Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.324
Filtrar
1.
Medicine (Baltimore) ; 103(36): e38659, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252328

RESUMEN

RATIONALE: Anti-CD19 chimeric antigen receptor T-cell (CAR-T) therapy is a successful treatment for B-cell malignancies associated with cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cardiovascular toxicities have also been reported in this setting. However, there is scarce data regarding development of autonomic disorders after CAR-T cell therapy. PATIENT CONCERNS: We report a case with a patient with non-Hodgkin B-cell lymphoma, refractory to 2 prior lines of immunochemotherapy, treated with CAR-T therapy. DIAGNOSES: Orthostatic hypotension secondary to autonomic dysfunction was diagnosed as manifestation of ICANS. INTERVENTIONS: The patient received metilprednisolone 1000 mg IV daily for 3 days and anakinra 100 mg IV every 6h. OUTCOMES: The vast majority of autonomic symptoms ceased and 4 months after CAR-T therapy, autonomic dysfunction was resolved. LESSONS: New-onset autonomic dysfunction can occur as manifestation of ICANS in patients who experience persistent neurologic and cardiovascular symptoms after resolution of acute neurotoxicity and should be early recognized. Differences in differential diagnosis, mechanisms and treatment approaches are discussed.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Humanos , Enfermedades del Sistema Nervioso Autónomo/etiología , Enfermedades del Sistema Nervioso Autónomo/diagnóstico , Inmunoterapia Adoptiva/efectos adversos , Masculino , Síndrome de Liberación de Citoquinas/etiología , Persona de Mediana Edad , Linfoma de Células B/complicaciones , Linfoma de Células B/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/diagnóstico , Hipotensión Ortostática/etiología , Hipotensión Ortostática/diagnóstico , Metilprednisolona/uso terapéutico
2.
Front Immunol ; 15: 1423263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224601

RESUMEN

Combination antiretroviral therapy (cART) has dramatically reduced mortality in people with human immunodeficiency virus (HIV), but it does not completely eradicate the virus from the brain. Patients with long-term HIV-1 infection often show neurocognitive impairment, which severely affects the quality of life of those infected. Methamphetamine (METH) users are at a significantly higher risk of contracting HIV-1 through behaviors such as engaging in high-risk sex or sharing needles, which can lead to transmission of the virus. In addition, HIV-1-infected individuals who abuse METH exhibit higher viral loads and more severe cognitive dysfunction, suggesting that METH exacerbates the neurotoxicity associated with HIV-1. Therefore, this review focuses on various mechanisms underlying METH and HIV-1 infection co-induced neurotoxicity and existing interventions targeting the sigma 1 receptor, dopamine transporter protein, and other relevant targets are explored. The findings of this review are envisaged to systematically establish a theoretical framework for METH abuse and HIV-1 infection co-induced neurotoxicity, and to suggest novel clinical treatment targets.


Asunto(s)
Infecciones por VIH , VIH-1 , Metanfetamina , Humanos , Metanfetamina/efectos adversos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , VIH-1/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Animales , Trastornos Relacionados con Anfetaminas/complicaciones , Trastornos Relacionados con Anfetaminas/terapia , Receptor Sigma-1 , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo
3.
Sci Rep ; 14(1): 21009, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251717

RESUMEN

Hydroxyapatite nanoparticles (HANPs) have extensive applications in biomedicine and tissue engineering. However, little information is known about their toxicity. Here, we aim to investigate the possible neurotoxicity of HANPs and the possible protective role of chitosan nanoparticles (CNPs) and curcumin nanoparticles (CUNPs) against this toxicity. In our study, HANPs significantly reduced the levels of neurotransmitters, including acetylcholine (Ach), dopamine (DA), serotonin (SER), epinephrine (EPI), and norepinephrine (NOR). HANPs significantly suppressed cortical expression of the genes controlling mitochondrial biogenesis such as peroxisome proliferator activator receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (mTFA). Our findings revealed significant neuroinflammation associated with elevated apoptosis, lipid peroxidation, oxidative DNA damage and nitric oxide levels with significant decline in the antioxidant enzymes activities and glutathione (GSH) levels in HANPs-exposed rats. Meanwhile, co-supplementation of HANP-rats with CNPs and/or CUNPs significantly showed improvement in levels of neurotransmitters, mitochondrial biogenesis, oxidative stress, DNA damage, and neuroinflammation. The co-supplementation with both CNPs and CUNPs was more effective to ameliorate HANPs-induced neurotoxicity than each one alone. So, CNPs and CUNPs could be promising protective agents for prevention of HANPs-induced neurotoxicity.


Asunto(s)
Quitosano , Curcumina , Durapatita , Nanopartículas , Estrés Oxidativo , Animales , Curcumina/farmacología , Quitosano/química , Quitosano/farmacología , Nanopartículas/química , Ratas , Durapatita/química , Estrés Oxidativo/efectos de los fármacos , Masculino , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Fármacos Neuroprotectores/farmacología , Neurotransmisores/metabolismo , Apoptosis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Daño del ADN/efectos de los fármacos
4.
Front Immunol ; 15: 1422591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253080

RESUMEN

Malignant tumors of the hematologic system have a high degree of malignancy and high mortality rates. Chimeric antigen receptor T cell (CAR-T) therapy has become an important option for patients with relapsed/refractory tumors, showing astonishing therapeutic effects and thus, it has brought new hope to the treatment of malignant tumors of the hematologic system. Despite the significant therapeutic effects of CAR-T, its toxic reactions, such as Cytokine Release Syndrome (CRS) and Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS), cannot be ignored since they can cause damage to multiple systems, including the cardiovascular system. We summarize biomarkers related to prediction, diagnosis, therapeutic efficacy, and prognosis, further exploring potential monitoring indicators for toxicity prevention. This review aims to summarize the effects of CAR-T therapy on the cardiovascular, hematologic, and nervous systems, as well as potential biomarkers, and to explore potential monitoring indicators for preventing toxicity, thereby providing references for clinical regulation and assessment of therapeutic effects.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Síndrome de Liberación de Citoquinas/prevención & control , Síndrome de Liberación de Citoquinas/etiología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Biomarcadores , Animales , Receptores Quiméricos de Antígenos/inmunología , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología , Neoplasias/terapia , Neoplasias/inmunología
5.
Toxicology ; 508: 153934, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39182714

RESUMEN

Neurotoxicity is characterized by the accumulation of harmful chemicals such as heavy metals and drugs in neural tissue, resulting in subsequent neuronal death. Among chemicals platinum-based cancer drugs are frequently used due to their antineoplastic effects, but this drug is also known to cause a wide range of toxicities, such as neurotoxicity. The nuclear-factor-erythroid 2-related factor-2 (NRF2) is crucial in combating oxidative stress and maintaining cellular homeostasis. This study thoroughly explores the protective effects of extracellular vesicles derived from NRF2 gene overexpressed neural progenitor cells (NEVs) on cisplatin-induced neurotoxicity. Therefore, extracellular vesicles derived from neural progenitor cells were isolated and characterized. The Cisplatin neurotoxicity dose was 75 µM in mature, post-mitotic neurons. 1.25 µM of tert-butyl hydroquinone that induces NRF2/ARE pathway was used as the positive control. The effects of extracellular vesicles (EVs) were investigated using functional and molecular assays such as PCR and protein-based assays. Here, we observed that NEVs dose-dependently protected post-mitotic neuron cells in response to cisplatin. The study also examined whether the effect was EV-induced by limiting EV biogenesis. The molecular basis of preventive treatment was established. When pre-administered, 1×108 particles/ml of NEVs maintained antioxidant and detoxifying gene and protein expression levels similar to control cell levels. Furthermore, NEVs reduced both cellular and mitochondrial ROS levels and preserved mitochondrial membrane potential. In addition, Catalase and SOD levels were found higher in NEV-treated cells compared to cisplatin control. The findings in NRF2-based protection of cisplatin-induced neurotoxicity may provide further evidence for the relationship between EVs and inhibition of neuronal stress through the NRF2/ARE pathway, increasing the understanding of neuroprotective responses and the development of gene-engineered EV therapy options for peripheral neuropathy or other neurodegenerative diseases. This is the first study in the literature to investigate the neutralizing potency of NRF2 overexpressed neural EVs against cisplatin-induced neurotoxicity.


Asunto(s)
Antineoplásicos , Cisplatino , Vesículas Extracelulares , Factor 2 Relacionado con NF-E2 , Células-Madre Neurales , Transducción de Señal , Cisplatino/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Animales , Antineoplásicos/toxicidad , Antineoplásicos/farmacología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/etiología , Elementos de Respuesta Antioxidante/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Células Cultivadas
6.
Biomolecules ; 14(8)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39199372

RESUMEN

Pregnancy is a particularly vulnerable period for the growing fetus, when exposure to toxic agents, especially in the early phases, can decisively harm embryo development and compromise the future health of the newborn. The inclusion of various chemical substances in personal care products (PCPs) and cosmetic formulations can be associated with disruption and damage to the nervous system. Microplastics, benzophenones, parabens, phthalates and metals are among the most common chemical substances found in cosmetics that have been shown to induce neurotoxic mechanisms. Although cosmetic neurotoxin exposure is believed to be minimal, different exposure scenarios of cosmetics suggest that these neurotoxins remain a threat. Special attention should be paid to early exposure in the first weeks of gestation, when critical processes, like the migration and proliferation of the neural crest derived cells, start to form the ENS. Importantly, cosmetic neurotoxins can cross the placental barrier and affect the future embryo, but they are also secreted in breast milk, so babies remain exposed for longer periods, even after birth. In this review, we explore how neurotoxins contained in cosmetics and PCPs may have a role in the pathogenesis of various neurodevelopmental disorders and neurodegenerative diseases and, therefore, also in congenital enteric aganglionosis as well as in postnatal motility disorders. Understanding the mechanisms of these chemicals used in cosmetic formulations and their role in neurotoxicity is crucial to determining the safety of use for cosmetic products during pregnancy.


Asunto(s)
Cosméticos , Humanos , Femenino , Embarazo , Cosméticos/efectos adversos , Neurotoxinas/toxicidad , Síndromes de Neurotoxicidad/etiología , Ácidos Ftálicos/toxicidad , Animales
7.
BMC Infect Dis ; 24(1): 862, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187812

RESUMEN

BACKGROUND: The study aimed to compare polymyxin B with colistimethate sodium (CMS) regarding neurotoxicity, nephrotoxicity and 30-day mortality in patients with MDR Gram-negatives. METHODS: All adult patients who received polymyxin B or CMS for at least 24 h for the treatment of MDR microorganisms were evaluated retrospectively. RESULTS: Among 413 initially screened patients, 147 patients who were conscious and able to express their symptoms were included in the neurotoxicity analysis. 13 of 77 patients with polymyxin B and 1 of 70 with CMS had neurotoxic adverse events, mainly paresthesias. All events were reversible after drug discontinuation. Among 290 patients included in nephrotoxicity analysis, the incidence of acute kidney injury (AKI) was 44.7% and 40.0% for polymyxin B and CMS, respectively (p = 0.425). AKI occurred two days earlier with colistin than polymyxin B without statistical significance (median (IQR): 5 (3-11) vs. 7 (3-12), respectively, p = 0.701). Polymyxin therapy was withdrawn in 41.1% of patients after AKI occurred and CMS was more frequently withdrawn than polymyxin B (p = 0.025). AKI was reversible in 91.6% of patients with CMS and 79% with polymyxin B after the drug withdrawal. Older age, higher baseline serum creatinine and the use of at least two nephrotoxic drugs were independent factors associated with AKI (OR 1.05, p < 0.001; OR 2.99, p = 0.022 and OR 2.45, p = 0.006, respectively). Septic shock, mechanical ventilation, presence of a central venous catheter and Charlson comorbidity index (OR 2.13, p = 0.004; OR 3.37, p < 0.001; OR 2.47, p = 0.004 and OR 1.21, p p < 0.001, respectively) were the independent predictors of mortality. The type of polymyxin was not related to mortality. CONCLUSIONS: Neurotoxicity is a relatively common adverse event that leads to drug withdrawal during polymyxins, particularly polymyxin B. Nephrotoxicity is very common during polymyxin therapy and the two polymyxins display similar nephrotoxic events with high reversibility rates after drug withdrawal. Close monitoring of AKI is crucial during polymyxin therapy, particularly, for elderly patients, patients who have high baseline creatinine, and using other nephrotoxic drugs.


Asunto(s)
Lesión Renal Aguda , Antibacterianos , Colistina , Polimixina B , Humanos , Colistina/efectos adversos , Colistina/análogos & derivados , Polimixina B/efectos adversos , Polimixina B/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Antibacterianos/efectos adversos , Lesión Renal Aguda/inducido químicamente , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Adulto , Farmacorresistencia Bacteriana Múltiple , Anciano de 80 o más Años , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/epidemiología
8.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125900

RESUMEN

The effects of exposure to environmental pollutants on neurological processes are of increasing concern due to their potential to induce oxidative stress and neurotoxicity. Considering that many industries are currently using different types of plastics as raw materials, packaging, or distribution pipes, microplastics (MPs) have become one of the biggest threats to the environment and human health. These consequences have led to the need to raise the awareness regarding MPs negative neurological effects and implication in neuropsychiatric pathologies, such as schizophrenia. The study aims to use three zebrafish models of schizophrenia obtained by exposure to ketamine (Ket), methionine (Met), and their combination to investigate the effects of MP exposure on various nervous system structures and the possible interactions with oxidative stress. The results showed that MPs can interact with ketamine and methionine, increasing the severity and frequency of optic tectum lesions, while co-exposure (MP+Met+Ket) resulted in attenuated effects. Regarding oxidative status, we found that all exposure formulations led to oxidative stress, changes in antioxidant defense mechanisms, or compensatory responses to oxidative damage. Met exposure induced structural changes such as necrosis and edema, while paradoxically activating periventricular cell proliferation. Taken together, these findings highlight the complex interplay between environmental pollutants and neurotoxicants in modulating neurotoxicity.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Microplásticos , Estrés Oxidativo , Esquizofrenia , Pez Cebra , Pez Cebra/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Microplásticos/toxicidad , Esquizofrenia/metabolismo , Esquizofrenia/inducido químicamente , Esquizofrenia/patología , Esquizofrenia/etiología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología , Ketamina/efectos adversos , Ketamina/toxicidad , Metionina/metabolismo , Inmunohistoquímica
9.
Sci Rep ; 14(1): 18548, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122917

RESUMEN

This study aimed to elucidate the incidence and characteristics of neurotoxicity in patients receiving methotrexate (MTX) treatment. A retrospective analysis was performed using data from the electronic cohort database spanning from January 1990 to December 2021. This review focused on patients who manifested neurotoxic symptoms post-MTX therapy, excluding patients with peripheral neuropathy. Of the 498 individuals who received MTX, 26 (5.22%) exhibited neurotoxicity. Pediatric patients (< 18 years) accounted for 18 cases (7.44%), whereas adults (> 18 years) comprised eight cases (3.13%). The median onset age was 11 years (range 4-15) in the pediatric cohort and 39.5 years (range 19-67) in the adult cohort. A predominant male predisposition was noted (21 patients, 80.77%). The majority of patients (21, 80.77%) experienced neurotoxic effects following multiple MTX administrations. Modes of MTX delivery included intrathecal (37.0%), intravenous (22.2%), and combined routes (40.7%). Clinical presentations were predominantly encephalopathy (69.2%), followed by encephalomyelopathy (15.4%), myelopathy (11.5%), and polyradiculopathy (3.8%). Fourteen patients recovered (53.85%). Risk factors were male sex, pediatric age (particularly above 10 years), and administration route (intrathecal in adults and intravenous in pediatrics). Although infrequent, MTX-related neurotoxicity has a substantial impact on patient prognosis, with potential development following even a single dose. Its radiological resemblance to diverse neuropathologies, such as cerebral infarction and subacute combined degeneration, necessitates vigilant diagnostic scrutiny.


Asunto(s)
Metotrexato , Síndromes de Neurotoxicidad , Humanos , Metotrexato/efectos adversos , Metotrexato/administración & dosificación , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/epidemiología , Masculino , Femenino , Adulto , Estudios Retrospectivos , Niño , Adolescente , Preescolar , Anciano , Persona de Mediana Edad , Adulto Joven , Incidencia
10.
ACS Nano ; 18(35): 24044-24059, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39158845

RESUMEN

Oral ingestion is the primary route for human exposure to nanoplastics, making the gastrointestinal tract one of the first and most impacted organs. Given the presence of the gut-brain axis, a crucial concern arises regarding the potential impact of intestinal damage on the neurotoxic effects of nanoplastics (NPs). The intricate mechanisms underlying NP-induced neurotoxicity through the microbiome-gut-brain axis necessitate further investigation. To address this, we used mice specifically engineered with nuclear factor erythroid-derived 2-related factor 2 (Nrf2) deficiency in their intestines, a strain whose intestines are particularly susceptible to polystyrene NPs (PS-NPs). We conducted a 28-day repeated-dose oral toxicity study with 2.5 and 250 mg/kg of 50 nm PS-NPs in these mice. Our study delineated how PS-NP exposure caused gut microbiota dysbiosis, characterized by Mycoplasma and Coriobacteriaceae proliferation, resulting in increased levels of interleukin 17C (IL-17C) production in the intestines. The surplus IL-17C permeated the brain via the bloodstream, triggering inflammation and brain damage. Our investigation elucidated a direct correlation between intestinal health and neurological outcomes in the context of PS-NP exposure. Susceptible mice with fragile guts exhibited heightened neurotoxicity induced by PS-NPs. This phenomenon was attributed to the elevated abundance of microbiota associated with IL-17C production in the intestines of these mice, such as Mesorhizobium and Lwoffii, provoked by PS-NPs. Neurotoxicity was alleviated by in vivo treatment with anti-IL-17C-neutralizing antibodies or antibiotics. These findings advanced our comprehension of the regulatory mechanisms governing the gut-brain axis in PS-NP-induced neurotoxicity and underscored the critical importance of maintaining intestinal health to mitigate the neurotoxic effects of PS-NPs.


Asunto(s)
Encéfalo , Factor 2 Relacionado con NF-E2 , Poliestirenos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Ratones , Poliestirenos/química , Poliestirenos/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Microbioma Gastrointestinal/efectos de los fármacos , Nanopartículas/química , Microplásticos/toxicidad , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/patología
11.
J Hazard Mater ; 478: 135611, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173387

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) have been called "forever chemicals" due to their inherent chemical stability. Their potential toxic effects on aquatic animals and health risk assessments have not been fully elucidated. In this study, we investigated the toxic effects of PFASs at environmentally relevant concentrations (200 ng/L) on crucian carp (Carassius auratus). The results showed that PFAS reduced the comfort behaviour of crucian carp and was associated with reduced levels of acetylcholinesterase and dopamine in the brain. PFAS exposure also decreased the activities of total superoxide dismutase, catalase and glutathione peroxidase, while increasing the levels of malondialdehyde. PFAS caused over-expression of the pro-inflammatory cytokines TNF-α, IFN-γ and stress-related genes Caspase-3, HSP-70 in the fish brain. Pathological staining showed that PFAS caused multifocal demyelination and perineural vacuolization in brain, intestinal tissue also showed reduced villus length and focal damage. PFASs altered the composition of the gut microbiota of crucian carp, significantly increasing the abundance of potentially pathogenic bacteria and the potential pathogenicity of the microbiota. It is suggested that PFASs may cause varying degrees of tissue damage by destabilising the gut microbiota. These results provide insights for assessing the toxicity of PFAS contaminants at aquatic environmental concentrations.


Asunto(s)
Encéfalo , Disbiosis , Fluorocarburos , Microbioma Gastrointestinal , Carpa Dorada , Contaminantes Químicos del Agua , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/patología , Contaminantes Químicos del Agua/toxicidad , Disbiosis/inducido químicamente , Fluorocarburos/toxicidad , Acetilcolinesterasa/metabolismo , Carpas , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/etiología , Citocinas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Dopamina/metabolismo , Conducta Animal/efectos de los fármacos
12.
Sci Rep ; 14(1): 19075, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154055

RESUMEN

Human induced pluripotent stem cell-derived sensory neuron (iPSC-dSN) models are a valuable resource for the study of neurotoxicity but are affected by poor replicability and reproducibility, often due to a lack of optimization. Here, we identify experimental factors related to culture conditions that substantially impact cellular drug response in vitro and determine optimal conditions for improved replicability and reproducibility. Treatment duration and cell seeding density were both found to be significant factors, while cell line differences also contributed to variation. A replicable dose-response in viability was demonstrated after 48-h exposure to docetaxel or paclitaxel. Additionally, a replicable dose-dependent reduction in neurite outgrowth was demonstrated, demonstrating the applicability of the model for the examination of additional phenotypes. Overall, we have established an optimized iPSC-dSN model for the study of taxane-induced neurotoxicity.


Asunto(s)
Supervivencia Celular , Células Madre Pluripotentes Inducidas , Células Receptoras Sensoriales , Taxoides , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Taxoides/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Docetaxel/farmacología , Síndromes de Neurotoxicidad/etiología , Hidrocarburos Aromáticos con Puentes/farmacología , Diferenciación Celular/efectos de los fármacos , Paclitaxel/farmacología , Paclitaxel/toxicidad , Línea Celular , Células Cultivadas
13.
Brain Behav Immun ; 122: 75-94, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39127088

RESUMEN

BACKGROUND: Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES: This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS: To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS: The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION: LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.


Asunto(s)
COVID-19 , Citocinas , SARS-CoV-2 , Humanos , Citocinas/metabolismo , Citocinas/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Quimiocinas/metabolismo , Quimiocinas/inmunología , Síndromes de Neurotoxicidad/inmunología , Síndrome Post Agudo de COVID-19 , Proteína C-Reactiva/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
14.
Toxicol Lett ; 400: 81-92, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39147216

RESUMEN

T-2 toxin is one of the mycotoxins widely distributed in human food and animal feed. Our recent work has shown that microglial activation may contribute to T-2 toxin-induced neurotoxicity. However, the molecular mechanisms involved need to be further clarified. To address this, we employed high-throughput transcriptome sequencing and found altered B cell translocation gene 2 (BTG2) expression levels in microglia following T-2 toxin treatment. It has been shown that altered BTG2 expression is involved in a range of neurological pathologies, but whether it's involved in the regulation of microglial activation is unclear. The aim of this study was to investigate the role of BTG2 in T-2 toxin-induced microglial activation. The results of animal experiments showed that T-2 toxin caused neurobehavioral disorders and promoted the expression of microglial BTG2 and pro-inflammatory activation of microglia in hippocampus and cortical, while microglial inhibitor minocycline inhibited these changes. The results of in vitro experiments showed that T-2 toxin enhanced BTG2 expression and pro-inflammatory microglial activation, and inhibited BTG2 expression weakened T-2 toxin-induced microglial activation. Moreover, T-2 toxin activated PI3K/AKT and its downstream NF-κB signaling pathway, which could be reversed after knock-down of BTG2 expression. Meanwhile, the PI3K inhibitor LY294002 also blocked this process. Therefore, BTG2 may be involved in T-2 toxin's ability to cause microglial activation through PI3K/AKT/NF-κB pathway.


Asunto(s)
Proteínas Inmediatas-Precoces , Microglía , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Toxina T-2 , Microglía/efectos de los fármacos , Microglía/metabolismo , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Toxina T-2/toxicidad , Transducción de Señal/efectos de los fármacos , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/genética , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Fosfatidilinositol 3-Quinasa/metabolismo
16.
J Hematol Oncol ; 17(1): 61, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107847

RESUMEN

Autologous anti-CD19 chimeric antigen receptor (CAR) T cells are now used in routine practice for relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Severe (grade ≥ 3) cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity (ICANS) are still the most concerning acute toxicities leading to frequent intensive care unit (ICU) admission, prolonging hospitalization, and adding significant cost to treatment. We report on the incidence of CRS and ICANS and the outcomes in a large cohort of 925 patients with LBCL treated with axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel) in France based on patient data captured through the DESCAR-T registry. CRS of any grade occurred in 778 patients (84.1%), with 74 patients (8.0%) with grade 3 CRS or higher, while ICANS of any grade occurred in 375 patients (40.5%), with 112 patients (12.1%) with grade ≥ 3 ICANS. Based on the parameters selected by multivariable analyses, two independent prognostic scoring systems (PSS) were derived, one for grade ≥ 3 CRS and one for grade ≥ 3 ICANS. CRS-PSS included bulky disease, a platelet count < 150 G/L, a C-reactive protein (CRP) level > 30 mg/L and no bridging therapy or stable or progressive disease (SD/PD) after bridging. Patients with a CRS-PSS score > 2 had significantly higher risk to develop grade ≥ 3 CRS. ICANS-PSS included female sex, low level of platelets (< 150 G/L), use of axi-cel and no bridging therapy or SD/PD after bridging. Patients with a CRS-PSS score > 2 had significantly higher risk to develop grade ≥ 3 ICANS. Both scores were externally validated in international cohorts of patients treated with tisa-cel or axi-cel.


Asunto(s)
Antígenos CD19 , Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Masculino , Femenino , Persona de Mediana Edad , Antígenos CD19/inmunología , Pronóstico , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/inmunología , Síndrome de Liberación de Citoquinas/etiología , Anciano , Adulto , Síndromes de Neurotoxicidad/etiología , Productos Biológicos/uso terapéutico , Productos Biológicos/efectos adversos , Francia , Anciano de 80 o más Años , Receptores de Antígenos de Linfocitos T
17.
Sci Total Environ ; 951: 175681, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173756

RESUMEN

Manganese (Mn) is an environmental pollutant, and overexposure can cause neurodegenerative disorders similar to Alzheimer's disease and Parkinson's disease that are characterized by ß-amyloid (Aß) overexpression, Tau hyperphosphorylation and neuroinflammation. However, the mechanisms of Mn neurotoxicity are not clearly defined. In our study, a knockout mouse model of Mn exposure combined with gut flora-induced neurotoxicity was constructed to investigate the effect of gut flora on Mn neurotoxicity. The results showed that the levels of Tau, p-Tau and Aß in the hippocampus of C57BL/6 mice were greater than those in the hippocampus of control mice after 5 weeks of continuous exposure to manganese chloride (Mn content of 200 mg/L). Transplanted normal and healthy fecal microbiota from mice significantly downregulated Tau, p-Tau and Aß expression and ameliorated brain pathology. Moreover, Mn exposure activated the cGAS-STING pathway and altered the cecal microbiota profile, characterized by an increase in Clostridiales, Pseudoflavonifractor, Ligilactobacillus and Desulfovibrio, and a decrease in Anaerotruncus, Eubacterium_ruminantium_group, Fusimonas and Firmicutes, While fecal microbiome transplantation (FMT) treatment inhibited this pathway and restored the microbiota profile. FMT alleviated Mn exposure-induced neurotoxicity by inhibiting activation of the NLRP3 inflammasome triggered by overactivation of the cGAS-STING pathway. Deletion of the cGAS and STING genes and FMT altered the gut microbiota composition and its predictive function. Phenotypic prediction revealed that FMT markedly decreased the abundances of anaerobic and stress-tolerant bacteria and significantly increased the abundances of facultative anaerobic bacteria and biofilm-forming bacteria after blocking the cGAS-STING pathway compared to the Mn-exposed group. FMT from normal and healthy mice ameliorated the neurotoxicity of Mn exposure, possibly through alterations in the composition and function of the microbiome associated with the cGAS-STING/NLRP3 pathway. This study provides a prospective direction for future research on the mechanism of Mn neurotoxicity.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de la Membrana/metabolismo , Manganeso/toxicidad , Síndromes de Neurotoxicidad , Ratones Noqueados , Transducción de Señal , Nucleotidiltransferasas
18.
Environ Pollut ; 360: 124651, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094998

RESUMEN

2,5-hexanedione (HD) is the γ-diketone metabolite of industrial organic solvent n-hexane, primarily responsible for n-hexane neurotoxicity. Previous studies have shown that the formation of pyrrole adducts (PAs) is crucial for the toxic axonopathy induced by HD. However, the exact mechanism underlying PAs-induced axonal degeneration remains unclear. Recently, Sterile α and toll/interleukin 1 receptor motif-containing protein 1 (SARM1) has been identified as the central executor of axon degeneration. This study was designed to investigate the role of SARM1-mediated axon degeneration in rats exposed to HD. Furthermore, the causal relationship between PAs and SARM1-mediated axon degeneration was further explored using Sarm1 KO mice. Our findings suggest that HD causes axon degeneration and neuronal loss in animals. Mechanistic studies revealed that HD activates SARM1-dependent axonal degeneration machinery. In contrast, Sarm1 KO attenuates motor dysfunction and rescues neuron loss following HD exposure. Interestingly, the PAs formed by the binding of HD to proteins primarily accumulate on mitochondria, leading to mitochondrial dysfunction. This dysfunction serves as an upstream event in HD-induced nerve injuries. Our findings highlight the crucial role of PAs formation in the major pathological changes during n-hexane poisoning, providing a potential therapeutic target for n-hexane neuropathy.


Asunto(s)
Proteínas del Dominio Armadillo , Axones , Proteínas del Citoesqueleto , Hexanonas , Mitocondrias , Animales , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Hexanonas/toxicidad , Axones/efectos de los fármacos , Axones/metabolismo , Ratas , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Ratones Noqueados , Masculino , Ratas Sprague-Dawley , Síndromes de Neurotoxicidad , Hexanos/toxicidad
19.
Intensive Care Med ; 50(9): 1459-1469, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39172238

RESUMEN

The use of chimeric antigen receptor T (CAR-T) cells is a significant therapeutic improvement increasing the prognosis for patients with a variety of hematological malignancies. However, this therapy has also sometimes life-threatening, complications. Therefore, knowledge of the treatment and management of these complications, especially in treatment centers and intensive care units, respectively, is of outstanding importance. This review provides recommendations for the diagnosis, management, and treatment of CAR-T cell-associated complications such as cytokine release syndrome, immune effector cell associated neurotoxicity syndrome, hematotoxicity, hypogammaglobulinemia, and CAR-T cell-induced pseudo-progression amongst others for physicians treating patients with CAR-T cell-associated complications and intensivists.


Asunto(s)
Síndrome de Liberación de Citoquinas , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/uso terapéutico , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/terapia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología , Síndromes de Neurotoxicidad/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA