinity of several covalent polycyclic aromatic hydrocarbon - DNA (PAH-DNA) adducts at the central adenine of NRAS codon-61, a mutational hotspot implicated in cancer risk. Several PAHs classified by the International Agency for Research on Cancer as probable, possible, or unclassifiable as to carcinogenicity are found to have greater binding affinity than the known carcinogen, benzo[a]pyrene (B[a]P). van der Waals interactions between the intercalated PAH and neighboring nucleobases, and minimal disruption of the DNA duplex drive increases in binding affinity. PAH-DNA adducts may be repaired by global genomic nucleotide excision repair (GG-NER), hence we also compute relative free energies of complexation of PAH-DNA adducts with RAD4-RAD23 (the yeast ortholog of human XPC-RAD23) which constitutes the recognition step in GG-NER. PAH-DNA adducts exhibiting the greatest DNA binding affinity also exhibit the least RAD4-RAD23 complexation affinity and are thus predicted to resist the GG-NER machinery, contributing to their genotoxic potential. In particular, the fjord region PAHs dibenzo[a,l]pyrene, benzo[g]chrysene, and benzo[c]phenanthrene are found to have greater binding affinity while having weaker RAD4-RAD23 complexation affinity than their respective bay region analogs B[a]P, chrysene, and phenanthrene. We also find that the bay region PAHs dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, and dibenzo[a,h]anthracene exhibit greater binding affinity and weaker RAD4-RAD23 complexation affinity than B[a]P. Thus, the study of PAH genotoxicity likely needs to be substantially broadened, with implications for public policy and the health sciences. This approach can be broadly applied to assess factors contributing to the genotoxicity of other unclassified compounds.


Asunto(s)
Aductos de ADN , Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Aductos de ADN/química , Aductos de ADN/metabolismo , Aductos de ADN/genética , Humanos , Reparación del ADN , Mutágenos/toxicidad , Mutágenos/química , Simulación de Dinámica Molecular , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Termodinámica , Benzo(a)pireno/toxicidad , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , ADN/química , ADN/metabolismo , Benzopirenos/toxicidad , Benzopirenos/química , Benzopirenos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química
19.
J Chem Phys ; 161(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39225535

RESUMEN

Intrinsically disordered proteins (IDPs) are prevalent participants in liquid-liquid phase separation due to their inherent potential for promoting multivalent binding. Understanding the underlying mechanisms of phase separation is challenging, as phase separation is a complex process, involving numerous molecules and various types of interactions. Here, we used a simplified coarse-grained model of IDPs to investigate the thermodynamic stability of the dense phase, conformational properties of IDPs, chain dynamics, and kinetic rates of forming condensates. We focused on the IDP system, in which the oppositely charged IDPs are maximally segregated, inherently possessing a high propensity for phase separation. By varying interaction strengths, salt concentrations, and temperatures, we observed that IDPs in the dense phase exhibited highly conserved conformational characteristics, which are more extended than those in the dilute phase. Although the chain motions and global conformational dynamics of IDPs in the condensates are slow due to the high viscosity, local chain flexibility at the short timescales is largely preserved with respect to that at the free state. Strikingly, we observed a non-monotonic relationship between interaction strengths and kinetic rates for forming condensates. As strong interactions of IDPs result in high stable condensates, our results suggest that the thermodynamics and kinetics of phase separation are decoupled and optimized by the speed-stability balance through underlying molecular interactions. Our findings contribute to the molecular-level understanding of phase separation and offer valuable insights into the developments of engineering strategies for precise regulation of biomolecular condensates.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Termodinámica , Cinética , Proteínas Intrínsecamente Desordenadas/química , Estabilidad Proteica , Conformación Proteica , Simulación de Dinámica Molecular , Separación de Fases
20.
Biomed Res Int ; 2024: 9377016, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282570

RESUMEN

Background: Aliarcobacter butzleri is a Gram-negative, curved or spiral-shaped, microaerophilic bacterium and causes human infections, specifically diarrhea, fever, and sepsis. The research objective of this study was to employ computer-aided drug design techniques to identify potential natural product inhibitors of a vital enzyme in this bacterium. The pyrimidine biosynthesis pathway in its core genome fraction is crucial for its survival and presents a potential target for novel therapeutics. Hence, novel small molecule inhibitors were identified (from traditional Chinese medicinal (TCM) compound library) against it, which may be used for possible curbing of infection by A. butzleri. Methods. A comprehensive subtractive genomics approach was utilized to identify a key enzyme (orotidine-5'-phosphate decarboxylase) cluster conserved in the core genome fraction of A. butzleri. It was selected for inhibitor screening due to its vital role in pyrimidine biosynthesis. TCM library (n > 36,000 compounds) was screened against it using pharmacophore model based on orotidylic acid (control), and the obtained lead-like molecules were subjected to structural docking using AutoDock Vina. The top-scoring compounds, ZINC70454134, ZINC85632684, and ZINC85632721, underwent further scrutiny via a combination of physiological-based pharmacokinetics, toxicity assessment, and atomic-scale dynamics simulations (100 ns). Results: Among the screened compounds, ZINC70454134 displayed the most favorable characteristics in terms of binding, stability, absorption, and safety parameters. Overall, traditional Chinese medicine (TCM) compounds exhibited high bioavailability, but in diseased states (cirrhosis, renal impairment, and steatosis), there was a significant decrease in absorption, Cmax, and AUC of the compounds compared to the healthy state. Furthermore, MD simulation demonstrated that the ODCase-ZINC70454134 complex had a superior overall binding affinity, supported by PCA proportion of variance and eigenvalue rank analysis. These favorable characteristics underscore its potential as a promising drug candidate. Conclusion: The computer-aided drug design approach employed for this study helped expedite the discovery of antibacterial compounds against A. butzleri, offering a cost-effective and efficient approach to address infection by it. It is recommended that ZINC70454134 should be considered for further experimental analysis due to its indication as a potential therapeutic agent for combating A. butzleri infections. This study provides valuable insights into the molecular basis of biophysical inhibition of A. butzleri through TCM compounds.


Asunto(s)
Medicina Tradicional China , Simulación del Acoplamiento Molecular , Humanos , Simulación de Dinámica Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Antibacterianos/farmacología , Antibacterianos/química , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA