RESUMEN
A photoelectrochemical biosensing strategy for the highly sensitive detection of the flavonoid rutin was developed by synergizing the photoelectrocatalytic properties of hematite (α-Fe2O3) decorated with palladium nanoparticles (PdNPs) and the biocatalysis towards laccase-based reactions. The integration of α-Fe2O3.PdNPs with a polyphenol oxidase as a biorecognition element yields a novel biosensing platform. Under visible light irradiation, the photoactive biocomposite can generate a stable photocurrent, which was found to be directly dependent upon the concentration of rutin. Under the optimal experimental conditions, the cathodic photocurrent, measured at 0.33 V vs. Ag/AgCl, from the square-wave voltammograms presented a linear dependence on the rutin concentration within the range of 0.008-30.0 × 10-8 mol L-1 (sensitivity: 1.7 µA·(× 10-8 M-1)·cm-2), with an experimental detection limit (S/N = 3) of 8.4 × 10-11 mol L-1. The proposed biosensor device presented good selectivity towards rutin in the presence of various organic compounds and inorganic ions, demonstrating the potential application of this biosensing platform in complex matrices. This bioanalytical device also exhibited excellent operational and analytical properties, such as intra-day (standard deviation, SD = 0.21%) and inter-day (SD = 1.30%) repeatability, and long storage stability (SD = 2.80% over 30 days).Graphical abstract.