Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Viruses ; 16(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205312

RESUMEN

Salmonella Typhimurium (S. Typhimurium) contamination poses a significant challenge to breeder egg hatchability and chick health, necessitating the exploration of alternative disinfection methods. This study investigates the potential of phage vB_SPuM_SP02 (SP02) as a novel disinfectant for breeder eggs contaminated with S. Typhimurium SM022. Phage SP02 was isolated from poultry farm effluent and characterized for morphology, biological properties, and genome properties. Experimental groups of specific pathogen-free (SPF) eggs were treated with Salmonella and phage SP02, and efficacy was assessed through hatching rates, chick survival, weight, Salmonella load, immune organ indices, and intestinal flora. Phage treatment effectively eradicated Salmonella contamination on eggshells within 12 h, resulting in increased hatching and survival rates compared to controls. Furthermore, phage treatment mitigated weight loss and tissue Salmonella load in chicks without causing immune organ damage while reducing Salmonella spp. abundance in the intestinal tract. This study demonstrates the potential of phage SP02 as an eco-friendly and efficient disinfectant for S. Typhimurium-contaminated breeder eggs, offering promising prospects for practical application in poultry production.


Asunto(s)
Pollos , Huevos , Salmonelosis Animal , Fagos de Salmonella , Salmonella typhimurium , Animales , Salmonella typhimurium/virología , Fagos de Salmonella/fisiología , Fagos de Salmonella/aislamiento & purificación , Salmonelosis Animal/microbiología , Huevos/microbiología , Huevos/virología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología , Desinfectantes/farmacología , Desinfección/métodos , Organismos Libres de Patógenos Específicos , Bacteriófagos/fisiología , Bacteriófagos/aislamiento & purificación , Cáscara de Huevo/microbiología
2.
Sci Rep ; 14(1): 15347, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961138

RESUMEN

The escalating incidence of foodborne salmonellosis poses a significant global threat to food safety and public health. As antibiotic resistance in Salmonella continues to rise, there is growing interest in bacteriophages as potential alternatives. In this study, we isolated, characterized, and evaluated the biocontrol efficacy of lytic phage L223 in chicken meat. Phage L223 demonstrated robust stability across a broad range of temperatures (20-70 °C) and pH levels (2-11) and exhibited a restricted host range targeting Salmonella spp., notably Salmonella Typhimurium and Salmonella Enteritidis. Characterization of L223 revealed a short latent period of 30 min and a substantial burst size of 515 PFU/cell. Genomic analysis classified L223 within the Caudoviricetes class, Guernseyvirinae subfamily and Jerseyvirus genus, with a dsDNA genome size of 44,321 bp and 47.9% GC content, featuring 72 coding sequences devoid of antimicrobial resistance, virulence factors, toxins, and tRNA genes. Application of L223 significantly (p < 0.005) reduced Salmonella Typhimurium ATCC 14,028 counts by 1.24, 2.17, and 1.55 log CFU/piece after 2, 4, and 6 h of incubation, respectively, in experimentally contaminated chicken breast samples. These findings highlight the potential of Salmonella phage L223 as a promising biocontrol agent for mitigating Salmonella contamination in food products, emphasizing its relevance for enhancing food safety protocols.


Asunto(s)
Pollos , Genoma Viral , Fagos de Salmonella , Animales , Fagos de Salmonella/genética , Fagos de Salmonella/aislamiento & purificación , Fagos de Salmonella/fisiología , Pollos/microbiología , Genómica/métodos , Salmonella/virología , Salmonella/genética , Aves de Corral/microbiología , Salmonella typhimurium/virología , Salmonella typhimurium/genética , Especificidad del Huésped , Microbiología de Alimentos , Fenotipo , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/virología
3.
Nucleic Acids Res ; 52(13): 7780-7791, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38884209

RESUMEN

Generalized transduction is pivotal in bacterial evolution but lacks comprehensive understanding regarding the facilitating features and variations among phages. We addressed this gap by sequencing and comparing the transducing particle content of three different Salmonella Typhimurium phages (i.e. Det7, ES18 and P22) that share a headful packaging mechanism that is typically initiated from a cognate pac site within the phage chromosome. This revealed substantial disparities in both the extent and content of transducing particles among these phages. While Det7 outperformed ES18 in terms of relative number of transducing particles, both phages contrasted with P22 in terms of content. In fact, we found evidence for the presence of conserved P22 pac-like sequences in the host chromosome that direct tremendously increased packaging and transduction frequencies of downstream regions by P22. More specifically, a ca. 561 kb host region between oppositely oriented pac-like sequences in the purF and minE loci was identified as highly packaged and transduced during both P22 prophage induction and lytic infection. Our findings underscore the evolution of phage transducing capacity towards attenuation, promiscuity or directionality, and suggest that pac-like sequences in the host chromosome could become selected as sites directing high frequency of transduction.


Asunto(s)
Salmonella typhimurium , Transducción Genética , Salmonella typhimurium/virología , Salmonella typhimurium/genética , Bacteriófago P22/genética , Evolución Molecular , Fagos de Salmonella/genética , Genoma Viral , Bacteriófagos/genética
4.
PLoS Pathog ; 20(6): e1012301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913753

RESUMEN

Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains-LT2 and 14028S-for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.


Asunto(s)
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Salmonella typhimurium/virología , Salmonella typhimurium/genética , Transducción Genética , Transferencia de Gen Horizontal , Genoma Bacteriano , Empaquetamiento del ADN
5.
Int J Food Microbiol ; 419: 110745, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38795636

RESUMEN

Non-typhoid Salmonella enterica causes salmonellosis illness, and this bacterium can contaminate food throughout the production chain, including those that are consumed as raw products. Salmonella enterica can adhere to and internalize into fresh produce such as cherry tomatoes. It has been reported that lytic bacteriophages (phages) can be used as a biocontrol agent in the agricultural field, being an alternative for the control of Salmonella in red meat, fish, lettuce, and cabbage. The aim of this study was to characterize the two phages present in the PHA46 cocktail to determine their morphology, genome, host range, and resistance to different temperatures and pHs values; and later evaluate their lytic activity to reduce the adherence to and internalization of Salmonella enterica serovars Newport and Typhimurium into cherry tomatoes. In addition, in this work, we also explored the effect of the PHA46 cocktail on the virulence of S. Newport-45 and S. Typhimurium SL1344, recovered from the interior of cherry tomatoes, on the lifespan of the animal model Caenorhabditis elegans. The nematode C. elegans, recently has been used to test the virulence of Salmonella and it is easy to maintain and work with in the laboratory. The results revealed that the morphology obtained by Transmission Electron Microscopy of two phages from the PHA46 cocktail correspond to a myovirus, the analyses of their genomes sequences did not report virulence or antimicrobial resistance genes. The PHA46 sample is specific for 33 different serovars from different Salmonella strains and shows stability at 7 °C and pH 6. Also, the PHA46 cocktail was effective in reducing the adherence of S. Newport-45 and S. Typhimurium SL1344 to cherry tomatoes, at an average of 0.9 log10, respectively. Regarding internalized bacteria, the reduction was at an average of 1.2 log10, of the serovars mentioned above. The lifespan experiments in C. elegans showed by itself, that the PHA46 cocktail was harmless to the nematode, and the virulence from both Salmonella strains grown in vitro is diminished in the presence of the PHA46 cocktail. In conclusion, these results showed that the PHA46 cocktail could be a good candidate to be used as a biocontrol agent against Salmonella enterica.


Asunto(s)
Caenorhabditis elegans , Fagos de Salmonella , Salmonella typhimurium , Solanum lycopersicum , Solanum lycopersicum/microbiología , Animales , Caenorhabditis elegans/microbiología , Salmonella typhimurium/virología , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Virulencia , Salmonella enterica/virología , Microbiología de Alimentos , Agentes de Control Biológico , Especificidad del Huésped
6.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739436

RESUMEN

Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 µg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 µg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 µg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 µg ml-1) and P. aeruginosa P2307 (65.00 µg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.


Asunto(s)
Antibacterianos , Endopeptidasas , Glucanos , Polimixina B , Fagos de Salmonella , Endopeptidasas/farmacología , Endopeptidasas/química , Endopeptidasas/metabolismo , Polimixina B/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Fagos de Salmonella/genética , Fagos de Salmonella/fisiología , Fagos de Salmonella/química , Glucanos/química , Glucanos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/virología , Ratones , Salmonella typhimurium/virología , Salmonella typhimurium/efectos de los fármacos , Bacteriófagos/fisiología , Bacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/farmacología , Proteínas Virales/química
7.
Anal Chem ; 96(21): 8782-8790, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728110

RESUMEN

Sensitive and on-site discrimination of live and dead foodborne pathogenic strains remains a significant challenge due to the lack of appropriate assay and signal probes. In this work, a versatile platinum nanoparticle-decorated phage nanozyme (P2@PtNPs) that integrated recognition, bacteriolysis, and catalysis was designed to establish the bioluminescence/pressure dual-mode bioassay for on-site determination of the vitality of foodborne pathogenic strains. Benefiting from the bacterial strain-level specificity of phage, the target Salmonella typhimurium (S.T) was specially captured to form sandwich complexes with P2@PtNPs on another phage-modified glass microbead (GM@P1). As the other part of the P2@PtNPs nanozyme, the introduced PtNPs could not only catalyze the decomposition of hydrogen peroxide to generate a significant oxygen pressure signal but also produce hydroxyl radicals around the target bacteria to enhance the bacteriolysis of phage and adenosine triphosphate release. It significantly improved the bioluminescence signal. The two signals corresponded to the total and live target bacteria counts, so the dead target could be easily calculated from the difference between the total and live target bacteria counts. Meanwhile, the vitality of S.T was realized according to the ratio of live and total S.T. Under optimal conditions, the application range of this proposed bioassay for bacterial vitality was 102-107 CFU/mL, with a limit of detections for total and live S.T of 30 CFU/mL and 40 CFU/mL, respectively. This work provides an innovative and versatile nanozyme signal probe for the on-site determination of bacterial vitality for food safety.


Asunto(s)
Bacteriófagos , Mediciones Luminiscentes , Nanopartículas del Metal , Platino (Metal) , Salmonella typhimurium , Platino (Metal)/química , Nanopartículas del Metal/química , Salmonella typhimurium/aislamiento & purificación , Salmonella typhimurium/virología , Salmonella typhimurium/química , Catálisis , Bacteriófagos/química , Microbiología de Alimentos , Bioensayo/métodos , Técnicas Biosensibles/métodos , Presión , Peróxido de Hidrógeno/química
8.
J Mol Biol ; 435(24): 168365, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952769

RESUMEN

Bacteriophage P22 is a prototypical member of the Podoviridae superfamily. Since its discovery in 1952, P22 has become a paradigm for phage transduction and a model for icosahedral viral capsid assembly. Here, we describe the complete architecture of the P22 tail apparatus (gp1, gp4, gp10, gp9, and gp26) and the potential location and organization of P22 ejection proteins (gp7, gp20, and gp16), determined using cryo-EM localized reconstruction, genetic knockouts, and biochemical analysis. We found that the tail apparatus exists in two equivalent conformations, rotated by ∼6° relative to the capsid. Portal protomers make unique contacts with coat subunits in both conformations, explaining the 12:5 symmetry mismatch. The tail assembles around the hexameric tail hub (gp10), which folds into an interrupted ß-propeller characterized by an apical insertion domain. The tail hub connects proximally to the dodecameric portal protein and head-to-tail adapter (gp4), distally to the trimeric tail needle (gp26), and laterally to six trimeric tailspikes (gp9) that attach asymmetrically to gp10 insertion domain. Cryo-EM analysis of P22 mutants lacking the ejection proteins gp7 or gp20 and biochemical analysis of purified recombinant proteins suggest that gp7 and gp20 form a molecular complex associated with the tail apparatus via the portal protein barrel. We identified a putative signal transduction pathway from the tailspike to the tail needle, mediated by three flexible loops in the tail hub, that explains how lipopolysaccharide (LPS) is sufficient to trigger the ejection of the P22 DNA in vitro.


Asunto(s)
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Bacteriófago P22/química , Bacteriófago P22/metabolismo , Proteínas de la Cápside/química , Salmonella typhimurium/virología , Proteínas de la Cola de los Virus/genética
9.
BMC Vet Res ; 18(1): 270, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35821025

RESUMEN

BACKGROUND: Salmonella is a leading foodborne and zoonotic pathogen, and is widely distributed in different nodes of the pork supply chain. In recent years, the increasing prevalence of antimicrobial resistant Salmonella poses a threat to global public health. The purpose of this study is to the prevalence of antimicrobial resistant Salmonella in pig slaughterhouses in Hubei Province in China, and explore the effect of using lytic bacteriophages fighting against antimicrobial resistant Salmonella. RESULTS: We collected a total of 1289 samples including anal swabs of pigs (862/1289), environmental swabs (204/1289), carcass surface swabs (36/1289) and environmental agar plates (187/1289) from eleven slaughterhouses in seven cities in Hubei Province and recovered 106 Salmonella isolates. Antimicrobial susceptibility testing revealed that these isolates showed a high rate of antimicrobial resistance; over 99.06% (105/106) of them were multidrug resistant. To combat these drug resistant Salmonella, we isolated 37 lytic phages using 106 isolates as indicator bacteria. One of them, designated ph 2-2, which belonged to the Myoviridae family, displayed good capacity to kill Salmonella under different adverse conditions (exposure to different temperatures, pHs, UV, and/or 75% ethanol) and had a wide lytic spectrum. Evaluation in mouse models showed that ph 2-2 was safe and saved 80% (administrated by gavage) and 100% (administrated through intraperitoneal injection) mice from infections caused by Salmonella Typhimurium. CONCLUSIONS: The data presented herein demonstrated that Salmonella contamination remains a problem in some pig slaughter houses in China and Salmonella isolates recovered in slaughter houses displayed a high rate of antimicrobial resistance. In addition, broad-spectrum lytic bacteriophages may represent a good candidate for the development of anti-antimicrobial resistant Salmonella agents.


Asunto(s)
Myoviridae , Salmonelosis Animal , Enfermedades de los Porcinos , Mataderos , Animales , Modelos Animales de Enfermedad , Ratones , Salmonelosis Animal/terapia , Salmonella typhimurium/virología , Porcinos
10.
Nature ; 609(7925): 144-150, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850148

RESUMEN

Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.


Asunto(s)
Antitoxinas , Bacteriófagos , Retroelementos , Salmonella typhimurium , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Bacteriófagos/metabolismo , ADN Bacteriano/genética , ADN de Cadena Simple/genética , Conformación de Ácido Nucleico , Profagos/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/virología , Sistemas Toxina-Antitoxina/genética
11.
Int J Mol Sci ; 23(3)2022 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-35163175

RESUMEN

Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5' untranslated region that is instructive for a secondary pid mRNA species, and has a 3' Rho-independent termination loop that is responsible for stability of the pid transcript.


Asunto(s)
Bacteriófago P22/genética , Regulación Viral de la Expresión Génica/genética , Bacteriófagos/genética , Expresión Génica/genética , Sistemas de Lectura Abierta/genética , Operón , Regiones Promotoras Genéticas/genética , Fagos de Salmonella/genética , Salmonella typhimurium/genética , Salmonella typhimurium/virología
12.
Viruses ; 14(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35215834

RESUMEN

Salmonella Typhimurium, a foodborne pathogen, is a major concern for food safety. Its MDR serovars of animal origin pose a serious threat to the human population. Phage therapy can be an alternative for the treatment of such MDR Salmonella serovars. In this study, we report on detailed genome analyses of a novel Salmonella phage (Salmonella-Phage-SSBI34) and evaluate its therapeutic potential. The phage was evaluated for latent time, burst size, host range, and bacterial growth reduction in liquid cultures. The phage stability was examined at various pH levels and temperatures. The genome analysis (141.095 Kb) indicated that its nucleotide sequence is novel, as it exhibited only 1-7% DNA coverage. The phage genome features 44% GC content, and 234 putative open reading frames were predicted. The genome was predicted to encode for 28 structural proteins and 40 enzymes related to nucleotide metabolism, DNA modification, and protein synthesis. Further, the genome features 11 tRNA genes for 10 different amino acids, indicating alternate codon usage, and hosts a unique hydrolase for bacterial lysis. This study provides new insights into the subfamily Vequintavirinae, of which SSBI34 may represent a new genus.


Asunto(s)
Myoviridae/genética , Fagos de Salmonella/genética , Salmonella typhimurium/virología , Animales , Bacteriólisis , Agentes de Control Biológico , Genoma Viral , Especificidad del Huésped , Myoviridae/clasificación , Myoviridae/aislamiento & purificación , Myoviridae/fisiología , Sistemas de Lectura Abierta , Terapia de Fagos , Filogenia , Aves de Corral/microbiología , Infecciones por Salmonella/terapia , Fagos de Salmonella/clasificación , Fagos de Salmonella/aislamiento & purificación , Fagos de Salmonella/fisiología , Salmonella typhimurium/aislamiento & purificación
13.
PLoS One ; 17(1): e0262946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073376

RESUMEN

Salmonella is a common foodborne pathogen, especially in meat and meat products. Lytic phages are promising alternatives to conventional methods for Salmonella biocontrol in food and food processing. In this study, a virulent bacteriophage (PSDA-2) against Salmonella enterica serovar Typhimurium was isolated from the sewage and it was found that PSDA-2 belongs to Cornellvirus genus of Siphoviridae family by morphological and phylogenetic analysis. Based on the one-step growth curve, PSDA-2 has a short latent period (10 min) and a high burst size (120 PFU/cell). The stability test in vitro reveals that PSDA-2 is stable at 30-70°C and pH 3-10. Bioinformatics analysis show that PSDA-2 genome consists of 40,062 bp with a GC content of 50.21% and encodes 63 open reading frames (ORFs); no tRNA genes, lysogenic genes, drug resistance genes and virulence genes were identified in the genome. Moreover, the capacity for PSDA-2 to control Salmonella Typhimurium in chilled mutton was investigated. The results show that incubation of PSDA-2 at 4°C reduced recoverable Salmonella by 1.7 log CFU/mL and 2.1 log CFU/mL at multiplicity of infection (MOI) of 100 and 10,000 respectively, as relative to the phage-excluded control. The features of phage PSDA-2 suggest that it has the potential to be an agent to control Salmonella.


Asunto(s)
Microbiología de Alimentos , Genoma Viral , Carne/microbiología , Fagos de Salmonella , Salmonella typhimurium/virología , Fagos de Salmonella/clasificación , Fagos de Salmonella/genética , Fagos de Salmonella/aislamiento & purificación
14.
Appl Environ Microbiol ; 87(24): e0142421, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34586906

RESUMEN

Phage-based biocontrol of bacteria is considered a natural approach to combat foodborne pathogens. Salmonella spp. are notifiable and highly prevalent pathogens that cause foodborne diseases worldwide. In this study, six bacteriophages were isolated and further characterized that infect food-derived Salmonella isolates from different meat sources. The siphovirus VB_StyS-LmqsSP1, which was isolated from a cow's nasal swab, was further subjected to in-depth characterization. Phage-host interaction investigations in liquid medium showed that vB_StyS-LmqsSP1 can suppress the growth of Salmonella species isolates at 37°C for 10 h and significantly reduce the bacterial titer at 4°C. A reduction of 1.4 to 3 log units was observed in investigations with two food-derived Salmonella isolates and one reference strain under cooling conditions using multiplicities of infection (MOIs) of 104 and 105. Phage application on chicken skin resulted in a reduction of about 2 log units in the tested Salmonella isolates from the first 3 h throughout a 1-week experiment at cooling temperature and with an MOI of 105. The one-step growth curve analysis using vB_StyS-LmqsSP1 demonstrated a 60-min latent period and a burst size of 50 to 61 PFU/infected cell for all tested hosts. Furthermore, the genome of the phage was determined to be free from genes causing undesired effects. Based on the phenotypic and genotypic properties, LmqsSP1 was assigned as a promising candidate for biocontrol of Salmonella enterica serovar Typhimurium in food. IMPORTANCE Salmonella enterica is one of the major global causes of foodborne enteritis in humans. The use of chemical sanitizers for reducing bacterial pathogens in the food chain can result in the spread of bacterial resistance. Targeted and clean-label intervention strategies can reduce Salmonella contamination in food. The significance of our research demonstrates the suitability of a bacteriophage (vB_StyS-LmqsSP1) for biocontrol of Salmonella enterica serovar Typhimurium on poultry due to its lytic efficacy under conditions prevalent in food production environments.


Asunto(s)
Pollos/microbiología , Salmonella typhimurium , Siphoviridae , Animales , Bovinos , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Salmonella typhimurium/virología , Piel/microbiología
15.
Microbiol Spectr ; 9(1): e0049721, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34431719

RESUMEN

Nontyphoidal Salmonella bacteria are the causative agent of salmonellosis, which accounts for the majority of foodborne illness of bacterial etiology in humans. Here, we demonstrate the safety and efficacy of the prophylactic administration of a bacteriophage preparation termed FOP (foodborne outbreak pill), which contains lytic phages targeting Salmonella (SalmoFresh phage cocktail), Shiga toxin-producing Escherichia coli (STEC), and Listeria monocytogenes, for lowering Salmonella burdens in OMM12 gnotobiotic mice. Prophylactic administration of FOP significantly reduced the levels of Salmonella in feces and in intestinal sections compared to the levels in controls. Moreover, the overall symptoms of the disease were also considerably lessened. Dose-dependent administration of FOP showed that phage amplification reached similarly high levels in less than 48 h independent of dose. In addition, 16S rRNA gene analysis showed that FOP did not alter the intestinal microbiota of healthy OMM12 mice and reduced microbiota perturbations induced by Salmonella. FOP maintained its full potency against Salmonella in comparison to that of SalmoFresh, its Salmonella-targeting component phages alone. Altogether, the data support that preventive administration of FOP may offer a safe and effective approach for reducing the risk of foodborne infections caused by Salmonella and, potentially, other foodborne bacteria (namely, STEC and L. monocytogenes) targeted by the FOP preparation. IMPORTANCE Foodborne bacterial infections cause worldwide economic loss. During an epidemic, the use of antibiotics to slow down the spread of the disease is not recommended because of their side effects on the resident microbiota and the selection of antibiotic-resistant bacteria. Here, we investigated the potential for the prophylactic administration of bacteriophages (viruses infecting bacteria) to reduce the burden of Salmonella in vivo using mice colonized by a synthetic microbiota. We found that the repeated administration of bacteriophages was safe and efficient in lowering the Salmonella burden. Perturbations of the microbiota by the Salmonella infection were also reduced when mice received bacteriophages. Altogether, these data support the use of bacteriophages as a prophylactic intervention to lower the spread of foodborne epidemics.


Asunto(s)
Terapia de Fagos , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/virología , Animales , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Profilaxis Pre-Exposición , Infecciones por Salmonella/microbiología , Salmonella typhimurium/fisiología
16.
Food Microbiol ; 100: 103853, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34416958

RESUMEN

The combined effects of ethylenediaminetetraacetic acid (EDTA) and bacteriophage (phage) treatment of foodborne pathogens were investigated. Although viable counts for Campylobacter jejuni decreased by 1.5 log after incubation for 8 h in the presence of phage PC10, re-growth was observed thereafter. The combination of phage PC10 and 1 mM EDTA significantly inhibited the re-growth of C. jejuni. The viable counts for C. jejuni decreased by 2.6 log (P < 0.05) compared with that of the initial count after 24 h. Moreover, EDTA at 0.67 or 1.3 mM, combined with the specific lytic phages, also effectively inhibited the re-growth of phage-resistant cells of Campylobacter coli, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Typhimurium. In addition, the combined effects of lytic phages and EDTA were investigated on the viability of Campylobacter in BHI broth at low temperatures followed by the optimum growth temperature. The re-growth of C. coli was significantly inhibited by the coexistence of 1.3 mM EDTA, and the viable counts of surviving bacteria was about the same as the initial viable count after the incubation. This is the first study demonstrating the combined use of lytic phages and EDTA is effective in inhibiting the re-growth of phage-resistant bacteria in Gram-negative bacteria.


Asunto(s)
Bacteriófagos/fisiología , Campylobacter coli/crecimiento & desarrollo , Campylobacter jejuni/crecimiento & desarrollo , Ácido Edético/farmacología , Salmonella enteritidis/crecimiento & desarrollo , Salmonella typhimurium/crecimiento & desarrollo , Campylobacter coli/efectos de los fármacos , Campylobacter coli/virología , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/virología , Viabilidad Microbiana , Salmonella enteritidis/efectos de los fármacos , Salmonella enteritidis/virología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/virología
17.
Food Microbiol ; 100: 103862, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34416962

RESUMEN

Bacterial food poisoning cases due to Salmonella have been linked with a variety of poultry products. This study evaluated the effects of a Salmonella-specific Lytic bacteriophage and Lactobionic acid (LBA) on Salmonella Typhimurium DT 104 growth on raw chicken breast meat. Each chicken breast was randomly assigned to a treatment group (Control, DI water, phage 1%, phage 5%, LBA 10 mg/mL, LBA 20 mg/mL, and phage 5% + LBA 20 mg/mL) with four chicken breasts per group. Samples were inoculated with 106 CFU/mL of Salmonella and stored at 4 °C for 30 min. The inoculated chicken breasts were randomly assigned to different storage time (0 h, 1 h, 24 h, or 48 h). Both time and treatment showed significance reduction (P < 0.0001) of microbial growth. The weight loss was significantly different (P < 0.0001) between treatments. The LBA treatments were not effective when compared to the control group, but Lytic bacteriophage significantly reduced the amount of microbial growth.


Asunto(s)
Disacáridos/farmacología , Conservación de Alimentos/métodos , Carne/microbiología , Fagos de Salmonella/fisiología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/virología , Animales , Pollos/microbiología , Almacenamiento de Alimentos , Salmonella typhimurium/crecimiento & desarrollo
18.
Viruses ; 13(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34452490

RESUMEN

Salmonella is a widely distributed foodborne pathogen that is a serious threat to human health. The accelerated development of drug resistance and the increased demand for natural foods invoke new biocontrol agents to limit contamination by multidrug-resistant (MDR) Salmonella strains. In this study, a lytic Salmonella phage named D10 was characterized at the biological and genomic levels. D10 possesses a short latent period (10 min) and a large burst size (163 PFU/cell), as well as adequate stability under a range of pH conditions and moderate thermal tolerance. D10 effectively lysed different MDR Salmonella serovars and repressed their dynamic growth in the medium. Genomic analysis disclosed that D10 is a new member of the Siphoviridae family and lacks the genes implicated in lysogeny, pathogenicity, or antibiotic resistance. A three-ingredient phage cocktail was then developed by mixing D10 with previously identified myovirus D1-2 and podovirus Pu20. The cocktail significantly reduced the count of MDR strains in liquid eggs, regardless of the temperature applied (4 and 25 °C). These results suggest that phage D10 is a promising tool to prevent food contamination by MDR Salmonella.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Microbiología de Alimentos/métodos , Genoma Viral , Fagos de Salmonella/genética , Salmonella typhimurium/virología , Animales , Agentes de Control Biológico/aislamiento & purificación , Contaminación de Alimentos/prevención & control , Inocuidad de los Alimentos/métodos , Especificidad del Huésped , Humanos , Aves de Corral/virología , Fagos de Salmonella/clasificación , Fagos de Salmonella/crecimiento & desarrollo , Fagos de Salmonella/patogenicidad , Serogrupo , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/aislamiento & purificación
19.
Microbiol Res ; 250: 126803, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34146940

RESUMEN

The study of the interaction mechanism between bacteriophage and host is helpful in promoting development of bacteriophage applications. The mechanism of the interaction with the phage was studied by constructing the rfbN gene deletion and complemented with strains of Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium, S. Typhimurium) D6. The rfbN gene deletion strain could not be lysed by phage S55 and led to a disorder of lipopolysaccharide (LPS) biosynthesis, which changed from the smooth type to rough type. Also, the RfbN protein lacking any of the three-segment amino acid (aa) sequences (90-120 aa, 121-158 aa, and 159-194 aa) produces the same result. Transmission electron microscopy and confocal microscopy assays demonstrated that phage S55 dramatically reduced adsorption to the rfbN deletion strain as compared to the wild strain D6. After co-incubation of the S55 with the purified smooth LPS, D6 could not be lysed, indicating that the smooth LPS binds to the S55 in vitro and then inhibits the cleavage activity of the S55. To sum up, the rfbN gene affects phage adsorption by regulating LPS synthesis. Furthermore, the functioning of the RfbN protein requires the involvement of multiple structures. To the best of our knowledge, this study is the first report of the involvement of the bacterial rfbN gene involved in the phage-adsorption process.


Asunto(s)
Proteínas Bacterianas/genética , Bacteriófagos/fisiología , Interacciones Microbiota-Huesped/genética , Lipopolisacáridos/biosíntesis , Salmonella typhimurium/genética , Salmonella typhimurium/virología , Adsorción/genética , Lipopolisacáridos/genética , Mutagénesis , Salmonella typhimurium/metabolismo , Serogrupo
20.
Viruses ; 13(3)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804216

RESUMEN

In recent years, novel lineages of invasive non-typhoidal Salmonella (iNTS) serovars Typhimurium and Enteritidis have been identified in patients with bloodstream infection in Sub-Saharan Africa. Here, we isolated and characterised 32 phages capable of infecting S. Typhimurium and S. Enteritidis, from water sources in Malawi and the UK. The phages were classified in three major phylogenetic clusters that were geographically distributed. In terms of host range, Cluster 1 phages were able to infect all bacterial hosts tested, whereas Clusters 2 and 3 had a more restricted profile. Cluster 3 contained two sub-clusters, and 3.b contained the most novel isolates. This study represents the first exploration of the potential for phages to target the lineages of Salmonella that are responsible for bloodstream infections in Sub-Saharan Africa.


Asunto(s)
Bacteriófagos , Infecciones por Salmonella/terapia , Salmonella enteritidis/virología , Salmonella typhimurium/virología , Sepsis/microbiología , Humanos , Malaui/epidemiología , Infecciones por Salmonella/virología , Salmonella enteritidis/aislamiento & purificación , Salmonella typhimurium/aislamiento & purificación , Reino Unido/epidemiología , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA