Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 798
Filtrar
1.
F1000Res ; 13: 674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238834

RESUMEN

Near-death experience (NDE) is a transcendent mental event of uncertain etiology that arises on the cusp of biological death. Since the discovery of NDE in the mid-1970s, multiple neuroscientific theories have been developed in an attempt to account for it in strictly materialistic or reductionistic terms. Therefore, in this conception, NDE is at most an extraordinary hallucination without any otherworldly, spiritual, or supernatural denotations. During the last decade or so, a number of animal and clinical studies have emerged which reported that about the time of death, there may be a surge of high frequency electroencephalogram (EEG) at a time when cortical electrical activity is otherwise at a very low ebb. This oscillatory rhythm falls within the range of the enigmatic brain wave-labelled gamma-band activity (GBA). Therefore, it has been proposed that this brief, paradoxical, and perimortem burst of the GBA may represent the neural foundation of the NDE. This study examines three separate but related questions concerning this phenomenon. The first problem pertains to the electrogenesis of standard GBA and the extent to which authentic cerebral activity has been contaminated by myogenic artifacts. The second problem involves the question of whether agents that can mimic NDE are also underlain by GBA. The third question concerns the electrogenesis of the surge in GBA itself. It has been contended that this is neither cortical nor myogenic in origin. Rather, it arises in a subcortical (amygdaloid) location but is recorded at the cortex via volume conduction, thereby mimicking standard GBA. Although this surge of GBA contains genuine electrophysiological activity and is an intriguing and provocative finding, there is little evidence to suggest that it could act as a kind of neurobiological skeleton for a phenomenon such as NDE.


Asunto(s)
Muerte , Electroencefalografía , Humanos , Ritmo Gamma/fisiología , Encéfalo/fisiología , Encéfalo/fisiopatología , Animales
2.
Alzheimers Res Ther ; 16(1): 203, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267112

RESUMEN

BACKGROUND: The mechanistic effects of gamma transcranial alternating current stimulation (tACS) on hippocampal gamma oscillation activity in Alzheimer's Disease (AD) remains unclear. This study aimed to clarify beneficial effects of gamma tACS on cognitive functioning in AD and to elucidate effects on hippocampal gamma oscillation activity. METHODS: This is a double-blind, randomized controlled single-center trial. Participants with mild AD were randomized to tACS group or sham group, and underwent 30 one-hour sessions of either 40 Hz tACS or sham stimulation over consecutive 15 days. Cognitive functioning, structural magnetic resonance imaging (MRI), and simultaneous electroencephalography-functional MRI (EEG-fMRI) were evaluated at baseline, the end of the intervention and at 3-month follow-up from the randomization. RESULTS: A total of 46 patients were enrolled (23 in the tACS group, 23 in the sham group). There were no group differences in the change of the primary outcome, 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog) score after intervention (group*time, p = 0.449). For secondary outcomes, compared to the control group, the intervention group showed significant improvement in MMSE (group*time, p = 0.041) and MoCA scores (non-parametric test, p = 0.025), which were not sustained at 3-month follow-up. We found an enhancement of theta-gamma coupling in the hippocampus, which was positively correlated with improvements of MMSE score and delayed recall. Additionally, fMRI revealed increase of the local neural activity in the hippocampus. CONCLUSION: Effects on the enhancement of theta-gamma coupling and neural activity within the hippocampus suggest mechanistic models for potential therapeutic mechanisms of tACS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03920826; Registration Date: 2019-04-19.


Asunto(s)
Enfermedad de Alzheimer , Electroencefalografía , Hipocampo , Imagen por Resonancia Magnética , Estimulación Transcraneal de Corriente Directa , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Estimulación Transcraneal de Corriente Directa/métodos , Anciano , Método Doble Ciego , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Electroencefalografía/métodos , Resultado del Tratamiento , Persona de Mediana Edad , Ritmo Gamma/fisiología , Pruebas Neuropsicológicas , Cognición/fisiología
3.
Hum Brain Mapp ; 45(12): e26779, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39185735

RESUMEN

Recently, there has been a resurgence in experimental and conceptual efforts to understand how brain rhythms can serve to organize visual information. Oscillations can provide temporal structure for neuronal processing and form a basis for integrating information across brain areas. Here, we use a bistable paradigm and a data-driven approach to test the hypothesis that oscillatory modulations associate with the integration or segregation of visual elements. Spectral signatures of perception of bound and unbound configurations of visual moving stimuli were studied using magnetoencephalography (MEG) in ambiguous and unambiguous conditions. Using a 2 × 2 design, we were able to isolate correlates from visual integration, either perceptual or stimulus-driven, from attentional and ambiguity-related activity. Two frequency bands were found to be modulated by visual integration: an alpha/beta frequency and a higher frequency gamma-band. Alpha/beta power was increased in several early visual cortical and dorsal visual areas during visual integration, while gamma-band power was surprisingly increased in the extrastriate visual cortex during segregation. This points to an integrative role for alpha/beta activity, likely from top-down signals maintaining a single visual representation. On the other hand, when more representations have to be processed in parallel gamma-band activity is increased, which is at odds with the notion that gamma oscillations are related to perceptual coherence. These modulations were confirmed in intracranial EEG recordings and partially originate from distinct brain areas. Our MEG and stereo-EEG data confirms predictions of binding mechanisms depending on low-frequency activity for long-range integration and for organizing visual processing while refuting a straightforward correlation between gamma-activity and perceptual binding. PRACTITIONER POINTS: Distinct neurophysiological signals underlie competing bistable percepts. Increased alpha/beta activity correlate with visual integration while gamma correlates with segmentation. Ambiguous percepts drive alpha/beta activity in the posterior cingulate cortex.


Asunto(s)
Magnetoencefalografía , Humanos , Masculino , Adulto , Femenino , Adulto Joven , Ondas Encefálicas/fisiología , Corteza Visual/fisiología , Percepción de Movimiento/fisiología , Percepción Visual/fisiología , Ritmo Gamma/fisiología , Atención/fisiología , Mapeo Encefálico
4.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128941

RESUMEN

High-frequency (>60 Hz) neuroelectric signals likely have functional roles distinct from low-frequency (<30 Hz) signals. While high-gamma activity (>60 Hz) does not simply equate to neuronal spiking, they are highly correlated, having similar information encoding. High-gamma activity is typically considered broadband and poorly phase-locked to sensory stimuli and thus is typically analyzed after transformations into absolute amplitude or spectral power. However, those analyses discard signal polarity, compromising the interpretation of neuroelectric events that are essentially dipolar. In the spectrotemporal profiles of field potentials in auditory cortex, we show high-frequency spectral peaks not phase-locked to sound onset, which follow the broadband peak of phase-locked onset responses. Isolating the signal components comprising the high-frequency peaks reveals narrow-band high-frequency oscillatory events, whose instantaneous frequency changes rapidly from >150 to 60 Hz, which may underlie broadband high-frequency spectral peaks in previous reports. The laminar amplitude distributions of the isolated activity had two peak positions, while the laminar phase patterns showed a counterphase relationship between those peaks, indicating the formation of dipoles. Our findings suggest that nonphase-locked HGA arises in part from oscillatory or recurring activity of supragranular-layer neuronal ensembles in auditory cortex.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Potenciales Evocados Auditivos , Animales , Corteza Auditiva/fisiología , Estimulación Acústica/métodos , Potenciales Evocados Auditivos/fisiología , Masculino , Electroencefalografía , Macaca mulatta , Ritmo Gamma/fisiología
5.
Sci Rep ; 14(1): 17924, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095651

RESUMEN

Children with attention-deficit hyperactivity disorder (ADHD) have difficulties in social interactions. Studying brain activity during social interactions is difficult with conventional artificial stimuli. This pioneering study examined the neural correlates of social perception in children with ADHD and matched controls using naturalistic stimuli. We presented 20 children with ADHD and 20 age-and-sex-matched controls with tailored movies featuring high- or low-level social interactions while recording electroencephalographic signals. Both groups exhibited synchronized gamma-band oscillations, but controls demonstrated greater inter-subject correlations. Additionally, the difference in inter-subject correlations between high- and low-interaction movies was significantly larger in controls compared to ADHD patients. Between 55 and 75 Hz comparing viewing high interaction movies with low interaction moves, controls had a significantly larger weighting in the right parietal lobe, while ADHD patients had a significantly smaller weighting in the left occipital lobe. These findings reveal distinct spatiotemporal neural signatures in social interaction processing among children with ADHD and controls using naturalistic stimuli. These neural markers offer potential for group differentiation and assessing intervention efficacy, advancing our understanding ADHD-related social interaction mechanisms.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Electroencefalografía , Interacción Social , Humanos , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Masculino , Niño , Femenino , Biomarcadores , Ritmo Gamma/fisiología , Estudios de Casos y Controles , Encéfalo/fisiopatología , Adolescente
6.
J Neurosci ; 44(37)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39134421

RESUMEN

Although the locus ceruleus (LC) is recognized as a crucial modulator for attention and perception by releasing norepinephrine into various cortical regions, the impact of LC-noradrenergic (LC-NE) modulation on auditory discrimination behavior remains elusive. In this study, we firstly recorded local field potential and single-unit activity in multiple cortical regions associated with auditory-motor processing, including the auditory cortex, posterior parietal cortex, secondary motor cortex, anterior cingulate cortex, prefrontal cortex, and orbitofrontal cortex (OFC), in response to optogenetic activation (40 Hz and 0.5 s) of the LC-NE neurons in awake mice (male). We found that phasic LC stimulation induced a persistent high gamma oscillation (50-80 Hz) in the OFC. Phasic activation of LC-NE neurons also resulted in a corresponding increase in norepinephrine levels in the OFC, accompanied by a pupillary dilation response. Furthermore, when mice were performing a go/no-go auditory discrimination task, we optogeneticaly activated the neural projections from LC to OFC and revealed a shortened latency in behavioral responses to sound stimuli and an increased false alarm rate. These impulsive behavioral responses may be associated with the gamma neural activity in the OFC. These findings have broadened our understanding of the neural mechanisms involved in the role of LC in auditory-motor processing.


Asunto(s)
Percepción Auditiva , Discriminación en Psicología , Locus Coeruleus , Optogenética , Animales , Locus Coeruleus/fisiología , Ratones , Masculino , Percepción Auditiva/fisiología , Discriminación en Psicología/fisiología , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Estimulación Acústica/métodos , Ritmo Gamma/fisiología , Neuronas/fisiología , Corteza Cerebral/fisiología
7.
Artículo en Inglés | MEDLINE | ID: mdl-39154933

RESUMEN

BACKGROUND: Impaired gamma band oscillation, specifically 40-Hz auditory steady state response (ASSR) has been robustly found in schizophrenia, while there is relatively little evidence characterizing the ASSR before full-blown psychosis. OBJECTIVE: To characterize gamma-band ASSR in populations at clinical high-risk for psychosis (CHR). METHODS: One hundred and seven CHR subjects and sixty-five healthy control (HC) subjects were included and completed clinical assessments, the ASSR paradigm of electroencephalography (EEG) and cognitive assessments. Both indices of event-related spectrum perturbation (ERSP) and intertrial coherence (ITC) in response to 20-Hz, 30-Hz and 40-Hz click sounds were respectively qualified and compared between these two groups, as well as the relationship to clinical psychopathology and cognitive function was assessed. RESULTS: At 40-Hz click sounds, ERSP in HC group (1.042 ± 0.047) was statistical significantly increased than that in CHR group (0.873 ± 0.036) (p = 0.005);at 30-Hz, ERSP in HC group (0.536 ± 0.024) was increased than that in CHR group (0.483 ± 0.019), but the difference was trend statistical significance (p = 0.083);at 20-Hz, ERSP in HC group (0.452 ± 0.017) was not different significantly from CHR group (0.418 ± 0.013) (p = 0.104). ERSP of the HC group was the highest at 40-Hz click sounds, followed by 30-Hz, and the lowest at 20-Hz. The difference between any two of the three ERSP showed statistical significance (30-Hz vs. 40-Hz: p < 0.001; 20-Hz vs. 40-Hz: p < 0.001;20-Hz vs. 30-Hz: p = 0.003). Similarly, ERSP of the CHR group was the highest at 40-Hz click sounds, followed by 30-Hz, and the lowest at 20-Hz. The difference between any two of these three ERSP showed statistical significance (30-Hz vs. 40-Hz: p < 0.001; 20-Hz vs. 40-Hz: p < 0.001;20-Hz vs. 30-Hz: p = 0.002). A statistically significant small positive correlation of 40-Hz ERSP with signal processing speed score was observed in the HC group (ρ = 0.27, p = 0.029). A statistically significant small negative correlation of 40-Hz ERSP with visual learning score was observed in the CHR group (ρ = -0.22, p = 0.023). CONCLUSION: Impaired 40-Hz but undamaged hierarchical organization mode of auditory steady state presented in the CHR populations. Abnormal 40 Hz ASSR for CHR might be associated with cognitive functions, such as information processing speed and visual memory.


Asunto(s)
Estimulación Acústica , Electroencefalografía , Potenciales Evocados Auditivos , Trastornos Psicóticos , Humanos , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/psicología , Masculino , Femenino , Potenciales Evocados Auditivos/fisiología , Adulto Joven , Estimulación Acústica/métodos , Adulto , Adolescente , Ritmo Gamma/fisiología , Percepción Auditiva/fisiología
8.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39128940

RESUMEN

The orbitofrontal cortex and amygdala collaborate in outcome-guided decision-making through reciprocal projections. While serotonin transporter knockout (SERT-/-) rodents show changes in outcome-guided decision-making, and in orbitofrontal cortex and amygdala neuronal activity, it remains unclear whether SERT genotype modulates orbitofrontal cortex-amygdala synchronization. We trained SERT-/- and SERT+/+ male rats to execute a task requiring to discriminate between two auditory stimuli, one predictive of a reward (CS+) and the other not (CS-), by responding through nose pokes in opposite-side ports. Overall, task acquisition was not influenced by genotype. Next, we simultaneously recorded local field potentials in the orbitofrontal cortex and amygdala of both hemispheres while the rats performed the task. Behaviorally, SERT-/- rats showed a nonsignificant trend for more accurate responses to the CS-. Electrophysiologically, orbitofrontal cortex-amygdala synchronization in the beta and gamma frequency bands during response selection was significantly reduced and associated with decreased hubness and clustering coefficient in both regions in SERT-/- rats compared to SERT+/+ rats. Conversely, theta synchronization at the time of behavioral response in the port associated with reward was similar in both genotypes. Together, our findings reveal the modulation by SERT genotype of the orbitofrontal cortex-amygdala functional connectivity during an auditory discrimination task.


Asunto(s)
Amígdala del Cerebelo , Discriminación en Psicología , Ritmo Gamma , Corteza Prefrontal , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Masculino , Corteza Prefrontal/fisiología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Amígdala del Cerebelo/fisiología , Ritmo Gamma/fisiología , Ratas , Discriminación en Psicología/fisiología , Ritmo beta/fisiología , Vías Nerviosas/fisiología , Recompensa , Percepción Auditiva/fisiología , Estimulación Acústica , Ratas Transgénicas
9.
Clin Neurophysiol ; 165: 55-63, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38959536

RESUMEN

OBJECTIVE: Electroencephalography (EEG) measures of visual evoked potentials (VEPs) provide a targeted approach for investigating neural circuit dynamics. This study separately analyses phase-locked (evoked) and non-phase-locked (induced) gamma responses within the VEP to comprehensively investigate circuit differences in autism. METHODS: We analyzed VEP data from 237 autistic and 114 typically developing (TD) children aged 6-11, collected through the Autism Biomarkers Consortium for Clinical Trials (ABC-CT). Evoked and induced gamma (30-90 Hz) responses were separately quantified using a wavelet-based time-frequency analysis, and group differences were evaluated using a permutation-based clustering procedure. RESULTS: Autistic children exhibited reduced evoked gamma power but increased induced gamma power compared to TD peers. Group differences in induced responses showed the most prominent effect size and remained statistically significant after excluding outliers. CONCLUSIONS: Our study corroborates recent research indicating diminished evoked gamma responses in children with autism. Additionally, we observed a pronounced increase in induced power. Building upon existing ABC-CT findings, these results highlight the potential to detect variations in gamma-related neural activity, despite the absence of significant group differences in time-domain VEP components. SIGNIFICANCE: The contrasting patterns of decreased evoked and increased induced gamma activity in autistic children suggest that a combination of different EEG metrics may provide a clearer characterization of autism-related circuitry than individual markers alone.


Asunto(s)
Trastorno Autístico , Electroencefalografía , Potenciales Evocados Visuales , Ritmo Gamma , Humanos , Potenciales Evocados Visuales/fisiología , Masculino , Niño , Femenino , Ritmo Gamma/fisiología , Trastorno Autístico/fisiopatología , Electroencefalografía/métodos , Estimulación Luminosa/métodos
10.
Brain Cogn ; 180: 106205, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053200

RESUMEN

Team-based physical activity (PA) can improve social cognition; however, few studies have investigated the neurobiological mechanism underlying this benefit. Accordingly, a hyper-scanning protocol aimed to determine whether the interbrain synchrony (IBS) is influenced by an acute bout of team-based PA (i.e., tandem rope skipping). Specifically, we had socially avoidant participants (SOA, N=15 dyads) and their age-matched controls (CO, N=16 dyads) performed a computer-based cooperative task while EEG was recorded before and after two different experimental conditions (i.e., 30-min of team-based PA versus sitting). Phase locking value (PLV) was used to measure IBS. Results showed improved frontal gamma band IBS after the team-based PA compared to sitting when participants received successful feedback in the task (Mskipping = 0.016, Msittting = -0.009, p = 0.082, ηp2 = 0.387). The CO group showed a larger change in frontal and central gamma band IBS when provided failure feedback in the task (Mskipping = 0.017, Msittting = -0.009, p = 0.075, ηp2 = 0.313). Thus, results suggest that socially avoidant individuals may benefit from team-based PA via improved interbrain synchrony. Moreover, our findings deepen our understanding of the neurobiological mechanism by which team-based PA may improve social cognition among individuals with or without social avoidance.


Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Electroencefalografía/métodos , Ejercicio Físico/fisiología , Cognición Social , Amigos , Conducta Cooperativa , Ritmo Gamma/fisiología , Encéfalo/fisiología
11.
Sci Rep ; 14(1): 17736, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085280

RESUMEN

Methods to quantify cortical hyperexcitability are of enormous interest for mapping epileptic networks in patients with focal epilepsy. We hypothesize that, in the resting state, cortical hyperexcitability increases firing-rate correlations between neuronal populations within seizure onset zones (SOZs). This hypothesis predicts that in the gamma frequency band (40-200 Hz), amplitude envelope correlations (AECs), a relatively straightforward measure of functional connectivity, should be elevated within SOZs compared to other areas. To test this prediction, we analyzed archived samples of interictal electrocorticographic (ECoG) signals recorded from patients who became seizure-free after surgery targeting SOZs identified by multiday intracranial recordings. We show that in the gamma band, AECs between nodes within SOZs are markedly elevated relative to those elsewhere. AEC-based node strength, eigencentrality, and clustering coefficient are also robustly increased within the SOZ with maxima in the low-gamma band (permutation test Z-scores > 8) and yield moderate discriminability of the SOZ using ROC analysis (maximal mean AUC ~ 0.73). By contrast to AECs, phase locking values (PLVs), a measure of narrow-band phase coupling across sites, and PLV-based graph metrics discriminate the seizure onset nodes weakly. Our results suggest that gamma band AECs may provide a clinically useful marker of cortical hyperexcitability in focal epilepsy.


Asunto(s)
Electrocorticografía , Epilepsias Parciales , Humanos , Epilepsias Parciales/fisiopatología , Masculino , Femenino , Ritmo Gamma/fisiología , Red Nerviosa/fisiopatología , Adulto , Adolescente , Electroencefalografía , Adulto Joven , Mapeo Encefálico/métodos
12.
Neurobiol Dis ; 200: 106619, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39079581

RESUMEN

It is well established that hearing loss can lead to widespread plasticity within the central auditory pathway, which is thought to contribute to the pathophysiology of audiological conditions such as tinnitus and hyperacusis. Emerging evidence suggests that hearing loss can also result in plasticity within brain regions involved in higher-level cognitive functioning like the prefrontal cortex; findings which may underlie the association between hearing loss and cognitive impairment documented in epidemiological studies. Using the 40-Hz auditory steady state response to assess sound-evoked gamma oscillations, we previously showed that noise-induced hearing loss results in impaired gamma phase coherence within the prefrontal but not the auditory cortex. To determine whether region-specific structural or molecular changes accompany this differential plasticity following hearing loss, in the present study we utilized Golgi-Cox staining to assess dendritic organization and synaptic density, as well as Western blotting to measure changes in synaptic signaling proteins in these cortical regions. We show that following noise exposure, impaired gamma phase coherence within the prefrontal cortex is accompanied by alterations in pyramidal cell dendritic morphology and decreased expression of proteins involved in GABAergic (GAD65) and glutamatergic (NR2B) neurotransmission; findings that were not observed in the auditory cortex, where gamma phase coherence remained unchanged post-noise exposure. In contrast to the noise-induced effects we observed in the prefrontal cortex, plasticity in the auditory cortex was characterized by an increase in NR2B suggesting increased excitability, as well as increases in the synaptic proteins PSD95 and synaptophysin within the auditory cortex. Overall, our results highlight the disparate effect of noise-induced hearing loss on auditory and higher-level brain regions as well as potential structural and molecular mechanisms by which hearing loss may contribute to impaired cognitive and sensory functions mediated by the prefrontal and auditory cortices.


Asunto(s)
Corteza Auditiva , Pérdida Auditiva Provocada por Ruido , Corteza Prefrontal , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/metabolismo , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiopatología , Corteza Auditiva/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Animales , Masculino , Plasticidad Neuronal/fisiología , Glutamato Descarboxilasa/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Dendritas/patología , Dendritas/metabolismo , Ritmo Gamma/fisiología , Células Piramidales/metabolismo , Células Piramidales/patología , Ratas
13.
J Cogn Neurosci ; 36(10): 2100-2116, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991125

RESUMEN

Accumulating evidence suggests that rhythmic temporal cues in the environment influence the encoding of information into long-term memory. Here, we test the hypothesis that these mnemonic effects of rhythm reflect the coupling of high-frequency (gamma) oscillations to entrained lower-frequency oscillations synchronized to the beat of the rhythm. In Study 1, we first test this hypothesis in the context of global effects of rhythm on memory, when memory is superior for visual stimuli presented in rhythmic compared with arrhythmic patterns at encoding [Jones, A., & Ward, E. V. Rhythmic temporal structure at encoding enhances recognition memory, Journal of Cognitive Neuroscience, 31, 1549-1562, 2019]. We found that rhythmic presentation of visual stimuli during encoding was associated with greater phase-amplitude coupling (PAC) between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. In Study 2, we next investigated cross-frequency PAC in the context of local effects of rhythm on memory encoding, when memory is superior for visual stimuli presented in-synchrony compared with out-of-synchrony with a background auditory beat [Hickey, P., Merseal, H., Patel, A. D., & Race, E. Memory in time: Neural tracking of low-frequency rhythm dynamically modulates memory formation. Neuroimage, 213, 116693, 2020]. We found that the mnemonic effect of rhythm in this context was again associated with increased cross-frequency PAC between entrained low-frequency (delta) oscillations and higher-frequency (gamma) oscillations. Furthermore, the magnitude of gamma power modulations positively scaled with the subsequent memory benefit for in- versus out-of-synchrony stimuli. Together, these results suggest that the influence of rhythm on memory encoding may reflect the temporal coordination of higher-frequency gamma activity by entrained low-frequency oscillations.


Asunto(s)
Señales (Psicología) , Humanos , Adulto , Masculino , Adulto Joven , Femenino , Ritmo Gamma/fisiología , Percepción Auditiva/fisiología , Electroencefalografía , Memoria a Largo Plazo/fisiología , Estimulación Luminosa , Percepción Visual/fisiología , Ritmo Delta/fisiología
14.
Neuroscience ; 554: 156-166, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39004412

RESUMEN

Auditory beats stimulation (ABS) has received increased attention for its potential to modulate neural oscillations through a phenomenon described as brain entrainment (i.e synchronization of brain's electrocortical activity to external stimuli at a specific frequency). Recently, a new form of ABS has emerged, inspired by isochronic tones stimulation (ITd). This study investigated neural oscillatory responses induced by ITd in comparison with formerly well-established ABS protocols, such as gamma-binaural beats (BB) and white noise (WN). We recorded the electroencephalographic brain activity in 28 participants during 4 min of BB, ITd, and WN presentation. Data demonstrated that while both BB and WN enhanced oscillatory power on the EEG gamma band, consistently with the expected brain entrainment effect, ITd yielded greater changes in EEG power (p < 0.001). This was confirmed by time-based analysis, which showed a progressive increase in normalized EEG power within the ITd window compared to BB (p < 0.05). Findings also revealed that ITd elicited acute changes in the alpha band of EEG oscillations, through a progressive decrease in power over time, which was distinctly different from the pattern observed while listening BB and WN. Such dual alpha-gamma effects underline the promising and unique potential of ITd to modulate neural oscillations which selectively differ from BB and WN. This study contributes to the evolution of ABS research, highlighting the promise of ITd for cognitive enhancement and clinical applications.


Asunto(s)
Estimulación Acústica , Percepción Auditiva , Electroencefalografía , Humanos , Masculino , Femenino , Estimulación Acústica/métodos , Electroencefalografía/métodos , Adulto Joven , Adulto , Percepción Auditiva/fisiología , Encéfalo/fisiología , Ondas Encefálicas/fisiología , Potenciales Evocados Auditivos/fisiología , Ritmo Gamma/fisiología
15.
Front Neural Circuits ; 18: 1326609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947492

RESUMEN

Gamma oscillations nested in a theta rhythm are observed in the hippocampus, where are assumed to play a role in sequential episodic memory, i.e., memorization and retrieval of events that unfold in time. In this work, we present an original neurocomputational model based on neural masses, which simulates the encoding of sequences of events in the hippocampus and subsequent retrieval by exploiting the theta-gamma code. The model is based on a three-layer structure in which individual Units oscillate with a gamma rhythm and code for individual features of an episode. The first layer (working memory in the prefrontal cortex) maintains a cue in memory until a new signal is presented. The second layer (CA3 cells) implements an auto-associative memory, exploiting excitatory and inhibitory plastic synapses to recover an entire episode from a single feature. Units in this layer are disinhibited by a theta rhythm from an external source (septum or Papez circuit). The third layer (CA1 cells) implements a hetero-associative net with the previous layer, able to recover a sequence of episodes from the first one. During an encoding phase, simulating high-acetylcholine levels, the network is trained with Hebbian (synchronizing) and anti-Hebbian (desynchronizing) rules. During retrieval (low-acetylcholine), the network can correctly recover sequences from an initial cue using gamma oscillations nested inside the theta rhythm. Moreover, in high noise, the network isolated from the environment simulates a mind-wandering condition, randomly replicating previous sequences. Interestingly, in a state simulating sleep, with increased noise and reduced synapses, the network can "dream" by creatively combining sequences, exploiting features shared by different episodes. Finally, an irrational behavior (erroneous superimposition of features in various episodes, like "delusion") occurs after pathological-like reduction in fast inhibitory synapses. The model can represent a straightforward and innovative tool to help mechanistically understand the theta-gamma code in different mental states.


Asunto(s)
Ritmo Gamma , Imaginación , Modelos Neurológicos , Ritmo Teta , Ritmo Gamma/fisiología , Ritmo Teta/fisiología , Humanos , Imaginación/fisiología , Memoria/fisiología , Hipocampo/fisiología , Redes Neurales de la Computación , Animales
16.
Hum Brain Mapp ; 45(11): e26787, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023178

RESUMEN

Regular cannabis use is associated with cortex-wide changes in spontaneous and oscillatory activity, although the functional significance of such changes remains unclear. We hypothesized that regular cannabis use would suppress spontaneous gamma activity in regions serving cognitive control and scale with task performance. Participants (34 cannabis users, 33 nonusers) underwent an interview regarding their substance use history and completed the Eriksen flanker task during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain and virtual sensors were extracted from the peak voxels of the grand-averaged oscillatory interference maps to quantify spontaneous gamma activity during the pre-stimulus baseline period. We then assessed group-level differences in spontaneous and oscillatory gamma activity, and their relationship with task performance and cannabis use metrics. Both groups exhibited a significant behavioral flanker interference effect, with slower responses during incongruent relative to congruent trials. Mixed-model ANOVAs indicated significant gamma-frequency neural interference effects in the left frontal eye fields (FEF) and left temporoparietal junction (TPJ). Further, a group-by-condition interaction was detected in the left FEF, with nonusers exhibiting stronger gamma oscillations during incongruent relative to congruent trials and cannabis users showing no difference. In addition, spontaneous gamma activity was sharply suppressed in cannabis users relative to nonusers in the left FEF and TPJ. Finally, spontaneous gamma activity in the left FEF and TPJ was associated with task performance across all participants, and greater cannabis use was associated with weaker spontaneous gamma activity in the left TPJ of the cannabis users. Regular cannabis use was associated with weaker spontaneous gamma in the TPJ and FEF. Further, the degree of use may be proportionally related to the degree of suppression in spontaneous activity in the left TPJ.


Asunto(s)
Cognición , Ritmo Gamma , Magnetoencefalografía , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Ritmo Gamma/fisiología , Cognición/fisiología , Mapeo Encefálico , Pruebas Neuropsicológicas , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Uso de la Marihuana
17.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054054

RESUMEN

The role of gamma rhythm (30-80 Hz) in visual processing is debated; stimuli like gratings and hue patches generate strong gamma, but many natural images do not. Could image gamma responses be predicted by approximating images as gratings or hue patches? Surprisingly, this question remains unanswered, since the joint dependence of gamma on multiple features is poorly understood. We recorded local field potentials and electrocorticogram from two female monkeys while presenting natural images and parametric stimuli varying along several feature dimensions. Gamma responses to different grating/hue features were separable, allowing for a multiplicative model based on individual features. By fitting a hue patch to the image around the receptive field, this simple model could predict gamma responses to chromatic images across scales with reasonably high accuracy. Our results provide a simple "baseline" model to predict gamma from local image properties, against which more complex models of natural vision can be tested.


Asunto(s)
Percepción de Color , Ritmo Gamma , Estimulación Luminosa , Animales , Femenino , Ritmo Gamma/fisiología , Estimulación Luminosa/métodos , Percepción de Color/fisiología , Electrocorticografía , Macaca mulatta , Corteza Visual/fisiología , Modelos Neurológicos
18.
Hum Brain Mapp ; 45(10): e26775, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38970249

RESUMEN

Visual entrainment is a powerful and widely used research tool to study visual information processing in the brain. While many entrainment studies have focused on frequencies around 14-16 Hz, there is renewed interest in understanding visual entrainment at higher frequencies (e.g., gamma-band entrainment). Notably, recent groundbreaking studies have demonstrated that gamma-band visual entrainment at 40 Hz may have therapeutic effects in the context of Alzheimer's disease (AD) by stimulating specific neural ensembles, which utilize GABAergic signaling. Despite such promising findings, few studies have investigated the optimal parameters for gamma-band visual entrainment. Herein, we examined whether visual stimulation at 32, 40, or 48 Hz produces optimal visual entrainment responses using high-density magnetoencephalography (MEG). Our results indicated strong entrainment responses localizing to the primary visual cortex in each condition. Entrainment responses were stronger for 32 and 40 Hz relative to 48 Hz, indicating more robust synchronization of neural ensembles at these lower gamma-band frequencies. In addition, 32 and 40 Hz entrainment responses showed typical patterns of habituation across trials, but this effect was absent for 48 Hz. Finally, connectivity between visual cortex and parietal and prefrontal cortices tended to be strongest for 40 relative to 32 and 48 Hz entrainment. These results suggest that neural ensembles in the visual cortex may resonate at around 32 and 40 Hz and thus entrain more readily to photic stimulation at these frequencies. Emerging AD therapies, which have focused on 40 Hz entrainment to date, may be more effective at lower relative to higher gamma frequencies, although additional work in clinical populations is needed to confirm these findings. PRACTITIONER POINTS: Gamma-band visual entrainment has emerged as a therapeutic approach for eliminating amyloid in Alzheimer's disease, but its optimal parameters are unknown. We found stronger entrainment at 32 and 40 Hz compared to 48 Hz, suggesting neural ensembles prefer to resonate around these relatively lower gamma-band frequencies. These findings may inform the development and refinement of innovative AD therapies and the study of GABAergic visual cortical functions.


Asunto(s)
Ritmo Gamma , Magnetoencefalografía , Estimulación Luminosa , Corteza Visual , Humanos , Ritmo Gamma/fisiología , Masculino , Femenino , Estimulación Luminosa/métodos , Adulto , Corteza Visual/fisiología , Adulto Joven , Percepción Visual/fisiología
19.
Hippocampus ; 34(9): 464-490, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38949057

RESUMEN

Olfactory oscillations may enhance cognitive processing through coupling with beta (ß, 15-30 Hz) and gamma (γ, 30-160 Hz) activity in the hippocampus (HPC). We hypothesize that coupling between olfactory bulb (OB) and HPC oscillations is increased by cholinergic activation in control rats and is reduced in kainic-acid-treated epileptic rats, a model of temporal lobe epilepsy. OB γ2 (63-100 Hz) power was higher during walking and immobility-awake (IMM) compared to sleep, while γ1 (30-57 Hz) power was higher during grooming than other behavioral states. Muscarinic cholinergic agonist pilocarpine (25 mg/kg ip) with peripheral muscarinic blockade increased OB power and OB-HPC coherence at ß and γ1 frequency bands. A similar effect was found after physostigmine (0.5 mg/kg ip) but not scopolamine (10 mg/kg ip). Pilocarpine increased bicoherence and cross-frequency coherence (CFC) between OB slow waves (SW, 1-5 Hz) and hippocampal ß, γ1 and γ2 waves, with stronger coherence at CA1 alveus and CA3c than CA1 stratum radiatum. Bicoherence further revealed a nonlinear interaction of ß waves in OB with ß waves at the CA1-alveus. Beta and γ1 waves in OB or HPC were segregated at one phase of the OB-SW, opposite to the phase of γ2 and γ3 (100-160 Hz) waves, suggesting independent temporal processing of ß/γ1 versus γ2/γ3 waves. At CA1 radiatum, kainic-acid-treated epileptic rats compared to control rats showed decreased theta power, theta-ß and theta-γ2 CFC during baseline walking, decreased CFC of HPC SW with γ2 and γ3 waves during baseline IMM, and decreased coupling of OB SW with ß and γ2 waves at CA1 alveus after pilocarpine. It is concluded that ß and γ waves in the OB and HPC are modulated by a slow respiratory rhythm, in a cholinergic and behavior-dependent manner, and OB-HPC functional connectivity at ß and γ frequencies may enhance cognitive functions.


Asunto(s)
Ritmo beta , Ritmo Gamma , Hipocampo , Bulbo Olfatorio , Pilocarpina , Animales , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Masculino , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/fisiopatología , Bulbo Olfatorio/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Hipocampo/fisiología , Ratas , Pilocarpina/farmacología , Ritmo beta/efectos de los fármacos , Ritmo beta/fisiología , Ácido Kaínico/farmacología , Agonistas Muscarínicos/farmacología , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/fisiopatología , Epilepsia del Lóbulo Temporal/inducido químicamente , Escopolamina/farmacología , Fisostigmina/farmacología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Antagonistas Muscarínicos/farmacología
20.
Brain Res ; 1841: 149091, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897535

RESUMEN

Auditory neural networks in the brain naturally entrain to rhythmic stimuli. Such synchronization is an accessible index of local network performance as captured by EEG. Across species, click trains delivered âˆ¼ 40 Hz show strong entrainment with primary auditory cortex (Actx) being a principal source. Imaging studies have revealed additional cortical sources, but it is unclear if they are functionally distinct. Since auditory processing evolves hierarchically, we hypothesized that local synchrony would differ between between primary and association cortices. In female SD rats (N = 12), we recorded 40 Hz click train-elicited gamma oscillations using epidural electrodes situated at two distinct sites; one above the prefrontal cortex (PFC) and another above the Actx, after dosing with saline (1 ml/kg, sc) or the NMDA antagonist, MK801 (0.025, 0.05 or 0.1 mpk), in a blocked crossover design. Post-saline, both regions showed a strong 40 Hz auditory steady state response (ASSR). The latencies for the N1 response were âˆ¼ 16 ms (Actx) and âˆ¼ 34 ms (PFC). Narrow band (38-42 Hz) gamma oscillations appeared rapidly (<40 ms from stim onset at Actx but in a more delayed fashion (∼200 ms) at PFC. MK801 augmented gamma synchrony at Actx while dose-dependently disrupting at the PFC. Event-related gamma (but not beta) coherence, an index of long-distance connectivity, was disrupted by MK801. In conclusion, local network gamma synchrony in a higher order association cortex performs differently from that of the primary auditory cortex. We discuss these findings in the context of evolving sound processing across the cortical hierarchy.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Maleato de Dizocilpina , Potenciales Evocados Auditivos , Ritmo Gamma , Corteza Prefrontal , Ratas Sprague-Dawley , Animales , Corteza Prefrontal/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Auditiva/fisiología , Corteza Auditiva/efectos de los fármacos , Femenino , Maleato de Dizocilpina/farmacología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Estimulación Acústica/métodos , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Ratas , Antagonistas de Aminoácidos Excitadores/farmacología , Percepción Auditiva/fisiología , Percepción Auditiva/efectos de los fármacos , Electroencefalografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA