Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 721
Filtrar
1.
Environ Sci Technol ; 58(35): 15486-15496, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39167085

RESUMEN

Aryl phosphorus flame retardants (aryl-PFRs), such as triphenyl phosphate (TPHP) and diphenyl phosphate (DPHP), are widely used worldwide. Understanding the fates of aryl-PFRs in vivo is crucial to assessing their toxicity and the risks they pose. Seven TPHP metabolites, including Phase I hydrolysis and hydroxylation and Phase II glucuronidation products, were identified in C57BL/6J male mice following subacute dietary exposure to aryl-PFRs (70 µg/kg body weight (bw)/day) for 7 days. TPHP was almost completely metabolized by mice (∼97%), with DPHP the major metabolite formed (34%-58%). In addition, mice were exposed to aryl-PFRs (7 µg/kg bw/day) for 12 weeks. Both TPHP and DPHP occurred at higher concentrations in the digestive tract (intestine and stomach), liver and heart. The total concentration of DPHP in all organs was 3.55-fold greater than that of TPHP. Recovery analysis showed that the rate of TPHP elimination from mouse organs reached 38%, while only 3%-5% of DPHP was removed, suggesting that the rates of degradation and elimination of DPHP were slower than TPHP and its bioaccumulation potential was higher. These results highlight the critical role of DPHP in the biotransformation, bioaccumulation, and bioelimination of TPHP, providing valuable insights into the fate of aryl-PFRs in vivo.


Asunto(s)
Biotransformación , Retardadores de Llama , Ratones Endogámicos C57BL , Animales , Masculino , Ratones , Retardadores de Llama/metabolismo , Bioacumulación , Organofosfatos
2.
Environ Sci Technol ; 58(33): 14797-14811, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39120259

RESUMEN

Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63-98%), and MCCPs dominated the total CP load (42-68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.


Asunto(s)
Contaminantes Orgánicos Persistentes , Animales , Noruega , Contaminantes Orgánicos Persistentes/metabolismo , Hidrocarburos Clorados/metabolismo , Parafina/metabolismo , Mamíferos/metabolismo , Monitoreo del Ambiente , Retardadores de Llama/metabolismo , Dieta , Bifenilos Policlorados/metabolismo
3.
Environ Pollut ; 358: 124523, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986763

RESUMEN

Halogenated flame retardants in farmlands were observed to inhibit the growth of exposed crops. This study aimed to elucidate the mechanism of inhibition on rice by employing four representative polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). The exposure to these contaminants at 200 nM led to a decrease of 0.63-0.95 fold in rice below-ground biomass and 0.49-0.66 fold in yield, and a corresponding 4%-10% increase in soluble sugars in leaves. PBDEs and PCBs were found to significantly disrupt the synthesis, decomposition, and transport of sugars in leaves, the three pivotal determinants of crop growth. Notably, these compounds promoted a 1.41- to 7.60-fold upregulation of the triose phosphate translocator, significantly enhancing soluble sugar synthesis. Conversely, a 0.45-0.97 fold downregulation was observed for sucrose transporters, thus impeding the leaf-to-shoot efflux of soluble sugars. Furthermore, PBDEs and PCBs were favorably bound to fructose-1,6-bisphosphate aldolase (FBA), inducing its substrate-specific dysfunction in fructose-1,6-diphosphate decomposition (3%-14%). Overall, PBDE and PCB exposure promoted a notable intracellular accumulation of soluble sugars in rice leaves, a typical symptom of plant diabetes, since the intensified synthesis of soluble sugars in leaves and the repressed decomposition and transportation of soluble sugars to other storage organs, thus impeding crop growth. This study provided an insightful understanding of the toxic effects and molecular mechanisms of halogenated flame retardants, highlighting their role in abnormal sugar accumulation and growth inhibition in crops and offering vital information for the risk assessment and administration of these compounds to guarantee the safety of agricultural products.


Asunto(s)
Éteres Difenilos Halogenados , Oryza , Bifenilos Policlorados , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Éteres Difenilos Halogenados/metabolismo , Bifenilos Policlorados/metabolismo , Azúcares/metabolismo , Hojas de la Planta/metabolismo , Contaminantes del Suelo/metabolismo , Retardadores de Llama/metabolismo , Transporte Biológico
4.
Ecotoxicol Environ Saf ; 283: 116748, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059342

RESUMEN

Organophosphorus flame retardants (PFRs) are a class of flame retardants and environmental pollutants with various biological effects. Recentstudies have evidenced activation of some PFRs by human CYP enzymes (including CYP2E1) for genotoxic effects. However, the activity of CYPs in fish species toward PFR metabolism remains unclear. This study was aimed on comparing the metabolism of triphenyl phosphate (TPHP) and 4-OH-TPHP in human, rat, and common carp, and the involvement of human CYP2E1 and its orthologs in the metabolism, by using fomepizole (4-MP, CYP2E1 inhibitor) as a modulator, in silico molecular docking and dynamics analyses. The rate of TPHP metabolism was apparently faster with human and rat, microsomes than with fish microsomes, the major metabolites were phosphodiester and hydroxylated phosphate, with 30-80 % of TPHP forming unidentified metabolites in the system of each species. 4-OH-TPHP was readily metabolized by both human and rat microsomes, whereas it was hardly metabolized in carp assays. Meanwhile, with 4-MP the transformation of TPHP to 4-OH-TPHP was enhanced in the human/rat systems while suppressed in the carp system. Moreover, the formation of unidentified metabolites in human and rat systems was mostly inhibited by 4-MP. Through molecular dynamics analysis TPHP and its primary metabolites showed high affinity for human and rat CYP2E1, as well as the carp ortholog (CYP2G1-like enzyme), however, the 4-OH-TPHP bond to the latter was too far from the heme to permit a biochemical reaction. This study suggests that the metabolism/activation of TPHP might be favored in mammals rather than carp, a fish species.


Asunto(s)
Carpas , Citocromo P-450 CYP2E1 , Retardadores de Llama , Simulación del Acoplamiento Molecular , Organofosfatos , Animales , Carpas/metabolismo , Humanos , Ratas , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Hidroxilación , Organofosfatos/metabolismo , Organofosfatos/toxicidad , Especificidad de la Especie , Microsomas Hepáticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
5.
Water Res ; 261: 122043, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981351

RESUMEN

The bioaccumulation and trophic transfer of organophosphate flame retardants (OPFRs) in marine ecosystems have attracted great attention in recent research, but our understanding of the trophic transfer mechanisms involved is limited. In this study, we investigated the trophodynamics of OPFRs and their metabolites in a subtropical coastal food web collected from the northern Beibu Gulf, China, and characterized their trophodynamics using fugacity- and biotransformation-based approaches. Eleven OPFRs and all seven metabolites were simultaneously quantified in the shellfish, crustacean, pelagic fish, and benthic fish samples, with total concentrations ranging from 164 to 4.11 × 104 and 4.56-4.28 × 103 ng/g lipid weight, respectively. Significant biomagnification was observed only for tris (phenyl) phosphate (TPHP) and tris (2-ethylhexyl) phosphate (TEHP), while other compounds except for tris(2-chloroethyl) phosphate (TCEP) displayed biomagnification trends based on Monte Carlo simulations. Using a fugacity-based approach to normalize the accumulation of OPFRs in biota to their relative biological phase composition, storage lipid is the predominant biological phase for the mass distribution of 2-ethylhexyl diphenyl phosphate (EHDPHP) and TPHP. The water content and structure protein are equally important for TCEP, whereas lipid and structure protein are the two most important phases for other OPFRs. The mass distribution of these OPFRs along with TLs can explain their trophodynamics in the food web. The organophosphate diesters (as OPFR metabolites) also displayed biomagnification trends based on bootstrapped estimation. The correlation analysis and Korganism-water results jointly suggested the metabolites accumulation in high-TL organisms was related to biotransformation processes. The metabolite-backtracked trophic magnification factors for tri-n­butyl phosphate (TNBP) and TPHP were both greater than the values that accounted for only the parent compounds. This study highlights the incorporation of fugacity and biotransformation analysis to characterize the trophodynamic processes of OPFRs and other emerging pollutants in food webs.


Asunto(s)
Biotransformación , Retardadores de Llama , Cadena Alimentaria , Organofosfatos , Contaminantes Químicos del Agua , Retardadores de Llama/metabolismo , Organofosfatos/metabolismo , Animales , China , Contaminantes Químicos del Agua/metabolismo , Peces/metabolismo , Monitoreo del Ambiente
6.
Chem Biol Interact ; 400: 111144, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002877

RESUMEN

Organophosphate flame retardants (OPFRs) pose the significant risks to the environment and human health and have become a serious public health issue. Tricresyl phosphates (TCPs), a group of aryl OPFRs, exhibit neurotoxicity and endocrine disrupting toxicity. However, the binding mechanisms between TCPs and human serum albumin (HSA) remain unknown. In this study, through fluorescence and ultraviolet-visible (UV-vis) absorption spectroscopy, molecular docking and molecular dynamics (MD), tri-para-cresyl phosphate (TpCP) was selected to explore potential interactions between HSA and TCPs. The results of the fluorescence spectroscopy demonstrated that a decrease in the fluorescence intensity of HSA and a blue shift were observed with the increasing concentrations of TpCP. The binding constant (Ka) was 2.575 × 104 L/mol, 4.701 × 104 L/mol, 5.684 × 104 L/mol and 9.482 × 104 L/mol at 293 K, 298 K, 303 K, and 310 K, respectively. The fluorescence process between HSA and TpCP involved a mix of static and dynamic quenching mechanism. The gibbs free energy (ΔG0) of HSA-TpCP system was -24.452 kJ/mol, -25.907 kJ/mol, -27.363 kJ/mol, and - 29.401 kJ/mol at 293 K, 298 K, 303 K, and 310 K, respectively, suggesting that the HSA-TpCP reaction was spontaneous. The enthalpy change (ΔH0) and thermodynamic entropy change (ΔS0) of the HSA-TpCP system were 60.83 kJ/mol and 291.08 J/(mol·>k), respectively, indicating that hydrophobic force was the major driving force in the HSA-TpCP complex. Furthermore, multispectral analysis also revealed that TpCP could alter the microenvironment of tryptophan residue and the secondary structure of HSA and bind with the active site I of HSA. Molecular docking and MD simulations confirmed that TpCP could spontaneously form a stable complex with HSA, which was consistent with the fluorescence experimental results. This study provides novel insights into the mechanisms of underlying the transportation and distribution of OPFRs in humans.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Espectrometría de Fluorescencia , Termodinámica , Humanos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Retardadores de Llama/metabolismo , Espectrofotometría Ultravioleta , Sitios de Unión , Tritolilfosfatos/química , Tritolilfosfatos/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Enlace de Hidrógeno
7.
Chem Biol Interact ; 398: 111095, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844256

RESUMEN

It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.


Asunto(s)
Histonas , Compuestos Organofosforados , Plaguicidas , Histonas/metabolismo , Histonas/química , Compuestos Organofosforados/química , Compuestos Organofosforados/metabolismo , Compuestos Organofosforados/toxicidad , Animales , Plaguicidas/química , Plaguicidas/metabolismo , Plaguicidas/toxicidad , Bovinos , Metilación , Malatión/química , Malatión/metabolismo , Malatión/toxicidad , Proteómica , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Secuencia de Aminoácidos , Diclorvos/química , Diclorvos/toxicidad
8.
Chemosphere ; 362: 142611, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878983

RESUMEN

Bromophenols has been proven to synthesize hydroxylated polybrominated diphenyl ethers (OH-PBDEs), which may pose additional environmental and health risks in the process of bioremediation. In this study, the removal of 2,4-dibromophenol (2,4-DBP) and 2,4,6-tribromophenol (2,4,6-TBP) and the biosynthetic of OH-PBDEs by Prorocentrum donghaiense were explored. The removal efficiencies of 2,4-DBP and 2,4,6-TBP ranged from 32.71% to 76.89% and 31.15%-78.12%, respectively. Low concentrations of 2,4-DBP stimulated algal growth, while high concentrations were inhibitory. Furthermore, exposure to 10.00 mg L-1 2,4-DBP resulted in the detection of 2'-hydroxy-2,3',4,5'-tetrabromodiphenyl ether (2'-OH-BDE-68) within P. donghaiense. In contrast, increasing concentrations of 2,4,6-TBP considerably inhibited P. donghaiense growth, with 4'-hydroxy-2,3',4,5',6-pentabromodiphenyl ether (4'-OH-BDE-121) detected within P. donghaiense under 5.00 mg L-1 2,4,6-TBP. Metabolomic analysis further revealed that the synthesized OH-PBDEs exhibited higher toxicity than their precursors and identified the oxidative coupling as a key biosynthetic mechanism. These findings confirm the capacity of P. donghaiense to remove bromophenols and biosynthesize OH-PBDEs from bromophenols, offering valuable insights into formulating algal bioremediation to mitigate bromophenol contamination.


Asunto(s)
Biodegradación Ambiental , Éteres Difenilos Halogenados , Fenoles , Éteres Difenilos Halogenados/metabolismo , Éteres Difenilos Halogenados/química , Fenoles/metabolismo , Hidroxilación , Retardadores de Llama/metabolismo
9.
Anal Bioanal Chem ; 416(20): 4543-4554, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877147

RESUMEN

Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 µg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 µg/L for males and 0.53 µg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.


Asunto(s)
Monitoreo Biológico , Retardadores de Llama , Límite de Detección , Extracción Líquido-Líquido , Compuestos Organofosforados , Estrés Oxidativo , Espectrometría de Masas en Tándem , Humanos , Retardadores de Llama/análisis , Retardadores de Llama/metabolismo , Espectrometría de Masas en Tándem/métodos , Femenino , Masculino , Cromatografía Líquida de Alta Presión/métodos , Adulto , Monitoreo Biológico/métodos , Compuestos Organofosforados/orina , Extracción Líquido-Líquido/métodos , Persona de Mediana Edad , Biomarcadores/orina , Adulto Joven
10.
Sci Total Environ ; 945: 173927, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901584

RESUMEN

The ubiquity and persistence of organophosphate esters (OPEs) and heavy metal (HMs) pose global environmental risks. This study explored tris(2-chloroisopropyl)phosphate (TCPP) biomineralization coupled to lead (Pb2+) biostabilization driven by denitrifying bacteria (DNB). The domesticated DNB achieved synergistic bioremoval of TCPP and Pb2+ in the batch bioreactor (efficiency: 98 %).TCPP mineralized into PO43- and Cl-, and Pb2+ precipitated with PO43-. The TCPP-degrading/Pb2+-resistant DNB: Achromobacter, Pseudomonas, Citrobacter, and Stenotrophomonas, dominated the bacterial community, and synergized TCPP biomineralization and Pb2+ biostabilization. Metagenomics and metaproteomics revealed TCPP underwent dechlorination, hydrolysis, the TCA cycle-based dissimilation, and assimilation; Pb2+ was detoxified via bioprecipitation, bacterial membrane biosorption, EPS biocomplexation, and efflux out of cells. TCPP, as an initial donor, along with NO3-, as the terminal acceptor, formed a respiratory redox as the primary energy metabolism. Both TCPP and Pb2+ can stimulate phosphatase expression, which established the mutual enhancements between their bioconversions by catalyzing TCPP dephosphorylation and facilitating Pb2+ bioprecipitation. TCPP may alleviate the Pb2+-induced oxidative stress by aiding protein phosphorylation. 80 % of Pb2+ converted into crystalized pyromorphite. These results provide the mechanistic foundations and help develop greener strategies for synergistic bioremediation of OPEs and HMs.


Asunto(s)
Biodegradación Ambiental , Contaminantes Ambientales , Plomo , Organofosfatos , Organofosfatos/química , Organofosfatos/metabolismo , Retardadores de Llama/metabolismo , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Desnitrificación , Plomo/química , Plomo/metabolismo , Achromobacter/metabolismo , Pseudomonas/metabolismo , Citrobacter/metabolismo , Stenotrophomonas/metabolismo , Metagenómica , Proteómica , Estrés Oxidativo
11.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895814

RESUMEN

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Asunto(s)
Bifenilos Polibrominados , Contaminantes Químicos del Agua , Animales , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Anaerobiosis , Aguas Residuales/química , Biota , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Eliminación de Residuos Líquidos/métodos , Chironomidae/efectos de los fármacos , Chironomidae/metabolismo , Organismos Acuáticos/efectos de los fármacos , Organismos Acuáticos/metabolismo
12.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893541

RESUMEN

Ammonium polyphosphate (APP), a pivotal constituent within environmentally friendly flame retardants, exhibits notable decomposition susceptibility and potentially engenders ecological peril. Consequently, monitoring the APP concentration to ensure product integrity and facilitate the efficacious management of wastewater from production processes is of great significance. A fluorescent assay was devised to swiftly discern APP utilizing 4',6'-diamino-2-phenylindole (DAPI). With increasing APP concentrations, DAPI undergoes intercalation within its structure, emitting pronounced fluorescence. Notably, the flame retardant JLS-PNA220-A, predominantly comprising APP, was employed as the test substrate. Establishing a linear relationship between fluorescence intensity (F-F0) and JLS-PNA220-A concentration yielded the equation y = 76.08x + 463.2 (R2 = 0.9992), with a LOD determined to be 0.853 mg/L. The method was used to assess the degradation capacity of APP-degrading bacteria. Strain D-3 was isolated, and subsequent analysis of its 16S DNA sequence classified it as belonging to the Acinetobacter genus. Acinetobacter nosocomialis D-3 demonstrated superior APP degradation capabilities under pH 7 at 37 °C, with degradation rates exceeding 85% over a four-day cultivation period. It underscores the sensitivity and efficacy of the proposed method for APP detection. Furthermore, Acinetobacter nosocomialis D-3 exhibits promising potential for remediation of residual APP through environmental biodegradation processes.


Asunto(s)
Acinetobacter , Biodegradación Ambiental , Polifosfatos , Acinetobacter/metabolismo , Acinetobacter/genética , Polifosfatos/metabolismo , Polifosfatos/química , Indoles/metabolismo , Indoles/química , Compuestos de Amonio/metabolismo , Compuestos de Amonio/química , Retardadores de Llama/metabolismo , Retardadores de Llama/análisis
13.
Sci Total Environ ; 933: 173230, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38750745

RESUMEN

The pollution of various brominated flame retardants (BFRs) is concurrence, while their environmental fate and toxicology in water-sediment-submerged plant systems remain unclear. In this study, Vallisneria natans plants were co-exposed to 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ether (BDE209), and decabromodiphenyl ethane (DBDPE). The ∑BFRs concentration in the root was 2.15 times higher than that in the shoot. Vallisneria natans accumulated more BTBPE and HBB in 0.2, 1, and 5 mg/kg treatments, while they accumulated more DBDPE and BDE209 in 25 and 50 mg/kg treatments. The bioaccumulation factors in the shoot and root were 1.08-96.95 and 0.04-0.70, respectively. BFRs in sediments had a more pronounced effect on bioaccumulation levels than BFRs in water, and biotranslocation was another potential influence factor. The SOD activity, POD activity, and MDA content were significantly increased under co-exposure. The DBDPE separate exposure impacted the metabolism of substances and energy, inhibited mismatch repair, and disrupted ribosomal functions in Vallisneria natans. However, DBDPE enhanced their photosynthesis by upregulating the expression level of genes related to the light reaction. This study provides a broader understanding of the bioaccumulation and toxicity of BFRs in submerged plants, shedding light on the scientific management of products containing BFRs.


Asunto(s)
Retardadores de Llama , Estrés Oxidativo , Fotosíntesis , Contaminantes Químicos del Agua , Retardadores de Llama/metabolismo , Contaminantes Químicos del Agua/metabolismo , Fotosíntesis/efectos de los fármacos , Bioacumulación , Sedimentos Geológicos/química , Éteres Difenilos Halogenados/metabolismo , Hydrocharitaceae/metabolismo
14.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701378

RESUMEN

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Asunto(s)
Biomarcadores , Retardadores de Llama , Éteres Difenilos Halogenados , Exposición Profesional , Organofosfatos , Retardadores de Llama/metabolismo , Humanos , Exposición por Inhalación , Adulto , Masculino , Piel/metabolismo , Estados Unidos , Femenino
15.
Langmuir ; 40(20): 10600-10614, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38721840

RESUMEN

Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.


Asunto(s)
Retardadores de Llama , Difracción de Rayos X , Retardadores de Llama/metabolismo , Halogenación , Membrana Celular/metabolismo , Membrana Celular/química
16.
Chemosphere ; 359: 142290, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723691

RESUMEN

Tetrabromobisphenol A (TBBPA) and its derivatives are widely used as brominated flame retardants. Because of their high production and wide environment distribution, TBBPA derivatives have increased considerable concern. Previous studies have primarily focused on TBBPA, with limited information available on its derivative. In this study, we investigated the uptake, biotransformation and physiological response of two derivatives, Tetrabromobisphenol A bis(allyl ether) (TBBPA BAE) and Tetrabromobisphenol A bis(2,3-dibromopropylether) (TBBPA BDBPE), in Helianthus annus (H. annus) through a short-term hydroponic assay. The results revealed that H. annus could absorb TBBPA BAE and TBBPA BDBPE from solution, with removal efficiencies of 98.33 ± 0.5% and 98.49 ± 1.56% after 10 days, respectively, which followed first-order kinetics. TBBPA BAE was absorbed, translocated and accumulated while TBBPA BDBPE couldn't be translocated upward due to its high hydrophobicity and low solubility. The concentrations of TBBPA derivatives in plants peaked within 72 h, and then decreased. We identified twelve metabolites resulting from ether bond breakage, debromination, and hydroxylation in H. annus. The high-level TBBPA BAE suppressed the growth and increased malondialdehyde (MDA) content of H. annus, while TBBPA BDBPE didn't pose a negative effect on H. annus. TBBPA BAE and TBBPA BDBPE increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), with higher levels of these enzymes activity found in high concentration treatments. Contrastingly, TBBPA BAE exhibited higher toxicity than TBBPA BDBPE, as indicated by greater antioxidant enzyme activity. The findings of this study develop better understanding of biotransformation mechanisms of TBBPA derivatives in plants, contributing to the assessment of the environmental and human health impacts of these contaminants.


Asunto(s)
Biotransformación , Retardadores de Llama , Helianthus , Bifenilos Polibrominados , Bifenilos Polibrominados/toxicidad , Bifenilos Polibrominados/metabolismo , Helianthus/efectos de los fármacos , Helianthus/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/metabolismo , Catalasa/metabolismo
17.
J Hazard Mater ; 473: 134731, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797078

RESUMEN

Organophosphate flame retardants (OPFRs) are widely used in consumer products, leading to their unavoidable release into the environment, especially accumulation in anaerobic environments and posing potential risks. This study focused on Tris(2-chloroethyl) phosphate (TCEP), a representative OPFR, to investigate its effects on carbon transformation and methane production in anaerobic digestion. Increasing TCEP concentrations from control to 16 mg/L resulted in decreased cumulative methane yield (from 235.4 to 196.3 mL/g COD) and maximum daily methane yield (from 40.8 to 16.17 mL/(g COD·d)), along with an extended optimal anaerobic digestion time (from 15 to 20 days). Mechanistic analysis revealed TCEP binding to tyrosine-like proteins in extracellular polymeric substances, causing cell membrane integrity impairment. The TCEP-caused alteration of the physiological status of cells was demonstrated to be a significant contribution to the inhibited bioprocesses including acidogenesis, acetogenesis, and methanogenesis. Illumina Miseq sequencing showed TCEP decreasing the relative abundance of acidogens (58.8 % to 46.0 %) and acetogens (7.1 % to 5.0 %), partly shifting the methanogenesis pathway from acetoclastic to hydrogenotrophic methanogenesis. These findings enhance understanding of TCEP's impact on anaerobic digestion, emphasizing the environmental risk associated with its continued accumulation.


Asunto(s)
Retardadores de Llama , Metano , Organofosfatos , Metano/metabolismo , Anaerobiosis , Organofosfatos/metabolismo , Organofosfatos/toxicidad , Retardadores de Llama/metabolismo , Retardadores de Llama/toxicidad , Reactores Biológicos , Microbiota/efectos de los fármacos , Bacterias/metabolismo , Bacterias/efectos de los fármacos
18.
Sci Total Environ ; 939: 173224, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763187

RESUMEN

Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Éteres Difenilos Halogenados , Hidrocarburos Bromados , Contaminantes Químicos del Agua , Retardadores de Llama/metabolismo , Retardadores de Llama/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Éteres Difenilos Halogenados/metabolismo , Éteres Difenilos Halogenados/análisis , Hidrocarburos Bromados/metabolismo , Hidrocarburos Bromados/análisis , Bioacumulación
19.
J Hazard Mater ; 472: 134594, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38754233

RESUMEN

Polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, easily enter the environment, thus posing environmental and health risks. Iron materials play a key role during the migration and transformation of PBDEs. This article reviews the processes and mechanisms of adsorption, degradation, and biological uptake and transformation of PBDEs affected by iron materials in the environment. Iron materials can effectively adsorb PBDEs through hydrophobic interactions, π-π interactions, hydrogen/halogen bonds, electrostatic interactions, coordination interactions, and pore filling interactions. In addition, they are beneficial for the photodegradation, reduction debromination, and advanced oxidation degradation and debromination of PBDEs. The iron material-microorganism coupling technology affects the uptake and transformation of PBDEs. In addition, iron materials can reduce the uptake of PBDEs in plants, affecting their bioavailability. The species, concentration, and size of iron materials affect plant physiology. Overall, iron materials play a bidirectional role in the biological uptake and transformation of PBDEs. It is necessary to strengthen the positive role of iron materials in reducing the environmental and health risks caused by PBDEs. This article provides innovative ideas for the rational use of iron materials in controlling the migration and transformation of PBDEs in the environment.


Asunto(s)
Biotransformación , Éteres Difenilos Halogenados , Hierro , Éteres Difenilos Halogenados/metabolismo , Éteres Difenilos Halogenados/química , Hierro/química , Hierro/metabolismo , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/química , Retardadores de Llama/metabolismo , Adsorción , Plantas/metabolismo
20.
J Hazard Mater ; 472: 134529, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723482

RESUMEN

Halogenated flame retardants (HFRs) have attracted global attention owing to their adverse effects on ecosystems and humans. The Shandong Peninsula is the largest manufacturing base for HFRs in East Asia, yet its impacts on marine ecosystems are unclear. Seventeen HFRs were analyzed in organisms captured from the Xiaoqing River estuary, Bohai Sea (BS), Yellow Sea and Northern East China Sea to investigate the distribution and bioaccumulation of HFRs on a broad scale. The results showed a downward trend in ΣHFR concentrations from the estuary (37.7 ng/g lw on average) to Laizhou Bay (192 ng/g lw) and to coastal seas (3.13 ng/g lw). The concentrations of ΣHFRs were significantly higher in demersal fish (0.71-198 ng/g lw) and benthic invertebrates (0.81-3340 ng/g lw) than in pelagic fish (0.30-27.6 ng/g lw), reflecting a habitat dependence. The concentrations of higher-brominated homologs were greater in benthic invertebrates, whereas a greater level of lower-brominated PBDE congeners was observed in fish, suggesting different profiles between species. Furthermore, the analogue composition of HFRs in fish was similar to that in the dissolved phase of seawater, whereas the HFR pattern in benthic invertebrates was consistent with the profile in sediment. The concentrations of HFRs in organisms vary widely depending on emissions from anthropogenic activities, whereas bioaccumulation patterns are strongly influenced by species and habitat.


Asunto(s)
Organismos Acuáticos , Ecosistema , Estuarios , Retardadores de Llama , Contaminantes Químicos del Agua , Retardadores de Llama/metabolismo , Retardadores de Llama/análisis , Animales , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Organismos Acuáticos/metabolismo , Océanos y Mares , Peces/metabolismo , Bioacumulación , Especificidad de la Especie , Monitoreo del Ambiente , China , Invertebrados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA