Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.295
Filtrar
1.
Microbiome ; 12(1): 167, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39244625

RESUMEN

BACKGROUND: Plant-associated microorganisms can be found in various plant niches and collectively comprise the plant microbiome. The plant microbiome assemblages have been extensively studied, primarily in model species. However, a deep understanding of the microbiome assembly associated with plant health is still needed. Ginger rhizome rot has been variously attributed to multiple individual causal agents. Due to its global relevance, we used ginger and rhizome rot as a model to elucidate the metabolome-driven microbiome assembly associated with plant health. RESULTS: Our study thoroughly examined the biodiversity of soilborne and endophytic microbiota in healthy and diseased ginger plants, highlighting the impact of bacterial and fungal microbes on plant health and the specific metabolites contributing to a healthy microbial community. Metabarcoding allowed for an in-depth analysis of the associated microbial community. Dominant genera represented each microbial taxon at the niche level. According to linear discriminant analysis effect size, bacterial species belonging to Sphingomonas, Quadrisphaera, Methylobacterium-Methylorubrum, Bacillus, as well as the fungal genera Pseudaleuria, Lophotrichus, Pseudogymnoascus, Gymnoascus, Mortierella, and Eleutherascus were associated with plant health. Bacterial dysbiosis related to rhizome rot was due to the relative enrichment of Pectobacterium, Alcaligenes, Klebsiella, and Enterobacter. Similarly, an imbalance in the fungal community was caused by the enrichment of Gibellulopsis, Pyxidiophorales, and Plectosphaerella. Untargeted metabolomics analysis revealed several metabolites that drive microbiome assembly closely related to plant health in diverse microbial niches. At the same time, 6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-2,3,4,5-tetrol was present at the level of the entire healthy ginger plant. Lipids and lipid-like molecules were the most significant proportion of highly abundant metabolites associated with ginger plant health versus rhizome rot disease. CONCLUSIONS: Our research significantly improves our understanding of metabolome-driven microbiome structure to address crop protection impacts. The microbiome assembly rather than a particular microbe's occurrence drove ginger plant health. Most microbial species and metabolites have yet to be previously identified in ginger plants. The indigenous microbial communities and metabolites described can support future strategies to induce plant disease resistance. They provide a foundation for further exploring pathogens, biocontrol agents, and plant growth promoters associated with economically important crops. Video Abstract.


Asunto(s)
Bacterias , Hongos , Metaboloma , Microbiota , Enfermedades de las Plantas , Rizoma , Zingiber officinale , Zingiber officinale/microbiología , Rizoma/microbiología , Enfermedades de las Plantas/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Hongos/aislamiento & purificación , Microbiología del Suelo , Biodiversidad
2.
Medicine (Baltimore) ; 103(22): e38289, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-39259072

RESUMEN

BACKGROUND: Ginger, a potent antiviral, anti-inflammatory, and antioxidant remedy, is a potential therapeutic option for COVID-19. However, there was not enough clinical evidence about ginger and COVID-19. We evaluated the efficacy and safety of ginger on clinical and paraclinical features in outpatients with COVID-19. METHODS: In this randomized controlled trial, the outpatients with confirmed COVID-19 were randomly assigned in a 1:1 ratio to receive ginger (1000 mg 3 times a day for 7 days) or placebo. The primary outcome was viral clearance after the end of the intervention. Oxygen saturation (SPO2), body temperature, respiratory rate (RR), hospital admission, and the incidence of adverse events were also assessed. RESULTS: A total of 84 patients (42 in the ginger and 42 in the control groups) were randomized. The viral clearance was not statistically improved in the ginger group (41.6%) compared to the placebo group (42.8%). The findings indicated that SPO2, body temperature, and RR had no significant difference between the groups at the end of the intervention. The imaging finding indicated pulmonary infiltrate significantly reduced on the 7th day of the intervention in the ginger group. The percentage of patients with SPO2 <96% in the ginger group decreased over the study compared to the placebo group. Moreover, the need for hospital admission and the incidence of adverse drug events were not different between the groups over the follow-up period. CONCLUSIONS: Ginger had no significant impact on the clinical and paraclinical parameters of patients. However, this intervention demonstrated a safe profile of adverse events and reduced pulmonary infiltrate. TRIAL REGISTRATION: The trial was registered as IRCT20200506047323N1.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Extractos Vegetales , SARS-CoV-2 , Zingiber officinale , Humanos , Masculino , Femenino , Método Doble Ciego , Persona de Mediana Edad , Extractos Vegetales/uso terapéutico , Extractos Vegetales/efectos adversos , Adulto , Rizoma , Pacientes Ambulatorios , Resultado del Tratamiento , Antivirales/uso terapéutico , Anciano , Temperatura Corporal/efectos de los fármacos
3.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274954

RESUMEN

Iris taxa are sources of valuable essential oils obtained from aged rhizomes used by various industries, including pharmacy, cosmetic, perfume, and food industry, in which irones are the most important aroma components. In this study, volatile organic compounds (VOCs) obtained from dried rhizomes of three endemics from Croatia, Iris pseudopallida, I. illyrica, and I. adriatica, were studied. The VOCs were isolated by three different methods: headspace solid-phase microextraction (HS-SPME) using divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS) fiber or polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, and hydrodistillation (HD). The samples were analyzed by gas chromatography-mass spectrometry (GC-MS). In five out of six samples, the main compounds detected by HS-SPME were perilla aldehyde, butan-2,3-diol, acetic acid, 2-phenylethanol, benzyl alcohol, hexanal, and nonanal, while 6-methylhept-5-en-2-one, trans-caryophyllene, and ethanol were common for all studied samples. The former VOCs were absent from the oldest, irone-rich I. pseudopallida sample, mainly characterized by cis-α-irone (43.74-45.76%). When using HD, its content was reduced (24.70%), while docosane prevailed (45.79%). HD yielded predominantly fatty acids, including myristic, common for all studied taxa (4.20-97.01%), and linoleic (40.69%) and palmitic (35.48%) as the major VOCs of I. adriatica EO. The performed GC-MS analyses of EOs, in combination with HS-SPME/GC-MS, proved to be useful for gaining a better insight into Iris VOCs.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Género Iris , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación , Microextracción en Fase Sólida/métodos , Género Iris/química , Destilación , Aceites Volátiles/química , Aceites Volátiles/análisis , Rizoma/química
4.
Molecules ; 29(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39275098

RESUMEN

Pinelliae Rhizoma (PR), a highly esteemed traditional Chinese medicinal herb, is widely applied in clinical settings due to its diverse pharmacological effects, including antitussive, expectorant, antiemetic, sedative-hypnotic, and antitumor activities. Pinellia ternata exhibits morphological variation in its leaves, with types resembling peach, bamboo, and willow leaves. However, the chemical composition differences among the corresponding rhizomes of these leaf phenotypes remain unelucidated. This pioneering research employed Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to conduct the in situ identification and spatial profiling of 35 PR metabolites in PR, comprising 12 alkaloids, 4 organic acids, 12 amino acids, 5 flavonoids, 1 sterol, and 1 anthraquinone. Our findings revealed distinct spatial distribution patterns of secondary metabolites within the rhizome tissues of varying leaf types. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) effectively differentiated between rhizomes associated with different leaf morphologies. Furthermore, this study identified five potential differential biomarkers-methylophiopogonanone B, inosine, cytidine, adenine, and leucine/isoleucine-that elucidate the biochemical distinctions among leaf types. The precise tissue-specific localization of these secondary metabolites offers compelling insights into the specialized accumulation of bioactive compounds in medicinal plants, thereby enhancing our comprehension of PR's therapeutic potential.


Asunto(s)
Metabolómica , Hojas de la Planta , Rizoma , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Metabolómica/métodos , Rizoma/química , Rizoma/metabolismo , Pinellia/química , Pinellia/metabolismo , Metaboloma , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología
5.
Food Chem ; 460(Pt 2): 140616, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094340

RESUMEN

Drynaria rhizome (DR) is used as a natural remedy to ameliorate obesity (OB) in East Asia; in parallel, the gut microbiota (GM) might exert a positive impact on OB through their metabolites. This study elucidates the orchestrated effects of DR and GM on OB. DR-GM, - a key signaling pathway-target-metabolite (DGSTM) networks were used to unveil the relationship between DR and GM, and Molecular Docking Test (MDT) and Density Functional Theory (DFT) were adopted to underpin the uppermost molecules. The NR1H3 (target) - 3-Epicycloeucalenol (ligand), and PPARG (target) - Clionasterol (ligand) conjugates from DR, FABP3 (target) - Ursodeoxycholic acid, FABP4 (target) - Lithocholic acid (ligand) or Deoxycholic acid (ligand), PPARA (target) - Equol (ligand), and PPARD (target) - 2,3-Bis(3,4-dihydroxybenzyl)butyrolactone (ligand) conjugates from GM formed the most stable conformers via MDT and DFT. Overall, these findings suggest that DR-GM might be a promising ameliorator on PPAR signaling pathway against OB.


Asunto(s)
Microbioma Gastrointestinal , Simulación del Acoplamiento Molecular , Obesidad , Rizoma , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/fisiopatología , Obesidad/microbiología , Rizoma/química , Polypodiaceae/química , Humanos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Bacterias/química , Extractos Vegetales/química , Extractos Vegetales/farmacología
6.
J Ethnopharmacol ; 335: 118652, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39097213

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rheum webbianum Royle (RW) holds significant ethnopharmacological importance owing to its 5000-year history of cultivation for medicinal and culinary purposes. Demonstrating therapeutic advantages in traditional and contemporary medical practices, RW exhibits key pharmacological effects including anticancer activity, gastrointestinal control, anti-inflammatory properties, and suppression of fibrosis. Despite its recognized vast bioactivities in ethnopharmacology, its efficacy against the colorectal cancer (CRC) remains incompletely understood. AIM OF THE STUDY: This study for the first time aims to investigate the chemo-preventive capabilities of various extracts derived from RW rhizomes against CRC development. MATERIALS AND METHODS: Four types of RW extracts were prepared by using different solvents viz: Hexane, Ethy-acetate, Ethanol and Methanol. All the four extracts were evaluated for cytotoxicity on HCT-116 human CRC cells. Promising extracts were further investigated in-vivo at varying doses using 1,2-dimethylhydrazine (DMH) induced rat CRC model to assess the anti-oxidant and anticancer properties as well as their effects on the associated hepatic deterioration and hematological alterations. RESULTS: Cell viability: In-vitro assessments demonstrated a dose and time-dependent reduction in HCT-116 cell viability following treatment with methanolic and ethanolic extracts of RW, reducing viability by up to 85% and 90%, respectively, at 200 µg/ml. HISTOPATHOLOGY: Histopathological analyses revealed significant improvements in colon tissue morphology in RW extract-treated groups compared to DMH-only treated animals. RW-treated groups showed reduced structural abnormalities, congestion, inflammatory cell infiltration, crypt abscess formation, and dysplasia. In contrast, the DMH-only group exhibited irregular glandular structure, mucosal destruction, extensive inflammatory cell infiltration, crypt abscess formation, and dysplasia. These results highlight the potential of RW methanolic and ethanolic extracts in mitigating colon cancer-related histopathological alterations. Haematological, and hepatic parameters: In the DMH-induced colorectal cancer rat model, significant hematological imbalances were evident, including a 49.13% decrease in erythrocytes, 32.18% in hemoglobin, and 26.79% in hematocrit, along with a 79.62% increase in white blood cells and 68.96% rise in platelets. Administration of RW rhizome extracts effectively restored these hematological parameters to levels comparable to those in the control group. Furthermore, RW treatment significantly reduced serum ALT and AST levels, which had increased by 36.78% and 33.12%, respectively, due to DMH exposure. RW intervention also mitigated the onset of atherosclerosis, evidenced by notable reductions in serum total cholesterol and triglyceride levels. Comparative analysis indicated that RW-treated DMH groups effectively restored lipid profiles, contrasting with the DMH-only group which exhibited markers indicative of colon cancer. Oxidative stress: The DMH-treated group showed a significant increase in MDA levels by 195.59%, indicative of heightened free radical production, coupled with decreased levels of SOD (33%), CAT (48%), GSH (58%), and GR activity (49%), signifying oxidative stress. Treatment with RW extracts in DMH-treated rats markedly reduced MDA levels and enhanced SOD, CAT, GSH, and GR activities. These results underscore the antioxidant efficacy of RW extracts. CONCLUSION: This study underscores the significant potential of RW rhizome extracts in inhibiting colorectal cancer development. Further investigations are warranted to identify the active constituents responsible for these promising outcomes, positioning RW as a natural and potential agent in combating colon cancer.


Asunto(s)
1,2-Dimetilhidrazina , Antineoplásicos Fitogénicos , Neoplasias Colorrectales , Extractos Vegetales , Rheum , Rizoma , Animales , Extractos Vegetales/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/patología , Humanos , Ratas , 1,2-Dimetilhidrazina/toxicidad , Masculino , Células HCT116 , Rheum/química , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Antioxidantes/farmacología
7.
J Ethnopharmacol ; 335: 118676, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39147000

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acori graminei Rhizoma is a commonly used traditional Chinese medicine for treating TD, with its main component being calamus volatile oil. Volatile Oil from Acori graminei Rhizoma (VOA)can protect nerve cells and alleviate learning and memory disorders. However, the mechanism of anti-tic of VOA is still unclear. AIM OF THE STUDY: We aimed to explore the effects of Volatile Oil from Acori Tatarinowii Rhizoma (VOA) on striatal dopaminergic and glutamatergic systems and synaptic plasticity of rats with Tic Disorder (TD), as well as its pharmaceutical mechanism against TD. MATERIALS AND METHODS: This study involved 48 (three-week-old) Sprague Dawley (SD) rats, which were randomly divided into two primary groups: Control (8) and TD (40). Rats in the TD group were injected intraperitoneally with 3,3-iminodipropionitrile (IDPN) to construct the TD rat model. They were divided into five subgroups: Model, Tiapride, VOA-high, VOA-medium, and VOA-low (N = 8). After modeling, VOA was administrated to rats in the VOA groups through gavage (once/day for four consecutive weeks), while rats in the blank control and model groups received normal saline of the same volume. The animals' behavioral changes were reflected using the stereotypic and motor behavior scores. After interferences, patterns of striatal neurons and the density of dendritic spines were investigated using H&E and Golgi staining, and the ultrastructure of striatal synapses was examined using Transmission Electron Microscopy (TEM). Furthermore, Ca2+ content was determined using the Ca2+ detector, and Dopamine (DA) and Glutamate (GLU) contents in serum and striatum were detected through ELISA. Finally, DRD1, DRD2, AMPAR1, NMPAR1, DAT, VMAT2, CAMKⅡ, and CREB expression in the striatum was detected using Quantitative real-time PCR (qRT-PCR), Western Blotting (WB) and Immunohistochemical (IHC) methods. RESULTS: Compared to rats in the blank control and model groups, rats in the VOA groups showed lower stereotypic behavior scores. Furthermore, rats in the VOA groups exhibited relieved, neuron damage and increased quantities of neuronal dendrites and dendritic spines Additionally, based on TEM images show that, the VOA groups showed a clear synaptic structure and increased amounts of postsynaptic dense substances and synaptic vesicles. The VOA groups also exhibited reduced Ca2+ contents, and upregulation of DRD1, DRD2, DAT, AMPAR1, and NMPAR1 and downregulation of VMAT-2, CAMKⅡ, and CREB in the striatum. CONCLUSIONS: In summary, VOA could influence synaptic plasticity by tuning the dopaminergic and glutamatergic systems, thus relieving TD.


Asunto(s)
Dopamina , Ácido Glutámico , Plasticidad Neuronal , Aceites Volátiles , Ratas Sprague-Dawley , Trastornos de Tic , Animales , Plasticidad Neuronal/efectos de los fármacos , Aceites Volátiles/farmacología , Masculino , Ácido Glutámico/metabolismo , Dopamina/metabolismo , Trastornos de Tic/tratamiento farmacológico , Ratas , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Rizoma , Acorus/química
8.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39182158

RESUMEN

AIMS: To identify promising fungal endophytes that are able to produce glycyrrhizin and enhance it in licorice and the mechanisms involved. METHODS AND RESULTS: Fifteen fungal endophytes were isolated from Glycyrrhiza glabra L. rhizomes among which SGGF14 and SGGF21 isolates were found to produce glycyrrhizin by 4.29 and 2.58 µg g-1 dry weight in the first generation of their culture. These isolates were identified as Fusarium solani and Alternaria tenuissima, respectively, based on morphological characteristics and sequence analysis of internal transcribed spacer, TEF1, ATPase, and CAL regions. Subsequently, G. glabra plants were inoculated with these fungal isolates to examine their effect on glycyrrhizin production, plant growth parameters and the expression of key genes involved in glycyrrhizin pathway: SQS1, SQS2, bAS, CAS, LUS, CYP88D6, and CYP72A154. Endophytes were able to enhance glycyrrhizin content by 133%-171% in the plants. Natural control (NC) plants, harboring all natural endophytes, had better growth compared to SGGF14- and SGGF21-inoculated and endophyte-free (EF) plants. Expression of SQS1, SQS2, CYP88D6, and CYP72A154 was upregulated by inoculation with endophytes. LUS and CAS were downregulated after endophyte inoculation. Expression of bAS was higher in SGGF21-inoculated plants when compared with NC, EF, and SGGF14-inoculated plants. CONCLUSIONS: Two selected fungal endophytes of G. glabra can produce glycyrrhizin and enhance glycyrrhizin content in planta by modulating the expression of key genes in glycyrrhizin biosynthetic pathway.


Asunto(s)
Alternaria , Endófitos , Fusarium , Glycyrrhiza , Ácido Glicirrínico , Ácido Glicirrínico/metabolismo , Fusarium/genética , Fusarium/metabolismo , Endófitos/metabolismo , Endófitos/genética , Alternaria/metabolismo , Alternaria/genética , Glycyrrhiza/microbiología , Glycyrrhiza/metabolismo , Rizoma/microbiología
9.
J Nat Med ; 78(4): 952-969, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096421

RESUMEN

This study established an Orthogonal Partial Least Squares (OPLS) model combining 1H-NMR and GC-MS data to identify characteristic metabolites in complex extracts. Both in metabolomics studies, and natural product chemistry, the reliable identification of marker metabolites usually requires laborious isolation and purification steps, which remains a bottleneck in many studies. Both ginger (GR) and processed ginger (PGR) are listed in the Japanese pharmacopeia. The plant of origin, the rhizome of Zingiber officinale Roscoe, is differently processed for these crude drugs. Notably, the quality of crude drugs is affected by genetic and environmental factors, making it difficult to maintain a certain quality standard. Therefore, characteristic markers for the quality control of GR and PGR are required. Metabolomic analysis using 1H-NMR was able to discriminate between GR and PGR, but there were unidentified signals that were difficult to distinguish based on NMR data alone. Therefore, we combined 1H-NMR and GC-MS analytical data to identify them by OPLS. As a result, αr-curcumene was found to be a useful marker for these identifications. This new approach enabled rapid identification of characteristic marker compounds and reduced the labor involved in the isolation process.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Control de Calidad , Rizoma , Zingiber officinale , Zingiber officinale/química , Rizoma/química , Metabolómica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Extractos Vegetales/química , Biomarcadores , Espectroscopía de Resonancia Magnética/métodos , Análisis de los Mínimos Cuadrados
10.
Sci Rep ; 14(1): 17914, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095425

RESUMEN

The rhizome concept proposed by Gilles Deleuze and Félix Guattari offers a novel perspective on the organization and interdependence of complex constellations of heterogeneous entities, their mapping and their ruptures. The emphasis of the present study is placed on the dynamics of contacts and communication among such entities that arise from experimentation, without any favored hierarchy or origin. When applied to biological evolution, the rhizome concept integrates all types of heterogeneity resulting from "symbiotic" relationships among living beings (or their genomic material), horizontal genetic transfer, recombination and mutation, and breaks away from the approach that gives rise to the phylogenetic tree of life. It has already been applied to describe the dynamics and evolution of RNA viruses. Thus, here we introduce a novel framework for the interpretation the viral quasispecies concept, which explains the evolution of RNA virus populations as the result of dynamic interconnections and multifaceted interdependence between highly heterogeneous viral sequences and its inherently heterogeneous host cells. The rhizome network perspective underlines even further the medical implications of the broad mutant spectra of viruses that are in constant flow, given the multiple pathways they have available for fitness loss and gain.


Asunto(s)
Evolución Molecular , Filogenia , Cuasiespecies , Rizoma , Rizoma/virología , Cuasiespecies/genética , Virus ARN/genética , Virus ARN/clasificación , Transferencia de Gen Horizontal , Mutación , Genoma Viral
11.
Int J Biol Macromol ; 278(Pt 2): 134878, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168221

RESUMEN

Alismatis Rhizoma (AR), a traditional Chinese medicine for treating obesity in traditional Chinese medicine clinic, is recognized as a promising source of lead compounds of lipase inhibitors. Ultrafiltration centrifugal combined with liquid chromatography-mass spectrometry (UF-LC-MS) was used for screening potential lipase inhibitors from AR, and the result indicated the binding capacity between compound 7 and lipase (92.3 ± 1.28 %) was significantly higher than other triterpenoids, and was identified as alisol C 23-acetate. It exhibited a mixed-type inhibitory behavior with an IC50 value of 84.88 ± 1.03 µM. Subsequently, the binding pockets of alisol C 23-acetate to lipase were predicted, and their binding mechanism was explored with molecular simulation. Pocket 1 (active center) and pocket 4 might be the orthosteric and allosteric binding sites of alisol C 23-acetate to lipase, respectively. The interaction between alisol C 23-acetate and lipase was identified to involve key amino acid residues such as GLY-77, PHE-78, TYR-115, LEU-154, PRO-181, PHE-216, LEU-264, ASP-278, GLN-306, ARG-313, and VAL-426. Meanwhile, alisol C 23-acetate remained stable during the intestinal digestive but degraded in the gastric digestion. Overall, alisol C 23-acetate is expected to be the lead compound of lipase inhibitors for treating obesity.


Asunto(s)
Alisma , Colestenonas , Inhibidores Enzimáticos , Lipasa , Simulación de Dinámica Molecular , Rizoma , Lipasa/antagonistas & inhibidores , Lipasa/química , Lipasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Colestenonas/química , Alisma/química , Rizoma/química , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos , Sitios de Unión
12.
J Pharm Biomed Anal ; 251: 116447, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197205

RESUMEN

Cis-trans isomers of N-isobutyl-2E,4E,8Z,10E-dodecatetraenamide (DDA-E) and N-isobutyl-2E,4E,8Z,10Z-dodecatetraenamide (DDA-Z) are representative alkamides with numbness of tongue, anti-inflammatory and analgesic activities of Asari Radix et Rhizoma. However, their respective metabolic pathways and pharmacokinetic behaviors are still unknown. This study aim to investigate the metabolism of the two alkamides in vitro and in vivo using ultra-high-performance liquid chromatography-quadruple-time-of-flight mass spectrometry. Furthermore, a rapid, sensitive, and selective ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed to quantify DDA-E/Z in rat plasma. Results indicated that DDA-E and DDA-Z showed significant differences in metabolism and pharmacokinetics. Across all samples, 24 metabolites of DDA-E and 21 metabolites of DDA-Z were detected. A variety of pathways were involved in the production of these metabolites, mainly hydroxylation and oxidation. The linear range of DDA-E/Z was 1-2500 ng/mL (R2 = 0.9984), and the lowest quantification limit was 1 ng/mL. Precision, accuracy, extraction recovery, matrix effect, and stability of DDA-E/Z were within acceptable limits. Pharmacokinetic research was conducted using male Sprague-Dawley rats receiving intravenous (1 mg/kg) or intragastric (40 mg/kg) administration of DDA-E or DDA-Z solution. There was a calculated absolute bioavailability of 15.67 % for DDA-E and 4.83 % for DDA-Z when consumed orally. The apparent volume of distribution of intravenous and intragastric administrations were 4.44 ± 0.41 L/kg and 5.18 ± 0.67 L/kg for DDA-E, and 1.56 ± 1.66 L/kg and 2.35 ± 0.42 L/kg for DDA-Z. The maximal plasma concentrations of DDA-E and DDA-Z were 599.84 ± 149.92 nM and 422.09 ± 69.17 nM, and the time to maximum peak were 4.33 ± 3.51 h and 0.70 ± 1.12 h, respectively. In conclusion, in subsequent pharmacodynamics and safety evaluation studies, great attention should be paid to the metabolic characteristics and pharmacokinetic differences between DDA-E and DDA-Z.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Masculino , Ratas , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/análisis , Isomerismo , Rizoma/química , Microsomas Hepáticos/metabolismo , Administración Oral
13.
Chin J Nat Med ; 22(8): 756-768, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39197965

RESUMEN

Atractylodis Rhizoma, a traditional Chinese medicine with an extensive history of treating gastrointestinal disorders and other diseases, undergoes various processing methods in China to enhance its therapeutic efficacy for specific conditions. However, a comprehensive report detailing the changes in chemical composition and pharmacological effects due to these processing methods is currently lacking. This article provides a systematic review of the commonly employed processing techniques for Atractylodis Rhizoma, including raw Atractylodis Rhizoma (SCZ), bran-fried Atractylodis Rhizoma (FCZ), deep-fried Atractylodis Rhizoma (JCZ), and rice water-processed Atractylodis Rhizoma (MCZ). It examines the alterations in chemical constituents and pharmacological activities resulting from these processes and elucidates the mechanisms of action of the primary components in the various processed forms of Atractylodis Rhizoma in the treatment of gastrointestinal diseases.


Asunto(s)
Atractylodes , Medicamentos Herbarios Chinos , Rizoma , Atractylodes/química , Rizoma/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Enfermedades Gastrointestinales/tratamiento farmacológico , Animales , Medicina Tradicional China
14.
Rapid Commun Mass Spectrom ; 38(20): e9893, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39185578

RESUMEN

RATIONALE: Anemarrhenae Rhizoma (AR) has been a frequently utilized traditional Chinese medicine (TCM) for an extended period, with its salt-processed variant being a prevalent application form. Contemporary pharmacological investigations have demonstrated that the salt-processed iteration exhibits a multitude of markedly augmented pharmacological properties. However, whether the pharmacodynamic material basis of this change is related to volatile substances remains unclear. The aim of this study was to develop a strategy to screen volatile pharmacodynamic substances in AR and salt-processed AR (SAR). METHODS: A comprehensive approach was developed to identify volatile pharmacodynamic compounds by integrating plant metabolomics, target network pharmacology, and molecular docking technology. Plant metabolomics using GC-MS analysis was conducted to identify volatile chemical markers distinguishing between AR and SAR. Subsequently, network pharmacology was utilized to investigate the correlation between chemical markers and associated diseases. Following this, molecular docking technology was utilized to explore the correlation between chemical markers and disease targets, resulting in the discovery of potential quality control markers. RESULTS: Fifty volatile compounds were isolated and identified in the salt of AR and SAR. The findings from plant metabolomics analysis demonstrated a distinct differentiation, revealing 13 volatile chemical markers that distinguish between AR and SAR. A target (PPARG) associated with diabetes was identified through target network pharmacology analysis. Thirteen volatile components were subsequently chosen as potential quality markers, taking into account their hypoglycemic activity. CONCLUSIONS: The method developed provides a novel strategy for the identification of pharmacophores in AR and SAR, as well as establishing a foundation for the exploration of the volatile differential components and pharmacodynamics in various processed products of TCMs. Additionally, the findings of this study can serve as a theoretical framework for the development and utilization of volatile components in AR and its processed derivatives.


Asunto(s)
Anemarrhena , Medicamentos Herbarios Chinos , Cromatografía de Gases y Espectrometría de Masas , Metabolómica , Simulación del Acoplamiento Molecular , Rizoma , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Metabolómica/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Rizoma/química , Anemarrhena/química , Farmacología en Red
15.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3848-3856, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099358

RESUMEN

This paper investigated the effect of total saponins from Rhizoma Panacis Majoris on the proliferation, apoptosis, and autophagy of human cervical carcinoma HeLa cells. The saponin content was detected by ultraviolet-visible spectrophotometry. Cell coun-ting kit-8(CCK-8) assay, 4,6-diamidino-2-phenylindole(DAPI) staining, and flow cytometry were used to detect the effects of total saponins of Panacis Majoris Rhizoma on cell viability, morphology, cell cycle and apoptosis of HeLa cells. Western blot was used to detect the expression of apoptosis-related proteins B cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved caspase-9, and cleaved caspase-3, autophagy-related proteins Beclin-1 and SQSTM1(p62), and the proteins related to the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) and mitogen-activated protein kinase(MAPK) signaling pathways. It was found that the yield and saponin content of total saponins from Rhizoma Panacis Majoris were 6.3% and 78.3%, respectively. Total saponins from Rhizoma Panacis Majoris could significantly inhibit the proliferation(P<0.001), effect the nuclear morphology, block the G_0/G_1 cycle, and induce cell apoptosis in HeLa cells with a concentration-dependent manner. In addition, total saponins from Rhizoma Panacis Majoris up-regulated the expression of pro-apoptotic proteins Bax, cleaved caspase-9, and cleaved caspase-3, and autophagy-related protein p62(P<0.05), while down-regulated the expression of anti-apoptotic protein Bcl-2 and autophagy-related protein Beclin-1(P<0.01). Total saponins from Rhizoma Panacis Majoris could promote the expression of p-p38/p38, p-Jun N-terminal kinase(JNK)/JNK, p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR proteins in PI3K/Akt/mTOR and MAPK signaling pathways(P<0.05). In contrast, the effect on p-ERK/ERK expression was not obvious. Therefore, total saponins from Rhizoma Panacis Majoris may inhibit autophagy and promote apoptosis of HeLa cells through the activation of the PI3K/Akt/mTOR, c-JNK, and p38 MAPK signaling pathways, which indicates that total saponins from Rhizoma Panacis Majoris may have a potential role in cervical cancer treatment.


Asunto(s)
Apoptosis , Autofagia , Proliferación Celular , Rizoma , Saponinas , Neoplasias del Cuello Uterino , Humanos , Saponinas/farmacología , Saponinas/química , Células HeLa , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Autofagia/efectos de los fármacos , Rizoma/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Femenino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Supervivencia Celular/efectos de los fármacos
16.
Food Res Int ; 192: 114818, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147513

RESUMEN

Boiled lotus rhizome discs (BLRDs), as common processed products of lotus rhizome, have gained increasing attention from consumers and food manufacturers. However, the blue pigment formed during boiling affects its appearance and reduces the appetite of BLRDs. In this study, the effects of polyphenols and iron contents on blue pigment formation in BLRDs in different regions and months were investigated. Results revealed that blue variation was more serious in March and April of the second year in Wuhan, and polyphenols and iron contents in these two months were significantly higher than those in other months. Then, UPLC and UV-Vis analysis showed that polyphenols causing the formation of blue pigment in BLRDs were L-dopa, gallocatechin, catechin, epigallocatechin, chlorogenic acid and epicatechin, among which L-dopa (52.450 mg/100 g in fresh lotus rhizome (FLR)) and gallocatechin (36.210 mg/100 g in FLR) possessed the greatest effect. Moreover, the ESI-Q-TOF-MS analysis of L-dopa-iron chelate and gallocatechin-iron chelate suggested that the blue pigment of BLRDs was mainly in the form of bis-complexes under boiling conditions. The study on formation mechanism of blue pigment in BLRDs can provide a reference for lotus rhizome processing.


Asunto(s)
Hierro , Polifenoles , Rizoma , Rizoma/química , Polifenoles/química , Polifenoles/análisis , Hierro/química , Quelantes del Hierro/química , Pigmentos Biológicos/química , Catequina/química , Catequina/análogos & derivados , Catequina/análisis , Levodopa/química , Lotus/química , Cromatografía Líquida de Alta Presión , Culinaria , Calor , Ácido Clorogénico/química , Espectrometría de Masa por Ionización de Electrospray
17.
PLoS One ; 19(8): e0301875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141645

RESUMEN

BACKGROUND: Ginseng Radix et Rhizoma (GS) is frequently used as an adjuvant therapy for patients with heart failure (HF). Metoprolol is widely used in patients with HF. However, there is no report on the combined effects of GS and metoprolol in patients with HF. OBJECTIVE: This study investigated the combined effects of GS and metoprolol in male C57BL/6J mice with HF and the underlying mechanisms. MATERIALS AND METHODS: We utilized a mouse myocardial HF model to measure the serum levels of creatine kinase (CK) and creatine kinase-MB form (CK-MB) using an automated biochemical analyzer. Lactate dehydrogenase (LDH) and cardiac troponin (cTnT) levels were determined using enzyme-linked immunosorbent assays. Autophagy of myocardial cells was evaluated using transmission electron microscopy, and changes in signal pathway proteins related to autophagy were analyzed by Western blotting. RESULTS: GS combined with metoprolol improved heart function, reduced heart damage, and decreased serum levels of CK, CK-MB, LDH, and cTnT. The combination of GS and metoprolol decreased autophagy in myocardial cells by reducing the levels of autophagy-related proteins (LC3, p62, Beclin1, and Atg5) and increasing the ratios of p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. CONCLUSION: GS enhanced the anti-heart failure effect of metoprolol. Its mechanism of action might be related to the inhibition of autophagy mediated by the activation of the PI3K/Akt/mTOR pathway.


Asunto(s)
Autofagia , Insuficiencia Cardíaca , Metoprolol , Ratones Endogámicos C57BL , Panax , Animales , Masculino , Autofagia/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Metoprolol/farmacología , Ratones , Panax/química , Transducción de Señal/efectos de los fármacos , Enfermedad Crónica , Rizoma/química , Modelos Animales de Enfermedad , L-Lactato Deshidrogenasa/sangre , L-Lactato Deshidrogenasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Extractos Vegetales/farmacología , Creatina Quinasa/sangre , Sinergismo Farmacológico , Forma MB de la Creatina-Quinasa/sangre
18.
Food Chem ; 460(Pt 1): 140410, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029365

RESUMEN

Lotus rhizome powder (LRP) tends to lump during hot-water rehydration, adversely affecting its edible quality. By utilizing a restricted swelling treatment (ST), where LRP was swollen at a temperature slightly below its onset gelatinization temperature (To), the lumping rate could be substantially reduced from 30.95% to 6.39%. This treatment induced an ordered-disordered structural transition of LRP without compromising its granule morphology and water dispersibility. This transition led to significant increases in thermal transition temperatures and a notable delay in peak pasting time by 86.6 s. These changes effectively delayed the formation of a gelatinous skin surrounding the dry granules, allowing them sufficient time to absorb water and paste completely, thereby preventing lumping. The prevention of lumping was beneficial for obtaining desired viscoelasticity of LRP paste. Conversely, ST treatments conducted at temperatures markedly deviating from To resulted in significantly higher lumping rates, underscoring the importance of carefully controlling the ST temperature.


Asunto(s)
Calor , Lotus , Polvos , Rizoma , Agua , Rizoma/química , Polvos/química , Lotus/química , Agua/química , Manipulación de Alimentos
19.
Food Chem ; 460(Pt 1): 140350, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39032291

RESUMEN

This study collected multidimensional feature data such as spectra, texture, and component contents of Polygonati Rhizoma from different origins and varieties (Polygonatum kingianum Coll. et Hemsl from Yunnan and Guizhou; Polygonatum cyrtonema Hua from Anhui and Jiangxi; Polygonatum sibiricum Red from Hunan). Multivariate statistical analysis was used to select 39 characteristic factors for distinguishing PR origins and 14 characteristic factors for discriminating PR varieties (VIP > 1 and P < 0.05). In addition, by combining multivariate statistical analysis with a deep belief network (DBN) classification algorithm, a novel artificial intelligence algorithm was developed and optimized. Compared to traditional discriminant analysis methods, the accuracy of this new approach was significantly improved, achieving a 100% discrimination rate for PR varieties and a 100% accuracy rate for tracing the origin of PR. This research provides a reference and data support for constructing intelligent algorithms based on multidimensional data fusion, to achieve food variety discrimination and origin tracing.


Asunto(s)
Algoritmos , Inteligencia Artificial , Polygonatum , Polygonatum/química , Polygonatum/clasificación , Análisis Discriminante , Rizoma/química , Rizoma/clasificación , Análisis Multivariante , Medicamentos Herbarios Chinos/química
20.
J Ethnopharmacol ; 335: 118608, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39053709

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Herb-herb combination has been used to maximize the therapeutic efficacy in the theory of traditional Chinese medicine. Chuanxiong rhizoma (called Chuanxiong in Chinese, CX) and Cyperi rhizoma (called Xiangfu in Chinese, XF) have been used alone or in combination (CRCR) to treat migraine dating back to Eastern Jin Dynasty (AD317) of China. But no data demonstrate the possible necessities or advantages of combining CX and XF for migraine. AIM OF THE STUDY: This study explores the combination mechanism based on pharmacodynamics and pharmacokinetics. MATERIALS AND METHODS: A nitroglycerin-induced acute migraine model in rats was used to evaluate the anti-migraine effects of CRCR and the individual herbs using behavior, real time polymerase chain reaction and Western blot experiments. The absorption characteristics of active components involved in the anti-migraine action were analyzed by UPLC-MS/MS. RESULTS: CX and CRCR significantly reversed the abnormal levels of vasoactive substances (5-HT, CGRP, MMP-2 and MMP-9) to normal levels, but XF did not. XF and CRCR significantly decreased the pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-a), and increased the anti-inflammatory cytokines (IL-4 and IL-10). CRCR significantly decreased the mRNA expression levels of c-fos, iNos and nNos, and the corresponding protein expression levels of c-Fos, iNOS, and nNOS. CRCR inhibited NOS/NO pathway by downregulating the expression levels of NOS and NO. Furthermore, CRCR significantly increased the intestinal absorption rate and amount, and changed the pharmacokinetic parameters of active components in comparison with the individual herbs. CONCLUSIONS: CX had an advantage in regulating vasoactive substances, and XF focused on regulating inflammatory cytokines. CRCR is more effective in treating migraine than the individual herbs by depending on the synergistic action of CX and XF. This research provided some critical evidences on synergistic action between herb-herb interactions, and revealed the potential advantages of herb-herb combination in traditional Chinese medicine.


Asunto(s)
Sinergismo Farmacológico , Medicamentos Herbarios Chinos , Trastornos Migrañosos , Ratas Sprague-Dawley , Animales , Trastornos Migrañosos/tratamiento farmacológico , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/farmacocinética , Nitroglicerina/farmacología , Ratas , Rizoma , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA