Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Zhonghua Gan Zang Bing Za Zhi ; 32(4): 318-324, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38733186

RESUMEN

Objective: To explore the antiviral activity of the small-molecule compound AM679 in hepatitis B virus (HBV) replication and infection cell models. Methods: The positive regulatory effect of AM679 on EFTUD2 expression was validated by qPCR and Western blotting. HepAD38 and HepG2-NTCP cells were treated with AM679 (0.5, 1, and 2 nmol/L). Negative control, positive control, and AM679 combined with the entecavir group were set up. HBV DNA intra-and extracellularly, as well as the expression levels of intracellular HBV total RNAs and 3.5kb-RNA changes, were detected with qPCR. Hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) levels were measured in the cell supernatant by an enzyme-linked immunosorbent assay (ELISA). The t-test method was used for the statistical analysis of the mean difference between groups. Results: EFTUD2 mRNA and protein expression levels were significantly increased in HepAD38 and HepG2-NTCP cells following AM679 treatment, with a statistically significant difference (P < 0.001). Intra-and extracellular indicators such as HBV DNA, HBV RNAs, HBV 3.5kb-RNA, HBsAg, and HBeAg were decreased to varying degrees in both cell models, and the decrease in these indicators was more pronounced with the increase in AM679 concentration and prolonged treatment duration, while the combined use of AM679 and entecavir had a more significant antiviral effect. The HBV DNA inhibition rates in the supernatant of HepAD38 cells with the use of 2 nmol/L AM679 were 21% and 48% on days three and nine, respectively. The AM679 combined with the ETV treatment group had the most significant inhibitory effect (62%), with a P < 0.01. More active HBV replication was observed after silencing EFTUD2, while the antiviral activity of AM679 was significantly weakened. Conclusion: AM679 exerts anti-HBV activity in vitro by targeting the regulation of EFTUD2 expression.


Asunto(s)
Antivirales , Virus de la Hepatitis B , Replicación Viral , Humanos , Antivirales/farmacología , ADN Viral , Guanina/análogos & derivados , Células Hep G2 , Antígenos e de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Indoles/química , Indoles/farmacología , Ácidos Pentanoicos/química , Ácidos Pentanoicos/farmacología , Factores de Elongación de Péptidos/antagonistas & inhibidores , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U5/metabolismo
2.
Mol Genet Genomic Med ; 12(4): e2426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562046

RESUMEN

BACKGROUND: Mandibulofacial dysostosis with microcephaly (MFDM, OMIM# 610536) is a rare monogenic disease that is caused by a mutation in the elongation factor Tu GTP binding domain containing 2 gene (EFTUD2, OMIM* 603892). It is characterized by mandibulofacial dysplasia, microcephaly, malformed ears, cleft palate, growth and intellectual disability. MFDM can be easily misdiagnosed due to its phenotypic overlap with other craniofacial dysostosis syndromes. The clinical presentation of MFDM is highly variable among patients. METHODS: A patient with craniofacial anomalies was enrolled and evaluated by a multidisciplinary team. To make a definitive diagnosis, whole-exome sequencing was performed, followed by validation by Sanger sequencing. RESULTS: The patient presented with extensive facial bone dysostosis, upward slanting palpebral fissures, outer and middle ear malformation, a previously unreported orbit anomaly, and spina bifida occulta. A novel, pathogenic insertion mutation (c.215_216insT: p.Tyr73Valfs*4) in EFTUD2 was identified as the likely cause of the disease. CONCLUSIONS: We diagnosed this atypical case of MFDM by the detection of a novel pathogenetic mutation in EFTUD2. We also observed previously unreported features. These findings enrich both the genotypic and phenotypic spectrum of MFDM.


Asunto(s)
Discapacidad Intelectual , Disostosis Mandibulofacial , Microcefalia , Humanos , Microcefalia/patología , Disostosis Mandibulofacial/genética , Disostosis Mandibulofacial/patología , Fenotipo , Mutación , Discapacidad Intelectual/genética , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo
3.
Nat Struct Mol Biol ; 31(5): 752-756, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467877

RESUMEN

The 20S U5 small nuclear ribonucleoprotein particle (snRNP) is a 17-subunit RNA-protein complex and a precursor of the U4/U6.U5 tri-snRNP, the major building block of the precatalytic spliceosome. CD2BP2 is a hallmark protein of the 20S U5 snRNP, absent from the mature tri-snRNP. Here we report a high-resolution cryogenic electron microscopy structure of the 20S U5 snRNP, shedding light on the mutually exclusive interfaces utilized during tri-snRNP assembly and the role of the CD2BP2 in facilitating this process.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Ribonucleoproteína Nuclear Pequeña U5 , Humanos , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Empalmosomas/metabolismo , Empalmosomas/química , Empalmosomas/ultraestructura , Conformación Proteica , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química
4.
Nat Struct Mol Biol ; 31(5): 747-751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467876

RESUMEN

Pre-mRNA splicing by the spliceosome requires the biogenesis and recycling of its small nuclear ribonucleoprotein (snRNP) complexes, which are consumed in each round of splicing. The human U5 snRNP is the ~1 MDa 'heart' of the spliceosome and is recycled through an unknown mechanism involving major architectural rearrangements and the dedicated chaperones CD2BP2 and TSSC4. Late steps in U5 snRNP biogenesis similarly involve these chaperones. Here we report cryo-electron microscopy structures of four human U5 snRNP-CD2BP2-TSSC4 complexes, revealing how a series of molecular events primes the U5 snRNP to generate the ~2 MDa U4/U6.U5 tri-snRNP, the largest building block of the spliceosome.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Ribonucleoproteína Nuclear Pequeña U5 , Empalmosomas , Humanos , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/genética , Empalmosomas/metabolismo , Empalmosomas/química , Empalmosomas/ultraestructura , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Conformación Proteica , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
5.
Nucleic Acids Res ; 52(5): 2093-2111, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38303573

RESUMEN

Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.


The removal of introns and the joining of exons into mature mRNA by the spliceosome is crucial in regulating gene expression, simultaneously safeguarding genome integrity and enhancing proteome diversity in multicellular organisms. Spliceosome dysfunction is thus associated with various diseases and organismal aging. Our study describes the cascade of events in response to spliceosome dysfunction. We identified two transcription factors as drivers of a stress response program triggered by spliceosome dysfunction, which dramatically remodel gene expression to protect tissue integrity and induce a senescent-like state in damaged cells prior to their inevitable elimination. Together, we highlight the indispensable role of spliceosomes in maintaining homeostasis and implicate spliceosome dysfunction in senescent cell accumulation associated with the pathomechanisms of spliceopathies and aging.


Asunto(s)
Proteínas de Unión al ADN , Ribonucleoproteína Nuclear Pequeña U5 , Empalmosomas , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Animales , Drosophila melanogaster , Proteínas de Unión al ADN/metabolismo
6.
J Exp Clin Cancer Res ; 43(1): 7, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163859

RESUMEN

BACKGROUND: Chemoresistance presents a significant obstacle in the treatment of colorectal cancer (CRC), yet the molecular basis underlying CRC chemoresistance remains poorly understood, impeding the development of new therapeutic interventions. Elongation factor Tu GTP binding domain containing 2 (EFTUD2) has emerged as a potential oncogenic factor implicated in various cancer types, where it fosters tumor growth and survival. However, its specific role in modulating the sensitivity of CRC cells to chemotherapy is still unclear. METHODS: Public dataset analysis and in-house sample validation were conducted to assess the expression of EFTUD2 in 5-fluorouracil (5-FU) chemotherapy-resistant CRC cells and the potential of EFTUD2 as a prognostic indicator for CRC. Experiments both in vitro, including MTT assay, EdU cell proliferation assay, TUNEL assay, and clone formation assay and in vivo, using cell-derived xenograft models, were performed to elucidate the function of EFTUD2 in sensitivity of CRC cells to 5-FU treatment. The molecular mechanism on the reciprocal regulation between EFTUD2 and the oncogenic transcription factor c-MYC was investigated through molecular docking, ubiquitination assay, chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP). RESULTS: We found that EFTUD2 expression was positively correlated with 5-FU resistance, higher pathological grade, and poor prognosis in CRC patients. We also demonstrated both in vitro and in vivo that knockdown of EFTUD2 sensitized CRC cells to 5-FU treatment, whereas overexpression of EFTUD2 impaired such sensitivity. Mechanistically, we uncovered that EFTUD2 physically interacted with and stabilized c-MYC protein by preventing its ubiquitin-mediated proteasomal degradation. Intriguingly, we found that c-MYC directly bound to the promoter region of EFTUD2 gene, activating its transcription. Leveraging rescue experiments, we further confirmed that the effect of EFTUD2 on 5-FU resistance was dependent on c-MYC stabilization. CONCLUSION: Our findings revealed a positive feedback loop involving an EFTUD2/c-MYC axis that hampers the efficacy of 5-FU chemotherapy in CRC cells by increasing EFTUD2 transcription and stabilizing c-MYC oncoprotein. This study highlights the potential of EFTUD2 as a promising therapeutic target to surmount chemotherapy resistance in CRC patients.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Retroalimentación , Simulación del Acoplamiento Molecular , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Proliferación Celular , Factores de Elongación de Péptidos/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/farmacología
7.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36620952

RESUMEN

SART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components. In addition, we observed an interaction between SART3 and the RNA helicase DHX15, which disassembles post-splicing complexes. Based on our data, we propose a model that SART3 associates via its N-terminal HAT domain with the post-splicing complex, where it interacts with U6 snRNA to protect it and to initiate U6 snRNA recycling before a next round of splicing.


Asunto(s)
Empalme del ARN , Empalmosomas , Empalme del ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
8.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265897

RESUMEN

The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.


Asunto(s)
Arabidopsis , Ribonucleoproteína Nuclear Pequeña U5 , Animales , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , División Celular/genética , Inestabilidad Genómica , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética
9.
Viruses ; 14(12)2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36560714

RESUMEN

The spliceosome is a massive ribonucleoprotein structure composed of five small nuclear ribonucleoprotein (snRNP) complexes that catalyze the removal of introns from pre-mature RNA during constitutive and alternative splicing. EFTUD2, PRPF8, and SNRNP200 are core components of the U5 snRNP, which is crucial for spliceosome function as it coordinates and performs the last steps of the splicing reaction. Several studies have demonstrated U5 snRNP proteins as targeted during viral infection, with a limited understanding of their involvement in virus-host interactions. In the present study, we deciphered the respective impact of EFTUD2, PRPF8, and SNRNP200 on viral replication using mammalian reovirus as a model. Using a combination of RNA silencing, real-time cell analysis, cell death and viral replication assays, we discovered distinct and partially overlapping novel roles for EFTUD2, PRPF8, and SNRNP200 in cell survival, apoptosis, necroptosis, and the induction of the interferon response pathway. For instance, we demonstrated that EFTUD2 and SNRNP200 are required for both apoptosis and necroptosis, whereas EFTUD2 and PRPF8 are required for optimal interferon response against viral infection. Moreover, we demonstrated that EFTUD2 restricts viral replication, both in a single cycle and multiple cycles of viral replication. Altogether, these results establish U5 snRNP core components as key elements of the cellular antiviral response.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U5 , Virosis , Animales , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteínas Nucleares snRNP/genética , Proteínas Nucleares snRNP/metabolismo , Interferones/metabolismo , Empalme del ARN , Apoptosis , Mamíferos
10.
J Exp Clin Cancer Res ; 41(1): 334, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36471428

RESUMEN

BACKGROUND & AIMS: N6-methyladenosine (m6A) modification plays a critical role in progression of hepatocellular carcinoma (HCC), and aerobic glycolysis is a hallmark of cancer including HCC. However, the role of YTHDF3, one member of the core readers of the m6A pathway, in aerobic glycolysis and progression of HCC is still unclear. METHODS: Expression levels of YTHDF3 in carcinoma and surrounding tissues of HCC patients were evaluated by immunohistochemistry. Loss and gain-of-function experiments in vitro and in vivo were used to assess the effects of YTHDF3 on HCC cell proliferation, migration and invasion. The role of YTHDF3 in hepatocarcinogenesis was observed in a chemically induced HCC model with Ythdf3-/- mice. Untargeted metabolomics and glucose metabolism phenotype assays were performed to evaluate relationship between YTHDF3 and glucose metabolism. The effect of YTHDF3 on PFKL was assessed by methylated RNA immunoprecipitation assays (MeRIP). Co-immunoprecipitation and immunofluorescence assays were performed to investigate the connection between YTHDF3 and PFKL. RESULTS: We found YTHDF3 expression was greatly upregulated in carcinoma tissues and it was correlated with poor prognosis of HCC patients. Gain-of-function and loss-of-function assays demonstrated YTHDF3 promoted proliferation, migration and invasion of HCC cells in vitro, and YTHDF3 knockdown inhibited xenograft tumor growth and lung metastasis of HCC cells in vivo. YTHDF3 knockout significantly suppressed hepatocarcinogenesis in chemically induced mice model. Mechanistically, YTHDF3 promoted aerobic glycolysis by promoting phosphofructokinase PFKL expression at both mRNA and protein levels. MeRIP assays showed YTHDF3 suppressed PFKL mRNA degradation via m6A modification. Surprisingly, PFKL positively regulated YTHDF3 protein expression, not as a glycolysis rate-limited enzyme, and PFKL knockdown effectively rescued the effects of YTHDF3 overexpression on proliferation, migration and invasion ability of Sk-Hep-1 and HepG2 cells. Notably, co-immunoprecipitation assays demonstrated PFKL interacted with YTHDF3 via EFTUD2, a core subunit of spliceosome involved in pre-mRNA splicing process, and ubiquitination assays showed PFKL could positively regulate YTHDF3 protein expression via inhibiting ubiquitination of YTHDF3 protein by EFTUD2. CONCLUSIONS: our study uncovers the key role of YTHDF3 in HCC, characterizes a positive functional loop between YTHDF3 and phosphofructokinase PFKL in glucose metabolism of HCC, and suggests the connection between pre-mRNA splicing process and m6A modification.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfofructoquinasas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucosa , Glucólisis , Neoplasias Hepáticas/patología , Factores de Elongación de Péptidos/genética , Fosfofructoquinasas/genética , Fosfofructoquinasas/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Precursores del ARN
11.
Nucleic Acids Res ; 50(20): 11834-11857, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321655

RESUMEN

The spliceosome undergoes extensive rearrangements as it assembles onto precursor messenger RNAs. In the earliest assembly step, U1snRNA identifies the 5' splice site. However, U1snRNA leaves the spliceosome relatively early in assembly, and 5' splice site identity is subsequently maintained through interactions with U6snRNA, protein factor PRP8, and other components during the rearrangements that build the catalytic site. Using a forward genetic screen in Caenorhabditis elegans, we have identified suppressors of a locomotion defect caused by a 5'ss mutation. Here we report three new suppressor alleles from this screen, two in PRP8 and one in SNRNP200/BRR2. mRNASeq studies of these suppressor strains indicate that they also affect specific native alternative 5'ss, especially for suppressor PRP8 D1549N. A strong suppressor at the unstructured N-terminus of SNRNP200, N18K, indicates a novel role for this region. By examining distinct changes in the splicing of native genes, examining double mutants between suppressors, comparing these new suppressors to previously identified splicing suppressors from yeast, and mapping conserved suppressor residues onto cryoEM structural models of assembling human spliceosomes, we conclude that there are multiple interactions at multiple stages in spliceosome assembly responsible for maintaining the initial 5'ss identified by U1snRNA for entry into the catalytic core.


Asunto(s)
Sitios de Empalme de ARN , Factores de Empalme de ARN , Empalmosomas , Animales , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Mutación , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Factores de Empalme de ARN/genética
12.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1373-1383, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322420

RESUMEN

Small nuclear ribonucleoprotein complexes (snRNPs) represent the main subunits of the spliceosome. While the assembly of the snRNP core particles has been well characterized, comparably little is known of the incorporation of snRNP-specific proteins and the mechanisms of snRNP recycling. U5 snRNP assembly in yeast requires binding of the the Aar2 protein to Prp8p as a placeholder to preclude premature assembly of the SNRNP200 helicase, but the role of the human AAR2 homolog has not yet been investigated in detail. Here, a crystal structure of human AAR2 in complex with the RNase H-like domain of the U5-specific PRPF8 (PRP8F RH) is reported, revealing a significantly different interaction between the two proteins compared with that in yeast. Based on the structure of the AAR2-PRPF8 RH complex, the importance of the interacting regions and residues was probed and AAR2 variants were designed that failed to stably bind PRPF8 in vitro. Protein-interaction studies of AAR2 with U5 proteins using size-exclusion chromatography reveal similarities and marked differences in the interaction patterns compared with yeast Aar2p and imply phosphorylation-dependent regulation of AAR2 reminiscent of that in yeast. It is found that in vitro AAR2 seems to lock PRPF8 RH in a conformation that is only compatible with the first transesterification step of the splicing reaction and blocks a conformational switch to the step 2-like, Mg2+-coordinated conformation that is likely during U5 snRNP biogenesis. These findings extend the picture of AAR2 PRP8 interaction from yeast to humans and indicate a function for AAR2 in the spliceosomal assembly process beyond its role as an SNRNP200 placeholder in yeast.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U5 , Proteínas de Saccharomyces cerevisiae , Humanos , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Saccharomyces cerevisiae/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ribonucleasa H/metabolismo , Proteínas de Unión al ARN/química
13.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012294

RESUMEN

Embryos with homozygous mutation of Eftud2 in their neural crest cells (Eftud2ncc-/-) have brain and craniofacial malformations, hyperactivation of the P53-pathway and die before birth. Treatment of Eftud2ncc-/- embryos with pifithrin-α, a P53-inhibitor, partly improved brain and craniofacial development. To uncover if craniofacial malformations and death were indeed due to P53 hyperactivation we generated embryos with homozygous loss of function mutations in both Eftud2 and Trp53 in the neural crest cells. We evaluated the molecular mechanism underlying craniofacial development in pifithrin-α-treated embryos and in Eftud2; Trp53 double homozygous (Eftud2ncc-/-; Trp53ncc-/-) mutant embryos. Eftud2ncc-/- embryos that were treated with pifithrin-α or homozygous mutant for Trp53 in their neural crest cells showed reduced apoptosis in their neural tube and reduced P53-target activity. Furthermore, although the number of SOX10 positive cranial neural crest cells was increased in embryonic day (E) 9.0 Eftud2ncc-/-; Trp53ncc-/- embryos compared to Eftud2ncc-/- mutants, brain and craniofacial development, and survival were not improved in double mutant embryos. Furthermore, mis-splicing of both P53-regulated transcripts, Mdm2 and Foxm1, and a P53-independent transcript, Synj2bp, was increased in the head of Eftud2ncc-/-; Trp53ncc-/- embryos. While levels of Zmat3, a P53- regulated splicing factor, was similar to those of wild-type. Altogether, our data indicate that both P53-regulated and P53-independent pathways contribute to craniofacial malformations and death of Eftud2ncc-/- embryos.


Asunto(s)
Anomalías Craneofaciales , Cresta Neural , Factores de Elongación de Péptidos , Ribonucleoproteína Nuclear Pequeña U5 , Animales , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Eliminación de Gen , Homocigoto , Cresta Neural/metabolismo , Factores de Elongación de Péptidos/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteína p53 Supresora de Tumor/genética
14.
J Reprod Immunol ; 153: 103663, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35843132

RESUMEN

Preeclampsia is characterized by maternal hypertension and multi-organ injury. Elongation factor Tu GTP binding domain containing 2 (EFTUD 2) and the Pregnancy Zone Protein (PZP) seem to be important immunomodulatory factors in early gestation. Little is known about the role of EFTUD2 and PZP in disorders of late pregnancy like preeclampsia, HELLP syndrome and intrauterine growth restriction (IUGR). PZP, EFTUD2 and hCG expression was investigated by immunohistochemistry in the placenta of healthy pregnancies (n = 13), preeclampsia (n = 11), HELLP syndrome (n = 12) and IUGR (n = 8). Correlation analysis of protein expression was performed via Spearman correlation coefficient. The characterization of EFTUD2 and PZP expressing cells was evaluated by double-immunofluorescence. After cultivation of the chorion carcinoma cell line BeWo with hCG the expression of PZP and EFTUD2 was investigated by immunocytochemistry. PZP expression was significantly downregulated in the syncytiotrophoblast (ST) and extravillous trophoblast (EVT) of preeclampsia (ST: p 0.001, EVT:p = 0.019) and HELLP syndrome (ST: p = 0.004, EVT: p = 0.035). The expression of EFTUD2 was significantly lower in preeclampsia (ST: p = 0.003, EVT: p 0.001), HELLP syndrome (ST: p = 0.021, EVT: = 0.001, EVT: p = 0.001). EVTs were identified as EFTUD2 and PZP expressing cells by double-immunofluorescence. Stimulation of BeWo chorion carcinoma cells with hCG 1000 IU/mL for 48 h resulted in a significant upregulation of PZP expression (p = 0.027). Our results indicate that PZP and EFTUD2 might be involved in the development of placental dysfunction in preeclampsia and HELLP syndrome.


Asunto(s)
Carcinoma , Síndrome HELLP , Preeclampsia , Proteínas Gestacionales/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Carcinoma/patología , Femenino , Retardo del Crecimiento Fetal , Guanosina Trifosfato/metabolismo , Humanos , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Placenta/patología , Preeclampsia/patología , Embarazo
15.
Nucleic Acids Res ; 50(9): 5263-5281, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35489070

RESUMEN

Mammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family presenting a promising activity as an oncolytic virus. Recent studies have underlined MRV's ability to alter cellular alternative splicing (AS) during infection, with a limited understanding of the mechanisms at play. In this study, we investigated how MRV modulates AS. Using a combination of cell biology and reverse genetics experiments, we demonstrated that the M1 gene segment, encoding the µ2 protein, is the primary determinant of MRV's ability to alter AS, and that the amino acid at position 208 in µ2 is critical to induce these changes. Moreover, we showed that the expression of µ2 by itself is sufficient to trigger AS changes, and its ability to enter the nucleus is not required for all these changes. Moreover, we identified core components of the U5 snRNP (i.e. EFTUD2, PRPF8, and SNRNP200) as interactors of µ2 that are required for MRV modulation of AS. Finally, these U5 snRNP components are reduced at the protein level by both MRV infection and µ2 expression. Our findings identify the reduction of U5 snRNP components levels as a new mechanism by which viruses alter cellular AS.


Asunto(s)
Reoviridae , Ribonucleoproteína Nuclear Pequeña U5 , Empalme Alternativo/genética , Animales , Mamíferos/metabolismo , Empalme del ARN , Reoviridae/genética , Reoviridae/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Empalmosomas/metabolismo
16.
Cell Rep ; 38(6): 110338, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35139388

RESUMEN

The spliceosome is a large ribonucleoprotein complex responsible for pre-mRNA splicing and genome stability maintenance. Disruption of the spliceosome activity may lead to developmental disorders and tumorigenesis. However, the physiological role that the spliceosome plays in B cell development and function is still poorly defined. Here, we demonstrate that ubiquitin-specific peptidase 39 (Usp39), a spliceosome component of the U4/U6.U5 tri-snRNP complex, is essential for B cell development. Ablation of Usp39 in B cell lineage blocks pre-pro-B to pro-B cell transition in the bone marrow, leading to a profound reduction of mature B cells in the periphery. We show that Usp39 specifically regulates immunoglobulin gene rearrangement in a spliceosome-dependent manner, which involves modulating chromatin interactions at the Igh locus. Moreover, our results indicate that Usp39 deletion reduces the pre-malignant B cells in Eµ-Myc transgenic mice and significantly improves their survival.


Asunto(s)
Linfocitos B/citología , Genes de Inmunoglobulinas/genética , Precursores del ARN/metabolismo , Empalmosomas/metabolismo , Proteasas Ubiquitina-Específicas/genética , Animales , Humanos , Ratones , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
17.
Technol Health Care ; 30(S1): 293-301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35124606

RESUMEN

BACKGROUND: Alternative splicing is a mechanism to produce different proteins with diverse functions from one gene. Many splicing factors play an important role in cancer progression. PRPF8 is a core protein component of the spliceosome complex, U4/U6-U5 tri-snRNP. OBJECTIVE: However, PRPF8 involved in mRNA alternative splicing are rarely included in the prognosis. METHODS: We found that PRPF8 was expressed in all examined cancer types. Further analyses found that PRPF8 expression was significantly different between the breast cancer and paracancerous tissues. RESULTS: Survival analyses showed that PRPF8-high patients had a poor prognosis, and the expression of PRPF8 is associated with distant metastasis-free survival (DMFS) and post progression survival (PPS). Gene Set Enrichment Analysis (GSEA) has revealed that PRPF8 expression is correlated with TGF-ß, JAK-STAT, and cell cycle control pathways. Consistent with these results, upon PRPF8 silencing, the growth of MCF-7 cells was reduced, the ability of cell clone formation was weakened, and p⁢21 expression was increased. CONCLUSIONS: These results have revealed that PRPF8 is a significant factor for splicing in breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Ribonucleoproteína Nuclear Pequeña U5 , Neoplasias de la Mama/genética , Femenino , Células HeLa , Humanos , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/metabolismo
18.
Nucleic Acids Res ; 50(5): 2938-2958, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188580

RESUMEN

Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4's intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Supresoras de Tumor/metabolismo , ADN Helicasas/metabolismo , Células HEK293 , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalmosomas/metabolismo
19.
Clin Genet ; 101(2): 255-259, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713892

RESUMEN

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G) and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non-coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation.


Asunto(s)
Atresia de las Coanas/diagnóstico , Atresia de las Coanas/genética , Sordera/congénito , Genotipo , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Mutación , Ribonucleoproteína Nuclear Pequeña U5/genética , Alelos , Sitios de Unión , Sordera/diagnóstico , Sordera/genética , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Linaje , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Factores de Transcripción/metabolismo
20.
Nat Commun ; 12(1): 6648, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789764

RESUMEN

The U6 snRNA, the core catalytic component of the spliceosome, is extensively modified post-transcriptionally, with 2'-O-methylation being most common. However, how U6 2'-O-methylation is regulated remains largely unknown. Here we report that TFIP11, the human homolog of the yeast spliceosome disassembly factor Ntr1, localizes to nucleoli and Cajal Bodies and is essential for the 2'-O-methylation of U6. Mechanistically, we demonstrate that TFIP11 knockdown reduces the association of U6 snRNA with fibrillarin and associated snoRNAs, therefore altering U6 2'-O-methylation. We show U6 snRNA hypomethylation is associated with changes in assembly of the U4/U6.U5 tri-snRNP leading to defects in spliceosome assembly and alterations in splicing fidelity. Strikingly, this function of TFIP11 is independent of the RNA helicase DHX15, its known partner in yeast. In sum, our study demonstrates an unrecognized function for TFIP11 in U6 snRNP modification and U4/U6.U5 tri-snRNP assembly, identifying TFIP11 as a critical spliceosome assembly regulator.


Asunto(s)
Factores de Empalme de ARN/metabolismo , Empalme del ARN/fisiología , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Nucléolo Celular/metabolismo , Supervivencia Celular , Cuerpos Enrollados/metabolismo , Células HeLa , Humanos , Metilación , Mitosis , Proteínas Nucleares/metabolismo , Motas Nucleares/metabolismo , Unión Proteica , Estabilidad Proteica , Precursores del ARN/metabolismo , Factores de Empalme de ARN/genética , ARN Nucleolar Pequeño/metabolismo , Empalmosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA