RESUMEN
Population genetics theory predicts a relationship between fitness, genetic diversity (H0) and effective population size (Ne), which is often tested through heterozygosity-fitness correlations (HFCs). We tested whether population and individual fertility and heterozygosity are correlated in two endangered Mexican spruces (Picea martinezii and Picea mexicana) by combining genomic, demographic and reproductive data (seed development and germination traits). For both species, there was a positive correlation between population size and seed development traits, but not germination rate. Individual genome-wide heterozygosity and seed traits were only correlated in P. martinezii (general-effects HFC), and none of the candidate single nucleotide polymorphisms (SNPs) associated with individual fertility showed heterozygote advantage in any species (no local-effects HFC). We observed a single and recent (c. 30 thousand years ago (ka)) population decline for P. martinezii; the collapse of P. mexicana occurred in two phases separated by a long period of stability (c. 800 ka). Recruitment always contributed more to total population census than adult trees in P. mexicana, while this was only the case in the largest populations of P. martinezii. Equating fitness to either H0 or Ne, as traditionally proposed in conservation biology, might not always be adequate, as species-specific evolutionary factors can decouple the expected correlation between these parameters.
Asunto(s)
Evolución Biológica , Especies en Peligro de Extinción , Bosques , Aptitud Genética , Reproducción , Semillas , Árboles , Árboles/genética , Árboles/fisiología , Semillas/genética , Semillas/fisiología , Semillas/crecimiento & desarrollo , Reproducción/genética , Picea/genética , Picea/fisiología , Picea/crecimiento & desarrollo , Heterocigoto , Germinación/genética , Polimorfismo de Nucleótido Simple/genética , Densidad de Población , Variación GenéticaRESUMEN
Insect pest control can be achieved by the application of RNA interference (RNAi), a key molecular tool in functional genomics. Whereas most RNAi research has focused on insect pests, few studies have been performed on natural enemies. Validating the efficacy of RNAi in natural enemies is crucial for assessing its safety and enabling molecular research on these organisms. Here, we assessed the efficacy of RNAi in the ladybird beetle Eriopis connexa Germar (Coleoptera: Coccinellidae), focusing on genes related to reproduction, such as vitellogenin (Vg) and its receptor (VgR). In the transcriptome of E. connexa, we found one VgR (EcVgR) and two Vg genes (EcVg1 and EcVg2). These genes have been validated by in silico analyses of functional domains and evolutionary relationships. Five-day-old females were injected with 500 ng/µL of a specific double-stranded RNA (dsRNA) (dsEcVg1, dsEcVg2, or dsEcVgR) for RNAi tests, while nonspecific dsRNA (dsGFP or dsAgCE8.1) was used as a control. Interestingly, dsEcVg2 was able to knockdown both Vg genes, while dsEcVg1 could silence only EcVg1. Additionally, the viability of the eggs was significantly reduced when both Vg genes were knocked down at the same time (after treatment with dsEcVg2 or "dsEcVg1+dsEcVg2"). Ultimately, malformed, nonviable eggs were produced when EcVgR was silenced. Interestingly, no dsRNA treatment had an impact on the quantity of eggs laid. Therefore, the feasibility of RNAi in E. connexa has been confirmed, suggesting that this coccinellid is an excellent Neotropical model for molecular research on natural enemies and for studying RNAi nontarget effects.
Asunto(s)
Escarabajos , Técnicas de Silenciamiento del Gen , Interferencia de ARN , Animales , Escarabajos/genética , Femenino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Reproducción/genética , ARN Bicatenario/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Control Biológico de VectoresRESUMEN
BACKGROUND: The genotype-by-environment interaction (GxE) in beef cattle can be investigated using reaction norm models to assess environmental sensitivity and, combined with genome-wide association studies (GWAS), to map genomic regions related to animal adaptation. Including genetic markers from whole-genome sequencing in reaction norm (RN) models allows us to identify high-resolution candidate genes across environmental gradients through GWAS. Hence, we performed a GWAS via the RN approach using whole-genome sequencing data, focusing on mapping candidate genes associated with the expression of reproductive and growth traits in Nellore cattle. For this purpose, we used phenotypic data for age at first calving (AFC), scrotal circumference (SC), post-weaning weight gain (PWG), and yearling weight (YW). A total of 20,000 males and 7,159 females genotyped with 770k were imputed to the whole sequence (29 M). After quality control and linkage disequilibrium (LD) pruning, there remained â¼ 2.41 M SNPs for SC, PWG, and YW and â¼ 5.06 M SNPs for AFC. RESULTS: Significant SNPs were identified on Bos taurus autosomes (BTA) 10, 11, 14, 18, 19, 20, 21, 24, 25 and 27 for AFC and on BTA 4, 5 and 8 for SC. For growth traits, significant SNP markers were identified on BTA 3, 5 and 20 for YW and PWG. A total of 56 positional candidate genes were identified for AFC, 9 for SC, 3 for PWG, and 24 for YW. The significant SNPs detected for the reaction norm coefficients in Nellore cattle were found to be associated with growth, adaptative, and reproductive traits. These candidate genes are involved in biological mechanisms related to lipid metabolism, immune response, mitogen-activated protein kinase (MAPK) signaling pathway, and energy and phosphate metabolism. CONCLUSIONS: GWAS results highlighted differences in the physiological processes linked to lipid metabolism, immune response, MAPK signaling pathway, and energy and phosphate metabolism, providing insights into how different environmental conditions interact with specific genes affecting animal adaptation, productivity, and reproductive performance. The shared genomic regions between the intercept and slope are directly implicated in the regulation of growth and reproductive traits in Nellore cattle raised under different environmental conditions.
Asunto(s)
Interacción Gen-Ambiente , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Reproducción , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Bovinos/crecimiento & desarrollo , Reproducción/genética , Femenino , Masculino , Genotipo , Fenotipo , Sitios de Carácter Cuantitativo , Desequilibrio de LigamientoRESUMEN
During the last decade, the spotted wing drosophila, Drosophila suzukii, has spread from eastern Asia to the Americas, Europe, and Africa. This fly attacks many species of cultivated and wild fruits with soft, thin skins, where its serrated ovipositor allows it to lay eggs in undamaged fruit. Parasitoids from the native range of D. suzukii may provide sustainable management of this polyphagous pest. Among these parasitoids, host-specificity testing has revealed a lineage of Ganaspis near brasiliensis, referred to in this paper as G1, that appears to be a cryptic species more host-specific to D. suzukii than other parasitoids. Differentiation among cryptic species is critical for introduction and subsequent evaluation of their impact on D. suzukii. Here, we present results on divergence in genomic sequences and architecture and reproductive isolation between lineages of Ganaspis near brasiliensis that appear to be cryptic species. We studied five populations, two from China, two from Japan, and one from Canada, identified as the G1 vs G3 lineages based on differences in cytochrome oxidase l sequences. We assembled and annotated the genomes of these populations and analyzed divergences in sequence and genome architecture between them. We also report results from crosses to test reproductive compatibility between the G3 lineage from China and the G1 lineage from Japan. The combined results on sequence divergence, differences in genome architectures, ortholog divergence, reproductive incompatibility, differences in host ranges and microhabitat preferences, and differences in morphology show that these lineages are different species. Thus, the decision to evaluate the lineages separately and only import and introduce the more host-specific lineage to North America and Europe was appropriate.
Asunto(s)
Drosophila , Animales , Drosophila/genética , Genoma de los Insectos , Reproducción/genética , Aislamiento Reproductivo , Filogenia , Femenino , Variación Genética , Genómica/métodosRESUMEN
This study aimed to estimate (co)variance components and genetic parameters for calving ease (CE) and their genetic correlations with growth, reproductive, carcass, and feed efficiency traits in Nellore cattle. Phenotypes for CE are scored in two categories: normal calving and assisted calving. The traits considered were probability of precocious calving, age at first calving, stayability, adjusted scrotal circumference at 365 days of age, accumulated cow productivity, age at puberty of males, gestation length, birth weight, adjusted weights at 210 and 450 days of age, adult cow weight, frame score, hip height, rib eye area, subcutaneous backfat thickness, rump fat thickness, intramuscular fat percentage, residual feed intake and dry matter intake. The estimation of genetic parameters was performed using a two-trait threshold-linear animal model, except for CE, stayability, and probability of precocious calving, which were evaluated through a two-trait threshold animal model. The direct (0.27) and maternal (0.19) heritability estimates for CE in heifers primiparous Nellore indicated that selecting for this trait is feasible. The selection to improve the female sexual precocity should consider CE during the selection and mating decisions to reduce calving problems. Genetic correlation estimates between CE and BW suggest that selecting low birth weight to reduce calving problems is not an appropriate strategy to improve calving ease in heifers Nellore. Therefore, adopting a multi-trait selection model with CE and BW in the Nellore breed would reduce calving difficulties, particularly in sexually precocious heifers, without impairing the growth, reproductive, feed efficiency conversion, and carcass indicator traits.
Asunto(s)
Fenotipo , Animales , Bovinos/genética , Bovinos/fisiología , Bovinos/crecimiento & desarrollo , Femenino , Embarazo , Masculino , Peso al Nacer/genética , Reproducción/genética , Cruzamiento , Paridad/genéticaRESUMEN
This study aimed to estimate two reproductive efficiency indices in sheep based on the ratio between litter weight (at birth and weaning) and dam weight, as well as their genetic parameters. Phenotypic and pedigree data comprising the period from 1990 to 2018 were obtained from the Santa Inês sheep database of Embrapa Tabuleiros Costeiros. For estimation of the genetic parameters of the indices, a repeatability model was applied in single- and two-trait analyses by a Bayesian approach. The mean reproductive efficiency index was 0.069 ± 0.0163 and 0.43 ± 0.0955 at birth and weaning, respectively. These values indicate that, on average, ewes give birth to 69 g of lamb per kg body weight and wean 430 g of lamb per kg body weight. Described here for the first time, the heritability estimate obtained in single- and two-trait analyses was 0.24 for the index based on birth weights and ranged from 0.13 to 0.15 for the index based on weaning weights. The estimates indicate the possibility of genetic gain by selection and are similar to those reported for reproductive traits in sheep, representing an option for selection criterion. The genetic correlation between indices was positive and moderate (0.26). The repeatability estimates were high (0.49 for the birth weight index and 0.71 for the weaning weight index). These values indicate good prediction of future performance with few observations. The weaning weight index might be a good culling criterion of females.
Asunto(s)
Reproducción , Animales , Femenino , Ovinos/genética , Ovinos/fisiología , Reproducción/genética , Peso al Nacer/genética , Masculino , Teorema de Bayes , Fenotipo , Destete , Tamaño de la Camada/genética , Cruzamiento , Peso Corporal/genética , Linaje , Modelos GenéticosRESUMEN
KEY MESSAGE: Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.
Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Gossypium , Gossypium/genética , Gossypium/crecimiento & desarrollo , Gossypium/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Reproducción/genética , Transcriptoma , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiologíaRESUMEN
BACKGROUNDING: Stayability, which may be defined as the probability of a cow remaining in the herd until a reference age or at a specific number of calvings, is usually measured late in the animal's life. Thus, if used as selection criteria, it will increase the generation interval and consequently might decrease the annual genetic gain. Measuring stayability at an earlier age could be a reasonable strategy to avoid this problem. In this sense, a better understanding of the genetic architecture of this trait at different ages and/or at different calvings is important. This study was conducted to identify possible regions with major effects on stayability measured considering different numbers of calvings in Nellore cattle as well as pathways that can be involved in its expression throughout the female's productive life. RESULTS: The top 10 most important SNP windows explained, on average, 17.60% of the genetic additive variance for stayability, varying between 13.70% (at the eighth calving) and 21% (at the fifth calving). These SNP windows were located on 17 chromosomes (1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 18, 19, 20, 27, and 28), and they harbored a total of 176 annotated genes. The functional analyses of these genes, in general, indicate that the expression of stayability from the second to the sixth calving is mainly affected by genetic factors related to reproductive performance, and nervous and immune systems. At the seventh and eighth calvings, genes and pathways related to animal health, such as density bone and cancer, might be more relevant. CONCLUSION: Our results indicate that part of the target genomic regions in selecting for stayability at earlier ages (from the 2th to the 6th calving) would be different than selecting for this trait at later ages (7th and 8th calvings). While the expression of stayability at earlier ages appeared to be more influenced by genetic factors linked to reproductive performance together with an overall health/immunity, at later ages genetic factors related to an overall animal health gain relevance. These results support that selecting for stayability at earlier ages (perhaps at the second calving) could be applied, having practical implications in breeding programs since it could drastically reduce the generation interval, accelerating the genetic progress.
Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Femenino , Animales , Bovinos/genética , Fenotipo , Probabilidad , Reproducción/genéticaRESUMEN
The profitability of the beef cattle production system relies heavily on reproductive traits. Unfortunately, certain traits, such as age at first calving (AFC), calving interval (CI), and gestation length (GL), can pose challenges in traditional breeding programs because of their low heritability (0.01-0.12) and sex-limited characteristics. Another important aspect is the conservation of the genetic resources of animals adapted to the Colombian regions, which implies the preservation and rational use of the creole breeds in the country market. Therefore, this study aimed to identify genomic regions in the creole cattle breed Blanco Orejinegro (BON) that influence the reproductive traits in females. The dataset comprised 439 animals and 118,116 single-nucleotide polymorphisms' (SNPs) markers. The GS3 program was used to identify the SNP effects employing the BAYES Cπ methodology. The number of SNPs with effect for AFC was 25, 1527 for CI, and 23 for GL. Some of the genes found associated with reproductive and growth traits as well as immune response and environmental adaptation ECE1, EPH, EPHB2, SMARCAL1, IGFBP5, IGFBP2, FCGRT, EGFR, MUL1, PINK1, STPG1, CNGB1, TGFB1, OXTR, IL22RA1, MYOM3, OXTR, CNR2, HIVEP3, CTPS1, CXCL8, FCGRT, MREG, TMEM169, PECR, and MC1R. Our results evidenced a high contribution of the genetic architecture of the Colombian creole cattle breed Blanco Orejinegro that may impact should be included in implementing genetic improvement and conservation programs.
Asunto(s)
Estudio de Asociación del Genoma Completo , Reproducción , Femenino , Animales , Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Colombia , Teorema de Bayes , Fenotipo , Reproducción/genética , Polimorfismo de Nucleótido SimpleRESUMEN
The genetic systems of Paspalum species have not been extensively studied. We analyzed the ploidy, reproductive mode, mating system, and fertility of four Paspalum species-Paspalum durifolium, Paspalum ionanthum, Paspalum regnellii, and Paspalum urvillei. An analysis of 378 individuals from 20 populations of northeastern Argentina was conducted. All populations of the four Paspalum species were pure tetraploid and had a sexual and stable reproductive mode. However, some populations of P. durifolium and P. ionanthum showed low levels of apospory. Populations of P. durifolium and P. ionanthum had low seed sets under self-pollination but were fertile under open pollination, showing that self-incompatibility likely caused self-sterility. In contrast, populations of P. regnellii or P. urvillei showed no evidence of apospory, and seed sets in both self- and open pollination conditions were high, suggesting that they are self-compatible due to the absence of pollen-pistil molecular incompatibility mechanisms. The evolutionary origin of the four Paspalum species could explain these differences. This study supplies valuable insights into the genetic systems of Paspalum species, which could have implications for their conservation and management.
Asunto(s)
Paspalum , Humanos , Paspalum/genética , Reproducción/genética , Ploidias , Tetraploidía , SexualidadRESUMEN
The basidiomycete Moniliophthora roreri causes frosty pod rot of cacao (Theobroma cacao) in the western hemisphere. Moniliophthora roreri is considered asexual and haploid throughout its hemibiotrophic life cycle. To understand the processes driving genome modification, using long-read sequencing technology, we sequenced and assembled 5 high-quality M. roreri genomes out of a collection of 99 isolates collected throughout the pathogen's range. We obtained chromosome-scale assemblies composed of 11 scaffolds. We used short-read technology to sequence the genomes of 22 similarly chosen isolates. Alignments among the 5 reference assemblies revealed inversions, translocations, and duplications between and within scaffolds. Isolates at the front of the pathogens' expanding range tend to share lineage-specific structural variants, as confirmed by short-read sequencing. We identified, for the first time, 3 new mating type A locus alleles (5 in total) and 1 new potential mating type B locus allele (3 in total). Currently, only 2 mating type combinations, A1B1 and A2B2, are known to exist outside of Colombia. A systematic survey of the M. roreri transcriptome across 2 isolates identified an expanded candidate effector pool and provided evidence that effector candidate genes unique to the Moniliophthoras are preferentially expressed during the biotrophic phase of disease. Notably, M. roreri isolates in Costa Rica carry a chromosome segment duplication that has doubled the associated gene complement and includes secreted proteins and candidate effectors. Clonal reproduction of the haploid M. roreri genome has allowed lineages with unique genome structures and compositions to dominate as it expands its range, displaying a significant founder effect.
Asunto(s)
Agaricales , Basidiomycota , Agaricales/genética , Basidiomycota/genética , Reproducción/genética , Colombia , Enfermedades de las Plantas/genéticaRESUMEN
BACKGROUND: In Brachiaria sexual reproduction, during ovule development, a nucellar cell differentiates into a megaspore mother cell (MMC) that, through meiosis and mitosis, gives rise to a reduced embryo sac. In aposporic apomictic Brachiaria, next to the MMC, other nucellar cells differentiate into aposporic initials that enter mitosis directly forming an unreduced embryo sac. The IPT (isopentenyltransferase) family comprises key genes in the cytokinin (CK) pathway which are expressed in Arabidopsis during ovule development. BbrizIPT9, a B. brizantha (syn. Urochloa brizantha) IPT9 gene, highly similar to genes of other Poaceae plants, also shows similarity with Arabidopsis IPT9, AtIPT9. In this work, we aimed to investigate association of BbrizIPT9 with ovule development in sexual and apomictic plants. METHODS AND RESULTS: RT-qPCR showed higher BbrizIPT9 expression in the ovaries of sexual than in the apomictic B. brizantha. Results of in-situ hybridization showed strong signal of BbrizIPT9 in the MMC of both plants, at the onset of megasporogenesis. By analyzing AtIPT9 knockdown mutants, we verified enlarged nucellar cell, next to the MMC, in a percentage significantly higher than in the wild type, suggesting that knockout of AtIPT9 gene triggered the differentiation of extra MMC-like cells. CONCLUSIONS: Our results indicate that AtIPT9 might be involved in the proper differentiation of a single MMC during ovule development. The expression of a BbrizIPT9, localized in male and female sporocytes, and lower in apomicts than in sexuals, and effect of IPT9 knockout in Arabidopsis, suggest involvement of IPT9 in early ovule development.
Asunto(s)
Arabidopsis , Brachiaria , Brachiaria/genética , Arabidopsis/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Poaceae , Reproducción/genética , Regulación de la Expresión Génica de las Plantas/genéticaRESUMEN
BACKGROUND: Given the economic relevance of fertility and reproductive traits for the beef cattle industry, investigating their genetic background and developing effective breeding strategies are paramount. Considering their late and sex-dependent phenotypic expression, genomic information can contribute to speed up the rates of genetic progress per year. In this context, the main objectives of this study were to estimate variance components and genetic parameters, including heritability and genetic correlations, for fertility, female precocity, and semen production and quality (andrological attributes) traits in Nellore cattle incorporating genomic information. RESULTS: The heritability estimates of semen quality traits were low-to-moderate, while moderate-to-high estimates were observed for semen morphological traits. The heritability of semen defects ranged from low (0.04 for minor semen defects) to moderate (0.30 for total semen defects). For seminal aspect (SMN_ASPC) and bull reproductive fitness (BULL_FIT), low (0.19) and high (0.69) heritabilities were observed, respectively. The heritability estimates for female reproductive traits ranged from 0.16 to 0.39 for rebreeding of precocious females (REBA) and probability of pregnancy at 14 months (PP14), respectively. Semen quality traits were highly genetically correlated among themselves. Moderate-to-high genetic correlations were observed between the ability to remain productive in the herd until four years of age (stayability; STAY) and the other reproductive traits, indicating that selection for female reproductive performance will indirectly contribute to increasing fertility rates. High genetic correlations between BULL_FIT and female reproductive traits related to precocity (REBA and PP14) and STAY were observed. The genetic correlations between semen quality and spermatic morphology with female reproductive traits ranged from -0.22 (REBA and scrotal circumference) to 0.48 (REBA and sperm vigor). In addition, the genetic correlations between REBA with semen quality traits ranged from -0.23 to 0.48, and with the spermatic morphology traits it ranged from -0.22 to 0.19. CONCLUSIONS: All male and female fertility and reproduction traits evaluated are heritable and can be improved through direct genetic or genomic selection. Selection for better sperm quality will positively influence the fertility and precocity of Nellore females. The findings of this study will serve as background information for designing breeding programs for genetically improving semen production and quality and reproductive performance in Nellore cattle.
Asunto(s)
Análisis de Semen , Semen , Embarazo , Bovinos/genética , Masculino , Animales , Femenino , Análisis de Semen/veterinaria , Reproducción/genética , Fertilidad/genética , FenotipoRESUMEN
This study reports genetic parameters for yearling and adult wool and growth traits, and ewe reproductive performance. Data were sourced from an Uruguayan Merino flock involved in a long-term selection program focused on reduced fiber diameter (FD), and increased clean fleece weight (CFW) and live weight (LW). Pedigree and performance data from approximately 5,700 mixed-sex yearling lambs and 2,000 mixed-age ewes born between 1999 and 2019 were analyzed. The number of records ranged from 1,267 to 5,738 for yearling traits, and from 1,931 to 7,079 for ewe productive and reproductive performance. Data on yearling and adult wool traits, LW and body condition score (BCS), yearling eye muscle area (Y_EMA), and fat thickness (Y_FAT), and several reproduction traits were analyzed. The genetic relationships between FD and reproduction traits were not different from zero. Moderate unfavorable genetic correlations were found between adult CFW and ewe lifetime reproduction traits (-0.34â ±â 0.08 and -0.33â ±â 0.09 for the total number of lambs weaned and total lamb LW at weaning, respectively). There were moderate to strong positive genetic correlations between yearling LW and all reproduction traits other than ewe-rearing ability (-0.08â ±â 0.11) and pregnancy rate (0.18â ±â 0.08). The genetic correlations between Y_EMA and reproduction traits were positive and ranged from 0.15 to 0.49. Moderate unfavorable genetic correlations were observed between yearling FD and Y_FAT and between adult FD and BCS at mating (0.31â ±â 0.12 and 0.23â ±â 0.07, respectively). The genetic correlations between adult fleece weight and ewe BCS at different stages of the cycle were negative, but generally not different from zero. This study shows that selection for reduced FD is unlikely to have any effect on reproduction traits. Selection for increased yearling LW and Y_EMA will improve ewe reproductive performance. On the other hand, selection for increased adult CFW will reduce ewe reproductive performance, whereas selection for reduced FD will negatively impact body fat levels. Although unfavorable genetic relationships between wool traits and both FAT and ewe reproductive performance existed, simultaneous improvements in the traits would occur using appropriately designed indexes.
Fiber diameter (FD), clean fleece weight (CFW), live weight (LW), and reproductive performance are important traits in Merino flocks. This study estimated the genetic parameters for a range of production traits and ewe reproductive performance. Data from approximately 5,700 mixed-sex yearling lambs and 2,000 mixed-age ewes born in a single Uruguayan Merino flock were analyzed. There were generally favorable (positive) genetic correlations between LW and reproduction traits. The genetic relationships between FD and reproduction traits were generally negligible. In addition, moderate unfavorable (negative) genetic correlations were found between adult CFW and ewe reproduction traits. This study indicates that selecting finer fleeces will yield little to no change in ewe reproduction traits, whereas heavier fleeces are related to reduced ewe reproductive performance. On the other hand, genetically heavier yearling ewes will display greater reproductive performance.
Asunto(s)
Reproducción , Lana , Embarazo , Ovinos/genética , Animales , Femenino , Reproducción/genética , Fenotipo , Oveja Doméstica , Tejido Adiposo , Aumento de PesoRESUMEN
Considering the economic and commercial efficiency of the beef production chain, the yield and quality of the meat produced must also be included in breeding programs. For the Nellore breed, including the polled herd, these aspects have not been much studied. The aim of this study was to estimate genetic parameters for scrotal circumference adjusted to 365 (SC365) and 450 (SC450) days of age, age at first calving (AFC), accumulated productivity (AP), stayability (STAY), longissimus muscle area (LMA), thickness of subcutaneous fat over the 12th-13th ribs (BF), thickness of subcutaneous fat over the rump (RF), and shear force measured by Warner-Bratzler shear force (WBSF) of polled Nellore cattle. Bayesian analyses were performed by adopting a linear animal model, whereas STAY analyses used the linear threshold model. Heritability estimates were 0.31 (SC365), 0.37 (SC450), 0.16 (AFC), 0.25 (AP), 0.16 (STAY), 0.30 (LMA), 0.13 (BF), 0.24 (RF), and 0.15 (WBSF), indicating moderate response to selection. Genetic and residual correlations between SC365 and SC450 were high (0.91 and 0.74, respectively), as well as the genetic correlations of AP with SC365, SC450, AFC, and STAY (0.61, 0.62, - 0.69, and 0.83, respectively). Genetic and residual correlations of WBSF with reproductive and carcass characteristics exhibited high standard deviations, however favorable. Based on the results, it is expected that in the medium term, animals with greater sexual precocity will also have greater accumulated productivity and longer permanence of females in the herd, along with superior carcass traits. However, due to the low heritabilities and small genetic associations with reproductive traits, fat thickness characteristics (BF and RF) will still require direct selection.
Asunto(s)
Carne , Reproducción , Animales , Bovinos/genética , Femenino , Teorema de Bayes , Fenotipo , Reproducción/genéticaRESUMEN
The aim of this study was to identify genomic regions and genes associated with the fiber diameter (FD), clean fleece weight (CFW), live weight (LW), body condition score (BCS), pregnancy rate (PR) and lambing potential (LP) of Uruguayan Merino sheep. Phenotypic records of approximately 2000 mixed-age ewes were obtained from a Merino nucleus flock. Genome-wide association studies were performed utilizing single-step Bayesian analysis. For wool traits, a total of 35 genomic windows surpassed the significance threshold (PVE ≥ 0.25%). The proportion of the total additive genetic variance explained by those windows was 4.85 and 9.06% for FD and CFW, respectively. There were 42 windows significantly associated with LWM, which collectively explained 43.2% of the additive genetic variance. For BCS, 22 relevant windows accounted for more than 40% of the additive genetic variance, whereas for the reproduction traits, 53 genomic windows (24 and 29 for PR and LP, respectively) reached the suggestive threshold of 0.25% of the PVE. Within the top 10 windows for each trait, we identified several genes showing potential associations with the wool (e.g., IGF-1, TGFB2R, PRKCA), live weight (e.g., CAST, LAP3, MED28, HERC6), body condition score (e.g., CDH10, TMC2, SIRPA, CPXM1) or reproduction traits (e.g., ADCY1, LEPR, GHR, LPAR2) of the mixed-age ewes.
Asunto(s)
Estudio de Asociación del Genoma Completo , Lana , Embarazo , Animales , Ovinos/genética , Femenino , Teorema de Bayes , Genómica , Oveja Doméstica/genética , Reproducción/genéticaRESUMEN
Beef cattle breeding programs offer genetic evaluations and consulting services on animal breeding practices to help breeders improve the genetic merit of their herds. Some breeders are more willing to apply best practices and technologies than others. Consequently, the average genetic merit and genetic trends differ across herds. We benchmarked some parameters of an average herd (AVE) and the corresponding parameters of herds with higher genetic merit (TOP), both participating in a commercial Nellore breeding program. Expected progeny differences (EPD) for growth, reproductive and carcass traits and a selection index (SI) of animals born from 2005 to 2019 on 128 farms located in Brazil, Bolivia and Paraguay were used to compute the AVE parameters. The 20 herds with higher mean SI of animals born in the last five birth seasons were classified as TOP herds. The mean SI and EPD of animals born in the last five seasons in the TOP herds were, respectively, 89% and 79% to 206% higher (p ≤ 0.001) than those of animals from the AVE herd. Genetic trends over the entire period were also higher (50% for SI and 31% to 88% separately for each trait, p ≤ 0.006) in the TOP herds compared to the AVE herd. Although the difference in the numbers of cows, bulls and calves between the TOP and AVE herds did not reach statistical significance (p = 0.175, p = 0.273 and p = 0.061, respectively), the numbers of progeny per cow and per bull were 21% (p = 0.012) and 26% (p = 0.047) higher in the TOP herds, respectively. Multiple ovulation and embryo transfer and in vitro fertilization and embryo transfer (MOET/IVF) accounted for a higher percentage of births in the TOP herds compared to AVE (24.6% vs. 12.5%, p = 0.002). The generation interval was 17% shorter (p < 0.001) in the TOP herds compared to AVE. The average inbreeding coefficient of animals from the TOP herds (1.08 ± 0.52%) did not differ (p = 0.78) from that of AVE animals (1.26 ± 0.96%). In general, AVE herds are evolving in the desirable direction but differences in genetic merit between AVE and TOP herds are increasing over time. The more frequent use of MOET/IVF, a lower cow-to-bull ratio, and a larger family size (progeny per cow or per bull) can help achieve larger selection differentials and increase genetic trends and average genetic merits of TOP herds compared to AVE herds.
Asunto(s)
Benchmarking , Reproducción , Embarazo , Femenino , Bovinos/genética , Animales , Masculino , Reproducción/genética , Parto , Endogamia , Fenotipo , Industria LecheraRESUMEN
Kisspeptin and γ-amino butyric acid (GABA), synthesized in the central nervous system, are critical for reproduction. Both are also expressed in peripheral organs/tissues critical to metabolic control (liver/pancreas/adipose). Many kisspeptin neurons coexpress GABAB receptors (GABABR) and GABA controls kisspeptin expression and secretion. We developed a unique mouse lacking GABABR exclusively from kisspeptin cells/neurons (Kiss1-GABAB1KO) to evaluate the impact on metabolism/reproduction. We confirmed selective deletion of GABABR from Kiss1 cells in the anteroventral periventricular nucleus/periventricular nucleus continuum (AVPV/PeN; immunofluorescence and PCR) and arcuate nucleus (ARC), medial amygdala (MeA), pituitary, liver, and testes (PCR). Young Kiss1-GABAB1KO males were fertile, with normal LH and testosterone. Kiss1 expression was similar between genotypes in AVPV/PeN, ARC, MeA, bed nucleus of the stria terminalis (BNST), and peripheral organs (testis, liver, pituitary). Kiss1-GABAB1KO males presented higher fasted glycemia and insulin levels, an impaired response to a glucose overload, reduced insulin sensitivity, and marked insulin resistance. Interestingly, when Kiss1-GABAB1KO males got older (9 mo old) their body weight (BW) increased, in part due to an increase in white adipose tissue (WAT). Old Kiss1-GABAB1KO males showed higher fasted insulin, increased pancreatic insulin content, insulin resistance, and significantly decreased pancreatic kisspeptin levels. In sum, lack of GABABR specifically in Kiss1 cells severely impacts glucose homeostasis in male mice, reinforcing kisspeptin involvement in metabolic regulation. These alterations in glucose homeostasis worsened with aging. We highlight the impact of GABA through GABABR in the regulation of the pancreas kisspeptin system in contrast to liver kisspeptin that was not affected.NEW & NOTEWORTHY We developed a unique mouse lacking GABAB receptors specifically in Kiss1 cells to evaluate the impact on reproduction and metabolism. Knockout males showed a severe impact on glucose homeostasis, which worsened with aging. These results reinforce the proposed kisspeptin involvement in metabolic regulation and highlight the impact of GABA through GABABR in the regulation of the peripheral pancreas kisspeptin system.
Asunto(s)
Resistencia a la Insulina , Insulinas , Ratones , Animales , Masculino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Resistencia a la Insulina/genética , Estradiol/metabolismo , Ratones Noqueados , Reproducción/genética , Homeostasis , Ácido gamma-Aminobutírico/metabolismoRESUMEN
This study aimed to estimate prediction ability and genetic parameters for residual feed intake (RFI) calculated using a regression equation for each test (RFItest) and for the whole population (RFIpop) in Nellore beef cattle. It also aimed to evaluate the correlations between RFIpop and RFItest with growth, reproductive, and carcass traits. Genotypic and phenotypic records from 8354 animals were used. An analysis of variance (ANOVA) was performed to verify the adequacy of the regression equations applied to estimate the RFItest and RFIpop. The (co)variance components were obtained using the single-step genomic best linear unbiased prediction under single and two-trait animal model analyses. The genetic and phenotypic correlations between RFItest and RFIpop with dry matter intake, frame, growth, reproduction, and carcass-related traits were evaluated. The prediction ability and bias were estimated to compare the RFItest and RFIpop genomic breeding values (GEBV). The RFIpop ANOVA showed a higher significance level (p < 0.0001) than did the RFItest for the fixed effects. The RFIpop displayed higher additive genetic variance estimated than the RFItest, although the RFIpop and RFItest displayed similar heritabilities. Overall, the RFItest showed higher residual correlations with growth, reproductive, and carcass traits, while the RFIpop displayed higher genetic correlations with such traits. The GEBV for the RFItest was slightly biased than GEBV RFIpop. The approach to calculate the RFI influenced the decomposition and estimation of variance components and genomic prediction for RFI. The application of RFIpop would be more appropriate for genetic evaluation purpose to adjust or correct for non-genetic effects and to decrease the prediction bias for RFI.
Asunto(s)
Ingestión de Alimentos , Genoma , Bovinos/genética , Animales , Ingestión de Alimentos/genética , Fenotipo , Genómica , Reproducción/genética , Alimentación AnimalRESUMEN
Mitochondrial and nuclear genomes must be co-adapted to ensure proper cellular respiration and energy production. Mito-nuclear incompatibility reduces individual fitness and induces hybrid infertility, which can drive reproductive barriers and speciation. Here, we develop a birth-death model for evolution in spatially extended populations under selection for mito-nuclear co-adaptation. Mating is constrained by physical and genetic proximity, and offspring inherit nuclear genomes from both parents, with recombination. The model predicts macroscopic patterns including a community's species diversity, species abundance distribution, speciation and extinction rates, as well as intraspecific and interspecific genetic variation. We explore how these long-term outcomes depend upon the parameters of reproduction: individual fitness governed by mito-nuclear compatibility, constraints on mating compatibility and ecological carrying capacity. We find that strong selection for mito-nuclear compatibility reduces the equilibrium number of species after a radiation, increasing species' abundances and simultaneously increasing both speciation and extinction rates. The negative correlation between species diversity and diversification rates in our model agrees with the broad empirical pattern of lower diversity and higher speciation/extinction rates in temperate regions, compared to the tropics. We conclude that these empirical patterns may be caused in part by latitudinal variation in metabolic demands and corresponding variation in selection for mito-nuclear function.