Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Genet Dev ; 86: 102180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522266

RESUMEN

Genes regulating developmental processes have been identified, but the mechanisms underlying their expression with the correct timing are still under investigation. Several genes show oscillatory expression that regulates the timing of developmental processes, such as somitogenesis and neurogenesis. These oscillations are also important for other developmental processes, such as cell proliferation and differentiation. In this review, we discuss the significance of oscillatory gene expression in developmental time and other forms of regulation.


Asunto(s)
Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Neurogénesis , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Diferenciación Celular/genética , Neurogénesis/genética , Proliferación Celular/genética , Humanos , Somitos/crecimiento & desarrollo , Ritmo Ultradiano/genética
2.
PLoS Biol ; 19(12): e3001492, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34968386

RESUMEN

Rhythmicity of biological processes can be elicited either in response to environmental cycles or driven by endogenous oscillators. In mammals, the circadian clock drives about 24-hour rhythms of multitude metabolic and physiological processes in anticipation to environmental daily oscillations. Also at the intersection of environment and metabolism is the protein kinase-AKT. It conveys extracellular signals, primarily feeding-related signals, to regulate various key cellular functions. Previous studies in mice identified rhythmicity in AKT activation (pAKT) with elevated levels in the fed state. However, it is still unknown whether rhythmic AKT activation can be driven through intrinsic mechanisms. Here, we inspected temporal changes in pAKT levels both in cultured cells and animal models. In cultured cells, pAKT levels showed circadian oscillations similar to those observed in livers of wild-type mice under free-running conditions. Unexpectedly, in livers of Per1,2-/- but not of Bmal1-/- mice we detected ultradian (about 16 hours) oscillations of pAKT levels. Importantly, the liver transcriptome of Per1,2-/- mice also showed ultradian rhythms, corresponding to pAKT rhythmicity and consisting of AKT-related genes and regulators. Overall, our findings reveal ultradian rhythms in liver gene expression and AKT phosphorylation that emerge in the absence of environmental rhythms and Per1,2-/- genes.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ritmo Ultradiano/genética , Animales , Células Cultivadas , Relojes Circadianos/genética , Expresión Génica/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
3.
Mol Cells ; 43(7): 600-606, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32489185

RESUMEN

Numerous physiological processes in nature have multiple oscillations within 24 h, that is, ultradian rhythms. Compared to the circadian rhythm, which has a period of approximately one day, these short oscillations range from seconds to hours, and the mechanisms underlying ultradian rhythms remain largely unknown. This review aims to explore and emphasize the implications of ultradian rhythms and their underlying regulations. Reproduction and developmental processes show ultradian rhythms, and these physiological systems can be regulated by short biological rhythms. Specifically, we recently uncovered synchronized calcium oscillations in the organotypic culture of hypothalamic arcuate nucleus (ARN) kisspeptin neurons that regulate reproduction. Synchronized calcium oscillations were dependent on voltage-gated ion channel-mediated action potentials and were repressed by chemogenetic inhibition, suggesting that the network within the ARN and between the kisspeptin population mediates the oscillation. This minireview describes that ultradian rhythms are a general theme that underlies biological features, with special reference to calcium oscillations in the hypothalamic ARN from a developmental perspective. We expect that more attention to these oscillations might provide insight into physiological or developmental mechanisms, since many oscillatory features in nature still remain to be explored.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Señalización del Calcio , Kisspeptinas/metabolismo , Neuronas/metabolismo , Ritmo Ultradiano , Animales , Núcleo Arqueado del Hipotálamo/crecimiento & desarrollo , Núcleo Arqueado del Hipotálamo/fisiología , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Humanos , Recién Nacido , Kisspeptinas/genética , Neuronas/citología , Ritmo Ultradiano/genética , Ritmo Ultradiano/fisiología
4.
PLoS Biol ; 18(1): e3000580, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31935211

RESUMEN

Our group recently characterized a cell-autonomous mammalian 12-h clock independent from the circadian clock, but its function and mechanism of regulation remain poorly understood. Here, we show that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of XBP1s promoter binding sites dictates XBP1s's ability to drive 12-h rhythms of nascent mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation, mRNA processing and export, ribosome biogenesis, translation initiation, and protein processing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with the progressive molecular processing sequence described by the central dogma information flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel transcriptional regulators driving 12-h rhythms of gene expression with more diverse phases. These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily conserved, intricate network of transcriptional control of the mammalian 12-h clock that mediates diverse biological pathways. We speculate that the 12-h clock is coopted to accommodate elevated gene expression and processing in mammals at the two rush hours, with the particular genes processed at each rush hour regulated by the circadian and/or tissue-specific pathways.


Asunto(s)
Relojes Biológicos/genética , Regulación de la Expresión Génica , Ritmo Ultradiano/genética , Proteína 1 de Unión a la X-Box/fisiología , Animales , Células Cultivadas , Ritmo Circadiano/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Factores de Tiempo , Transcripción Genética , Proteína 1 de Unión a la X-Box/genética
5.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443305

RESUMEN

Mounting evidence points to a role of the circadian clock in the temporal regulation of post-transcriptional processes in mammals, including alternative splicing (AS). In this study, we carried out a computational analysis of circadian and ultradian rhythms on the transcriptome level to characterise the landscape of rhythmic AS events in published datasets covering 76 tissues from mouse and olive baboon. Splicing-related genes with 24-h rhythmic expression patterns showed a bimodal distribution of peak phases across tissues and species, indicating that they might be controlled by the circadian clock. On the output level, we identified putative oscillating AS events in murine microarray data and pairs of differentially rhythmic splice isoforms of the same gene in baboon RNA-seq data that peaked at opposing times of the day and included oncogenes and tumour suppressors. We further explored these findings using a new circadian RNA-seq dataset of human colorectal cancer cell lines. Rhythmic isoform expression patterns differed between the primary tumour and the metastatic cell line and were associated with cancer-related biological processes, indicating a functional role of rhythmic AS that might be implicated in tumour progression. Our data shows that rhythmic AS events are widespread across mammalian tissues and might contribute to a temporal diversification of the proteome.


Asunto(s)
Empalme Alternativo/genética , Empalme del ARN/genética , Ritmo Ultradiano/genética , Sitios de Unión , Línea Celular Tumoral , Relojes Circadianos/genética , Humanos , Transcriptoma/genética
6.
Gen Comp Endocrinol ; 265: 149-153, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625122

RESUMEN

The seasonal, daily and lunar control of reproduction involves photoperiodic, circadian and lunar changes in the activity of kisspeptin, gonadotropin-inhibitory hormone (GnIH) and gonadotropin-releasing hormone (GnRH) neurons. These changes are brought through complex networks of light-, time- and non-photic signal-dependent control mechanisms, which are mostly unknown at present. The grass puffer, Takifugu alboplumbeus, a semilunar spawner, provides a unique and excellent animal model to assess this question because its spawning is synchronized with seasonal, daily and lunar cycles. In the diencephalon, the genes for kisspeptin, GnIH and their receptors showed similar expression patterns with clear seasonal and daily oscillations, suggesting that they are regulated by common mechanisms involving melatonin, circadian clock and water temperature. For implications in semilunar-synchronized spawning rhythm, melatonin receptor genes showed ultradian oscillations in expression with the period of 14.0-15.4 h in the pineal gland. This unique ultradian rhythm might be driven by circatidal clock. The possible circatidal clock and circadian clock in the pineal gland may cooperate to drive circasemilunar rhythm to regulate the expression of the kisspeptin, GnIH and their receptor genes. On the other hand, high temperature (over 28 °C) conditions, under which the expression of the kisspeptin and its receptor genes is markedly suppressed, may provide an environmental signal that terminates reproduction at the end of breeding period. Taken together, the periodic regulation of the kisspeptin, GnIH and their receptor genes by melatonin, circadian clock and water temperature may be important in the precisely-timed spawning of the grass puffer.


Asunto(s)
Regulación de la Expresión Génica , Gonadotropinas/genética , Kisspeptinas/genética , Receptores de Superficie Celular/genética , Reproducción/genética , Estaciones del Año , Takifugu/genética , Ritmo Ultradiano/genética , Animales , Kisspeptinas/metabolismo , Masculino , Luna , Receptores de Superficie Celular/metabolismo
7.
Mol Cell Endocrinol ; 439: 46-53, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27769714

RESUMEN

In this paper we report differential decoding of the ultradian corticosterone signal by glucocorticoid target tissues. Pulsatile corticosterone replacement in adrenalectomised rats resulted in different dynamics of Sgk1 mRNA production, with a distinct pulsatile mRNA induction profile observed in the pituitary in contrast to a non-pulsatile induction in the prefrontal cortex (PFC). We further report the first evidence for pulsatile transcriptional repression of a glucocorticoid-target gene in vivo, with pulsatile regulation of Pomc transcription in pituitary. We have explored a potential mechanism for differences in the induction dynamics of the same transcript (Sgk1) between the PFC and pituitary. Glucocorticoid receptor (GR) activation profiles were strikingly different in pituitary and prefrontal cortex, with a significantly greater dynamic range and shorter duration of GR activity detected in the pituitary, consistent with the more pronounced gene pulsing effect observed. In the prefrontal cortex, expression of Gilz mRNA was also non-pulsatile and exhibited a significantly delayed timecourse of increase and decrease when compared to Sgk1, additionally highlighting gene-specific regulatory dynamics during ultradian glucocorticoid treatment.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/farmacología , Especificidad de Órganos/genética , Ritmo Ultradiano/genética , Animales , Corticosterona/farmacología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Especificidad de Órganos/efectos de los fármacos , Hipófisis/efectos de los fármacos , Hipófisis/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Ritmo Ultradiano/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA