RESUMEN
In the absence of vasopressin, medullary thick ascending limb cells express a K(+)-independent, furosemide-sensitive Na(+)-Cl(-) cotransporter that is inhibited by hypertonicity. The murine renal specific Na(+)-K(+)-2 Cl(-) cotransporter gene (SLC12A1) gives rise to six alternatively spliced isoforms. Three feature a long COOH-terminal domain that encodes the butmetanide-sensitive Na(+)-K(+)-2 Cl(-) cotransporter (BSC1-9/NKCC2), and three with a short COOH-terminal domain, known as mBSC1-A4, B4, or F4 (19). Here we have determined the functional characteristics of mBSC1-A4, as expressed in Xenopus laevis oocytes. When incubated at normal oocyte osmolarity (approximately 200 mosmol/kgH(2)O), mBSC1-4-injected oocytes do not express significant Na(+) uptake over H(2)O-injected controls, and immunohistochemical analysis shows that the majority of mBSC1-4 protein is in the oocyte cytoplasm and not at the plasma membrane. In contrast, when mBSC1-4 oocytes are exposed to hypotonicity (approximately 100 mosmol/kgH(2)O), a significant increase in Na(+) uptake but not in (86)Rb(+) uptake is observed. The increased Na(+) uptake is Cl(-) dependent, furosemide sensitive, and cAMP sensitive but K(+) independent. Sodium uptake increases with decreasing osmolarity between 120 and 70 mosmol/kgH(2)O (r = 0.95, P < 0.01). Immunohistochemical analysis shows that in hypotonic conditions mBSC1-A4 protein is expressed in the plasma membrane. These studies indicate that the mBSC1-A4 isoform of the SLC12A1 gene encodes a hypotonically activated, cAMP- and furosemide-sensitive Na(+)-Cl(-) cotransporter. Thus it is possible that alternative splicing of the BSC1 gene could provide the molecular mechanism enabling the Na(+)-Cl(-)-to-Na(+)-K(+)-2Cl(-) switching in thick ascending limb cells.
Asunto(s)
Empalme Alternativo/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diuréticos/farmacología , Furosemida/farmacología , Sulfonamidas , 1-Metil-3-Isobutilxantina/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Bumetanida/farmacología , Proteínas Portadoras/química , Membrana Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Expresión Génica/fisiología , Soluciones Hipotónicas/farmacología , Isomerismo , Isoquinolinas/farmacología , Asa de la Nefrona/enzimología , Mamíferos , Oocitos/fisiología , Concentración Osmolar , Inhibidores de Fosfodiesterasa/farmacología , Radioisótopos de Sodio/farmacocinética , Simportadores de Cloruro de Sodio-Potasio , Tritio , Xenopus laevisRESUMEN
BACKGROUND: The most abundant Na+/H+ exchanger in the apical membrane of proximal tubules is the type 3 isoform (NHE3), and its activity is acutely inhibited by parathyroid hormone (PTH). In the present study, we investigate whether changes in protein abundance as well as in mRNA levels play a significant role in the long-term modulation of NHE3 by PTH. METHODS: Three groups of animals were compared: (1) HP: animals submitted to hyperparathyroidism by subcutaneous implantation of PTH pellets, providing threefold basal levels of this hormone (2.1 U. h-1); (2) control: sham-operated rats in which placebo pellets were implanted; (3) PTX: animals submitted to hypoparathyroidism by thyroparathyroidectomy followed by subcutaneous implantation of thyroxin pellets, which provided basal levels of thyroid hormone. After eight days, we measured bicarbonate reabsorption in renal proximal tubules by in vivo microperfusion. NHE3 activity was also measured in brush border membrane (BBM) vesicles by proton dependent uptake of 22Na. NHE3 expression was evaluated by Northern blot, Western blot and immunohistochemistry. RESULTS: Bicarbonate reabsorption in renal proximal tubules was significantly decreased in HP rats. Na+/H+ exchange activity in isolated BBM vesicles was 6400 +/- 840, 9225 +/- 505, and 12205 +/- 690 cpm. mg-1. 15 s-1 in HP, sham, and PTX groups, respectively. BBM NHE3 protein abundance decreased 39.3 +/- 8.2% in HP rats and increased 54.6 +/- 7.8% in PTX rats. Immunohistochemistry showed that expression of NHE3 protein in apical BBM was decreased in HP rats and was increased in PTX rats. Northern blot analysis of total kidney RNA showed that the abundance of NHE3 mRNA was 20.3 +/- 1.3% decreased in HP rats and 27. 7 +/- 2.1% increased in PTX. CONCLUSIONS: Our results indicate that the chronic inhibitory effect of PTH on the renal proximal tubule NHE3 is associated with changes in the expression of NHE3 mRNA levels and protein abundance.
Asunto(s)
Túbulos Renales Proximales/metabolismo , Hormona Paratiroidea/farmacología , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Bicarbonatos/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Concentración de Iones de Hidrógeno , Túbulos Renales Proximales/química , Masculino , Microvellosidades/metabolismo , ARN Mensajero/análisis , Ratas , Ratas Wistar , Sodio/metabolismo , Radioisótopos de Sodio/farmacocinética , Intercambiador 3 de Sodio-Hidrógeno , Intercambiadores de Sodio-Hidrógeno/análisisRESUMEN
Phosphatidylcholine (PC) alone or with phosphatidylethanolamine (PE) are sufficient for the reconstitution of Na+ channels in planar lipid bilayers. However, when Na+ channels were first reconstituted into liposomes using the freeze-thaw-sonication method, addition of acidic phospholipids, such as phosphatidylserine (PS), to the neutral phospholipids was necessary to obtain a significant toxin-modulated 22Na uptake. To further investigate the acidic phospholipid effect on reconstitution into liposomes, Na+ channels purified from Electrophorus electricus electrocytes were reconstituted into liposomes of different composition by freeze-thaw sonication and the effect of batrachotoxin and tetrodotoxin on the 22Na flux was measured. The results revealed that, under our experimental conditions, the presence of an acidic phospholipid was also necessary to obtain a significant neurotoxin-modulated 22Na influx. Though neurotoxin-modulated 22Na fluxes have been reported in proteoliposomes made with purified Na+ channels and PC alone, the 22Na fluxes were smaller than those found using lipid mixtures containing acidic phospholipids. Electron microscopy of negatively stained proteoliposomes prepared with PC, PC/PS (1:1 molar ratio), and PS revealed that the acidic phospholipid increases the size of the reconstituted proteoliposomes. The increment in size caused by the acidic phospholipid, due to the associated increase in internal volume for 22Na uptake and in area for Na+ channel incorporation, appears to be responsible for the large neurotoxin-modulated 22Na fluxes observed.