Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
J Cardiothorac Surg ; 19(1): 321, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38845009

RESUMEN

BACKGROUND: Long QT Syndrome (LQTS) and Beckwith-Wiedemann Syndrome (BWS) are complex disorders with unclear origins, underscoring the need for in-depth molecular investigations into their mechanisms. The main aim of this study is to identify the shared key genes between LQTS and BWS, shedding light on potential common molecular pathways underlying these syndromes. METHODS: The LQTS and BWS datasets are available for download from the GEO database. Differential expression genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA) was used to detect significant modules and central genes. Gene enrichment analysis was performed. CIBERSORT was used for immune cell infiltration analysis. The predictive protein interaction (PPI) network of core genes was constructed using STRING, and miRNAs regulating central genes were screened using TargetScan. RESULTS: Five hundred DEGs associated with Long QT Syndrome and Beckwith-Wiedemann Syndrome were identified. GSEA analysis revealed enrichment in pathways such as T cell receptor signaling, MAPK signaling, and adrenergic signaling in cardiac myocytes. Immune cell infiltration indicated higher levels of memory B cells and naive CD4 T cells. Four core genes (CD8A, ICOS, CTLA4, LCK) were identified, with CD8A and ICOS showing low expression in the syndromes and high expression in normal samples, suggesting potential inverse regulatory roles. CONCLUSION: The expression of CD8A and ICOS is low in long QT syndrome and Beckwith-Wiedemann syndrome, indicating their potential as key genes in the pathogenesis of these syndromes. The identification of shared key genes between LQTS and BWS provides insights into common molecular mechanisms underlying these disorders, potentially facilitating the development of targeted therapeutic strategies.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Antígenos CD8 , Proteína Coestimuladora de Linfocitos T Inducibles , Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/genética , Síndrome de Beckwith-Wiedemann/genética , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Perfilación de la Expresión Génica/métodos
2.
Ann Hum Genet ; 88(5): 392-398, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38690755

RESUMEN

INTRODUCTION: Long-read whole genome sequencing like Oxford Nanopore Technology, is increasingly being introduced in clinical settings. With its ability to simultaneously call sequence variation and DNA modifications including 5-methylcytosine, nanopore is a promising technology to improve diagnostics of imprinting disorders. METHODS: Currently, no tools to analyze DNA methylation patterns at known clinically relevant imprinted regions are available. Here we present NanoImprint, which generates an easily interpretable report, based on long-read nanopore sequencing, to use for identifying clinical relevant abnormalities in methylation levels at 14 imprinted regions and diagnosis of common imprinting disorders. RESULTS AND CONCLUSION: NanoImprint outputs a summarizing table and visualization plots displays methylation frequency (%) and chromosomal positions for all regions, with phased data color-coded for the two alleles. We demonstrate the utility of NanoImprint using three imprinting disorder samples from patients with Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS) and Prader-Willi syndrome (PWS). NanoImprint script is available from https://github.com/carolinehey/NanoImprint.


Asunto(s)
Síndrome de Angelman , Síndrome de Beckwith-Wiedemann , Metilación de ADN , Secuenciación de Nanoporos , Síndrome de Prader-Willi , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Secuenciación de Nanoporos/métodos , Nanoporos , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , Análisis de Secuencia de ADN/métodos
3.
Fetal Pediatr Pathol ; 43(3): 257-265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587479

RESUMEN

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder that exhibits etiologic genomic imprinting characterized by molecular heterogeneity and phenotypic variability. Associations with localized developmental dysplastic chondromatous lesions and cortical neuronal heterotopias have not previously been described. CASE PRESENTATION: A 33-week gestational age female had an omphalocele and intractable hypoglycemia at birth. The placenta demonstrated placental mesenchymal dysplasia. Detection of hypermethylation of IC1 and hypomethylation of IC2 confirmed Beckwith-Wiedemann syndrome, most likely due to uniparental disomy. Additional findings included right mid-tibial and right 5-8th developmental dysplastic chondromatous lesions, absent corpus callosum and numerous right-sided cortical neuronal heterotopias, right hemihypertrophy, multiple cystic hepatic mesenchymal hamartomas and hepatic infantile hemangiomas, nisidioblastosis and cystic pancreatic lesions. The infant died with multi-organ failure and anasarca at 7 weeks of life. CONCLUSION: Beckwith-Wiedemann syndrome anomalies may include multifocal developmental dysplastic chondromatous lesions and cerebral neuronal heterotopias, lateralized, and corpus callosum aplasia.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Recien Nacido Prematuro , Disomía Uniparental , Humanos , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/patología , Femenino , Recién Nacido , Disomía Uniparental/genética , Disomía Uniparental/diagnóstico , Autopsia , Embarazo , Resultado Fatal
4.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612397

RESUMEN

Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder characterized by overgrowth, stemming from various genetic and epigenetic changes. This study delves into the role of IGF2 upregulation in BWS, focusing on insulin-like growth factor pathways, which are poorly known in this syndrome. We examined the IGF2R, the primary receptor of IGF2, WNT, and autophagy/lysosomal pathways in BWS patient-derived lymphoblastoid cell lines, showing different genetic and epigenetic defects. The findings reveal a decreased expression and mislocalization of IGF2R protein, suggesting receptor dysfunction. Additionally, our results point to a dysregulation in the AKT/GSK-3/mTOR pathway, along with imbalances in autophagy and the WNT pathway. In conclusion, BWS cells, regardless of the genetic/epigenetic profiles, are characterized by alteration of the IGF2R pathway that is associated with the perturbation of the autophagy and lysosome processes. These alterations seem to be a key point of the molecular pathogenesis of BWS and potentially contribute to BWS's characteristic overgrowth and cancer susceptibility. Our study also uncovers alterations in the WNT pathway across all BWS cell lines, consistent with its role in growth regulation and cancer development.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Neoplasias , Humanos , Autofagia/genética , Síndrome de Beckwith-Wiedemann/genética , Línea Celular , Glucógeno Sintasa Quinasa 3
5.
Arch Endocrinol Metab ; 68: e220395, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38427811

RESUMEN

Beckwith-Wiedemann syndrome (BWS) is a common genetic congenital disease characterized by somatic overgrowth and its broad clinical spectrum includes pre- and post-natal macrosomia, macroglossia, visceromegaly, increased risk of neonatal hypoglycemia, and development of embryonic tumors. BWS occurs due to genetic/epigenetic changes involving growth-regulating genes, located on region 11p15, with an important genotype-phenotype correlation. Congenital adrenal hyperplasia (CAH) comprises a spectrum of autosomal recessive diseases presenting a variety of clinical manifestations due to a deficiency in one of the enzymes involved in cortisol secretion. Early diagnosis based on newborn screening prevents the adrenal crisis and early infant death. However, high 17-hydroxyprogesterone (17-OHP) levels can occur in newborns or premature infants without CAH, in situations of stress due to maternal or neonatal factors. Here, we report new cases of false-positive diagnosis of 21-hydroxylase deficiency during newborn screening - two girls and one boy with BWS. Methylation-specific multiplex ligation-dependent probe amplification revealed a gain of methylation in the H19 differentially methylated region. Notably, all three cases showed a complete normalization of biochemical changes, highlighting the transient nature of these hormonal findings that imitate the classical form of CAH. This report sheds light on a new cause of false-positive 21-hydroxylase deficiency diagnosis during newborn screening: Beckwith-Wiedemann syndrome.


Asunto(s)
Hiperplasia Suprarrenal Congénita , Síndrome de Beckwith-Wiedemann , Masculino , Lactante , Femenino , Humanos , Recién Nacido , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Hiperplasia Suprarrenal Congénita/genética , Metilación de ADN , Tamizaje Neonatal
6.
BMC Bioinformatics ; 25(1): 66, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347515

RESUMEN

BACKGROUND: DNA methylation is one of the most stable and well-characterized epigenetic alterations in humans. Accordingly, it has already found clinical utility as a molecular biomarker in a variety of disease contexts. Existing methods for clinical diagnosis of methylation-related disorders focus on outlier detection in a small number of CpG sites using standardized cutoffs which differentiate healthy from abnormal methylation levels. The standardized cutoff values used in these methods do not take into account methylation patterns which are known to differ between the sexes and with age. RESULTS: Here we profile genome-wide DNA methylation from blood samples drawn from within a cohort composed of healthy controls of different age and sex alongside patients with Prader-Willi syndrome (PWS), Beckwith-Wiedemann syndrome, Fragile-X syndrome, Angelman syndrome, and Silver-Russell syndrome. We propose a Generalized Additive Model to perform age and sex adjusted outlier analysis of around 700,000 CpG sites throughout the human genome. Utilizing z-scores among the cohort for each site, we deployed an ensemble based machine learning pipeline and achieved a combined prediction accuracy of 0.96 (Binomial 95% Confidence Interval 0.868[Formula: see text]0.995). CONCLUSION: We demonstrate a method for age and sex adjusted outlier detection of differentially methylated loci based on a large cohort of healthy individuals. We present a custom machine learning pipeline utilizing this outlier analysis to classify samples for potential methylation associated congenital disorders. These methods are able to achieve high accuracy when used with machine learning methods to classify abnormal methylation patterns.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impresión Genómica , Metilación de ADN , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Aprendizaje Automático Supervisado
7.
J Med Genet ; 61(6): 590-594, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38228391

RESUMEN

Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored. Methods We conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES. Results Ten patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features. Conclusion Molecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Secuenciación del Exoma , Humanos , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Síndrome de Beckwith-Wiedemann/diagnóstico , Masculino , Femenino , Lactante , Preescolar , Niño , Fenotipo , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/patología , Variación Genética , Mutación/genética
8.
Clin Genet ; 105(5): 533-542, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38265109

RESUMEN

Beckwith-Wiedemann syndrome (BWS) is an epigenetic overgrowth syndrome. Despite its distinctive growth pattern, the detailed growth trajectories of children with BWS remain largely unknown. We retrospectively analyzed 413 anthropometric measurements over an average of 4.4 years of follow-up in 51 children with BWS. We constructed sex-specific percentile curves for height, weight, and head circumference using a generalized additive model for location, scale, and shape. Males with BWS exhibited greater height at all ages evaluated, weight before the age of 10, and head circumference before the age of 9 than those of the general population. Females with BWS showed greater height before the age of 7, weight before the age of 4.5, and head circumference before the age of 7 than those of the general population. At the latest follow-up visit at a mean 8.4 years of age, bone age was significantly higher than chronological age. Compared to paternal uniparental disomy (pUPD), males with imprinting center region 2-loss of methylation (IC2-LOM) had higher standard deviation score (SDS) for height and weight, while females with IC2-LOM showed larger SDS for head circumference. These disease-specific growth charts can serve as valuable tools for clinical monitoring of children with BWS.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Masculino , Niño , Femenino , Humanos , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN/genética , Impresión Genómica , Estudios Retrospectivos , Gráficos de Crecimiento , Trastornos del Crecimiento , República de Corea/epidemiología
9.
Cancer ; 130(3): 467-475, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37788149

RESUMEN

BACKGROUND: Overgrowth syndromes (e.g., Beckwith-Wiedemann) are associated with an increased risk of pediatric cancer, although there are few population-based estimates of risk. There are also limited studies describing associations between other overgrowth features (e.g., hepatosplenomegaly) and pediatric cancer. Therefore, cancer risk among children with these conditions was evaluated with data from a large, diverse population-based registry linkage study. METHODS: This study includes all live births in Texas during the years 1999-2017. Children with overgrowth features and syndromes were identified from the Texas Birth Defects Registry; children with cancer were identified by linkage to the Texas Cancer Registry. Cox regression models were used to estimate the hazard ratio (HR) and 95% confidence interval (CI) for the association between each overgrowth syndrome/feature and cancer, which were adjusted for infant sex and maternal age. RESULTS: In the total birth cohort (n = 6,997,422), 21,207 children were identified as having an overgrowth syndrome or feature. Children with Beckwith-Wiedemann syndrome were 42 times more likely to develop pediatric cancer (95% CI, 24.20-71.83), with hepatoblastoma being the most common, followed by Wilms tumor. The presence of any isolated overgrowth feature was associated with increased cancer risk (HR, 4.70; 95% CI, 3.83-5.77); associations were strongest for hepatosplenomegaly (HR, 23.04; 95% CI, 13.37-39.69) and macroglossia (HR, 11.18; 95% CI, 6.35-19.70). CONCLUSIONS: This population-based assessment confirmed prior findings that children with either overgrowth syndromes or features were significantly more likely to develop cancer. Overall, this study supports recommendations for cancer surveillance in children with these conditions and may also inform future research into cancer etiology.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Neoplasias Renales , Neoplasias Hepáticas , Tumor de Wilms , Lactante , Niño , Humanos , Incidencia , Síndrome de Beckwith-Wiedemann/complicaciones , Síndrome de Beckwith-Wiedemann/epidemiología , Síndrome de Beckwith-Wiedemann/genética , Tumor de Wilms/epidemiología , Neoplasias Renales/complicaciones , Neoplasias Hepáticas/complicaciones
10.
Br J Cancer ; 130(4): 638-650, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142265

RESUMEN

BACKGROUND: Wilms tumor (WT) exhibits structural and epigenetic changes at chromosome 11p15, which also cause Beckwith-Wiedemann Syndrome (BWS). Children diagnosed with BWS have increased risk for WT. The aim of this study is to identify the molecular signaling signatures in BWS driving these tumors. METHODS: We performed whole exome sequencing, methylation array analysis, and gene expression analysis on BWS-WT samples. Our data were compared to publicly available nonBWS data. We categorized WT from BWS and nonBWS patients by assessment of 11p15 methylation status and defined 5 groups- control kidney, BWS-nontumor kidney, BWS-WT, normal-11p15 nonBWS-WT, altered-11p15 nonBWS-WT. RESULTS: BWS-WT samples showed single nucleotide variants in BCORL1, ASXL1, ATM and AXL but absence of recurrent gene mutations associated with sporadic WT. We defined a narrow methylation range stratifying nonBWS-WT samples. BWS-WT and altered-11p15 nonBWS-WT showed enrichment of common and unique molecular signatures based on global differential methylation and gene expression analysis. CTNNB1 overexpression and broad range of interactions were seen in the BWS-WT interactome study. CONCLUSION: While WT predisposition in BWS is well-established, as are 11p15 alterations in nonBWS-WT, this study focused on stratifying tumor genomics by 11p15 status. Further investigation of our findings may identify novel therapeutic targets in WT oncogenesis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Neoplasias Renales , Tumor de Wilms , Niño , Humanos , Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN , Tumor de Wilms/genética , Genotipo , Neoplasias Renales/genética
11.
Nat Commun ; 14(1): 7122, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932266

RESUMEN

Pediatric liver tumors are very rare tumors with the most common diagnosis being hepatoblastoma. While hepatoblastomas are predominantly sporadic, around 15% of cases develop as part of predisposition syndromes such as Beckwith-Wiedemann (11p15.5 locus altered). Here, we identify mosaic genetic alterations of 11p15.5 locus in the liver of hepatoblastoma patients without a clinical diagnosis of Beckwith-Wiedemann syndrome. We do not retrieve these alterations in children with other types of pediatric liver tumors. We show that mosaic 11p15.5 alterations in liver FFPE sections of hepatoblastoma patients display IGF2 overexpression and H19 downregulation together with an alteration of the liver zonation. Moreover, mosaic livers' microenvironment is enriched in extracellular matrix and angiogenesis. Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Niño , Preescolar , Hepatoblastoma/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Neoplasias Hepáticas/genética , Mosaicismo , Metilación de ADN , Impresión Genómica , Microambiente Tumoral
12.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37686168

RESUMEN

Beckwith-Wiedemann Syndrome (BWS) is an imprinting disorder, which manifests by overgrowth and predisposition to embryonal tumors. The evidence on the relationship between maternal complications such as HELLP (hemolysis, elevated liver enzymes, and low platelet count) and preeclampsia and the development of BWS in offspring is scarce. A comprehensive clinical evaluation, with genetic testing focused on screening for mutations in the CDKN1C gene, which is commonly associated with BWS, was conducted in a newborn diagnosed with BWS born to a mother with a history of preeclampsia and HELLP syndrome. The case study revealed typical clinical manifestations of BWS in the newborn, including hemihyperplasia, macroglossia, midfacial hypoplasia, omphalocele, and hypoglycemia. Surprisingly, the infant also exhibited fetal growth restriction, a finding less commonly observed in BWS cases. Genetic analysis, however, showed no mutations in the CDKN1C gene, which contrasts with the majority of BWS cases. This case report highlights the complex nature of BWS and its potential association with maternal complications such as preeclampsia and HELLP syndrome. The atypical presence of fetal growth restriction in the newborn and the absence of CDKN1C gene mutations have not been reported to date in BWS.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome HELLP , Preeclampsia , Femenino , Embarazo , Lactante , Recién Nacido , Humanos , Síndrome HELLP/diagnóstico , Síndrome HELLP/genética , Preeclampsia/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Retardo del Crecimiento Fetal/genética , Madres , Variación Genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética
13.
Ital J Pediatr ; 49(1): 127, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749604

RESUMEN

BACKGROUND: Beckwith-Wiedemann syndrome (BWS, OMIM #130,650) is a pediatric overgrowth disorder involving a predisposition to tumor development. Although the clinical management of affected patients is well established, it is less clear how to handle with the cases of siblings of affected patients, since the prevalence of the condition in twins (1:1000) is ten times higher than in singletones (1:10000). CASE PRESENTATION: We report the case of a premature twin patient who during her follow-up develops a clinical phenotype compatible with BWS, genetically confirmed in blood. However, the methylation alteration characteristic of the condition was also found in the almost phenotypically normal sibling, making it challening her management. CONCLUSION: Through our case report we highlight how the diagnosis of BWS can be made without any prenatal suspicion and we propose a review of the literature on how to manage siblings of affected patients in twinning situation.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Femenino , Niño , Embarazo , Humanos , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/terapia , Genotipo , Fenotipo , Hermanos , Gemelos
14.
J Craniomaxillofac Surg ; 51(9): 568-573, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37599200

RESUMEN

Tongue reduction surgery is often pursued to manage the adverse effects of macroglossia in patients with Beckwith-Wiedemann syndrome (BWS). This study characterized dental outcomes in patients with BWS based on surgical timing and molecular diagnosis. A retrospective study was designed to include patients with BWS over the age of two who had clinical or radiographic documentation of dental development. Patients were grouped by history of tongue reduction surgery and surgical timing (early: <12 months). One hundred three patients were included (55 no tongue reduction, 18 early, 30 late). Patients who underwent late surgery had lower odds of class I occlusion (OR 0.11, 95% CI 0.02-0.58, p = 0.009) and higher odds of anterior open bite (OR 7.5, 95% CI 1.14-49.4, p = 0.036). Patients with clinical diagnoses and negative molecular testing had anterior open bite less frequently than patients with imprinting center 2 loss of methylation and paternal uniparental isodisomy of 11p15.5 (p = 0.009). Compared to reference values, patients who had tongue reductions had an increased mandibular plane angle (32.0 ± 4.5° versus 36.9 ± 5.0°, p = 0.001), indicative of hyperdivergent growth. The results of this study help to understand the complex nature of dentoskeletal growth in BWS and shed insight on how surgical timing and molecular diagnosis influence prognosis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Mordida Abierta , Humanos , Síndrome de Beckwith-Wiedemann/complicaciones , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/cirugía , Mordida Abierta/cirugía , Estudios Retrospectivos , Lengua/cirugía , Genotipo , Metilación de ADN
15.
Mol Genet Genomic Med ; 11(12): e2264, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37519217

RESUMEN

BACKGROUND: Beckwith-Wiedemann syndrome and Silver-Russel syndrome are two imprinting disorders caused by opposite molecular alterations in 11p15.5. With the current diagnostic tests, their molecular diagnosis is challenging due to molecular heterogeneity and mosaic occurrence of the most frequent alterations. As the determination of precise (epi)genotype of patients is relevant as the basis for a personalized treatment, different approaches are needed to increase the sensitivity of diagnostic testing of imprinting disorders. METHODS: We established methylation-specific droplet digital PCR approaches (MS-ddPCR) for the two imprinting centers in 11p15.5, and analyzed patients with paternal uniparental disomy of chromosome 11p15.5 (upd(11)pat) and other imprinting defects in the region. The results were compared to those from MS-MLPA (multiplex ligation-dependent probe amplification) and MS-pyrosequencing. RESULTS: MS-ddPCR confirmed the molecular alterations in all patients and the results matched well with MS-MLPA. The results of MS-pyrosequencing varied between different runs, whereas MS-ddPCR results were reproducible. CONCLUSION: We show for the first time that MS-ddPCR is a reliable and easy applicable method for determination of MS-associated changes in imprinting disorders. It is therefore an additional tool for multimethod diagnostics of imprinting disorders suitable to improve the diagnostic yield.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Trastornos de Impronta , Síndrome de Silver-Russell , Humanos , Metilación de ADN , Impresión Genómica , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Reacción en Cadena de la Polimerasa Multiplex
16.
Cytogenet Genome Res ; 163(1-2): 32-35, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369188

RESUMEN

Optical genome mapping (OGM) appears as a new tool for matching standard cytogenetic methods (karyotype and microarray) into a single assay. The chromosomal region 11p15.5 harbours two differentially methylated regions, the imprinting centre regions 1 and 2 (ICR1, ICR2). Disturbances in both regions alter human growth and are associated with two imprinting disorders, Beckwith-Wiedemann (BWS) and Silver-Russell syndromes. Herein, we present a prenatal case with a triplication in 11p15.5, including the H19/IGF2 imprinted region, detected by microarray and OGM. A 30-year-old pregnant woman of 17 weeks of gestation was referred for prenatal karyotype and microarray study because of increased nuchal translucency, short femur, megabladder, hyperechogenic bowel, and renal ectasia. Microarray, OGM, and MS-MLPA were performed, and a tandem cis-triplication in 11p15.5 and hypermethylation of the ICR1 region, compatible with BWS was detected. OGM, with its power to detect all classes of structural variants, including copy number variants, at a higher resolution than traditional cytogenetic methods can play a significant role in prenatal care and management as a next-generation cytogenomic tool. This study further supports the hypotheses that the amplification/duplication-triplication of the H19/IGF2 region could be related to BWS if it is of paternal origin.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Embarazo , Femenino , Humanos , Adulto , Impresión Genómica , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Metilación de ADN/genética , Síndrome de Silver-Russell/genética , Mapeo Cromosómico , Factor II del Crecimiento Similar a la Insulina/genética
17.
Am J Med Genet C Semin Med Genet ; 193(2): 116-127, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37163416

RESUMEN

Beckwith-Wiedemann syndrome (BWS) is an overgrowth and epigenetic disorder caused by changes on chromosome 11p15. The primary features requiring management in childhood include macroglossia, omphalocele, lateralized overgrowth, hyperinsulinism, and embryonal tumors. Management guidelines have not been developed for adults with BWS and there have been few studies to assess the clinical needs of these patients. Furthermore, there have been few studies on the psychosocial implications of BWS in children or adults. Here, we present a descriptive summary of data gathered from two separate adult BWS cohorts. The first, a patient-based survey cohort, includes self-reported health information and recollections about BWS experiences, while the second provides results of a medical record-based assessment from patients in an overgrowth registry. Results highlight the clinical features and medical issues affecting two large independent cohorts of adults with BWS while noting similarities. Open-ended questions asked of the survey cohort yielded themes to guide future qualitative studies. Finally, the study demonstrated the reliability of patient-reported data and the utility of international partnerships in this context.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Macroglosia , Niño , Humanos , Adulto , Síndrome de Beckwith-Wiedemann/genética , Reproducibilidad de los Resultados , Macroglosia/genética , Metilación de ADN
19.
J Pediatr Hematol Oncol ; 45(4): e525-e529, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36730589

RESUMEN

Beckwith-Wiedemann syndrome (BWS) is an epigenetic overgrowth disorder and cancer predisposition syndrome caused by imprinting defects of chromosome 11p15.5-11p15.4. BWS should be considered in children with atypical presentations of embryonal tumors regardless of clinical phenotype. Risk of malignancy correlates with specific molecular subgroups of BWS making molecular subclassification important for appropriate cancer screening. We report the first case of concurrent embryonal tumors in a phenotypically normal child, leading to the diagnosis of BWS with paternal uniparental disomy and describe the molecular classification of BWS as it relates to malignancy risk, along with approach to management.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Hepatoblastoma , Neoplasias Renales , Neoplasias Hepáticas , Neoplasias de Células Germinales y Embrionarias , Tumor de Wilms , Humanos , Síndrome de Beckwith-Wiedemann/complicaciones , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Hepatoblastoma/etiología , Hepatoblastoma/genética , Impresión Genómica , Tumor de Wilms/diagnóstico , Tumor de Wilms/genética , Fenotipo , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Neoplasias Renales/genética , Neoplasias de Células Germinales y Embrionarias/genética , Metilación de ADN
20.
Am J Med Genet A ; 191(4): 1101-1106, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36598152

RESUMEN

Mosaic genome-wide paternal uniparental disomy (GWpUPD) is a rare condition in which two euploid cell lines coexist in the same individual, one with biparental content and one with genome-wide paternal isodisomy. We report a complex prenatal diagnosis with discordant results from cultured and uncultured samples. A pregnant woman was referred for placental mesenchymal dysplasia and fetal omphalocele. Karyotype, array-CGH and Beckwith-Wiedemann Syndrome (BWS) testing (methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) of 11p15) performed on amniocytes were negative. After intrauterine fetal demise, the clinical suspicion persisted and BWS MS-MLPA was repeated on cultured cells from umbilical cord and amniotic fluid, revealing a mosaicism for KvH19 hypermethylation/KCNQ1OT1:TSS:DMR hypomethylation. These results, along with microsatellite analysis of the BWS region, were consistent with mosaic paternal 11p15 isodisomy. A concurrent maternal contamination exclusion test, analyzing polymorphic microsatellite markers on multiple chromosomes, showed an imbalance in favor of paternal alleles at all examined loci on cultured amniocytes and umbilical cord samples. This led to suspicion of mosaic GWpUPD, later confirmed by SNP-array, identifying a mosaic genome-wide paternal isodisomy affecting 60% of fetal cells. The assessment of mosaic GWpUPD requires multiple approaches beyond the current established diagnostic processes, also entertaining possible low-rate mosaicism. Clinical acumen and an integrated testing approach are the key to a successful diagnosis.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Disomía Uniparental , Humanos , Femenino , Embarazo , Placenta , Mosaicismo , Metilación de ADN , Síndrome de Beckwith-Wiedemann/genética , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA