RESUMEN
In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.
Asunto(s)
Variación Genética/genética , Radar/instrumentación , Algoritmos , Simulación por Computador , Humanos , Modelos Genéticos , RadiaciónRESUMEN
The use of radar imagery is an alternative source of information to support the monitoring of the Amazon region, since the optical images have imaging limitations in tropical areas due to the occurrence of clouds. Therefore, the goal of this study is to analyze the radar images in X-band multi-temporal polarized obtained by COSMO-SkyMed satellite (COnstellation of small Satellites for Mediterranean basin Observation), in the intensity mode, isolated and/or combined with textural information, to thematic characterization of land use/land cover in the Humaitل, Amazonas State region. The methodology used includes: analysis of the dual images obtained during two subsequent acquisitions, in order to explore the potential of the dataset as a quad-pol intensity; extraction of textural attributes from the co-occurrence matrix (Gray Level Co-occurrence Matrix) and subsequent contextual classification; statistical assessment of the thematic performance of the intensity and textural images, isolated and in polarized groups. Within the results achieved, the group formed only by the intensity images presented a better performance if compared to those containing the textural attributes. In this discrimination, the classes involved were forest, alluvial forest, reforestation, savannah, pasture and burned areas, yielding 66% overall accuracy and a Kappa value of 0.55. The results showed that X band images, from COSMO-SkyMed, StripMap mode (Ping-Pong), multi-polarized, presents a moderate potential to characterize and monitor the dynamics of land use/land land cover in the Brazilian Amazon.
A utilização de imagens de radar é fonte alternativa de informações para subsidiar o monitoramento da região amazônica, visto que as imagens ópticas têm limitações de imageamento em zonas tropicais face a ocorrência de nuvens. Por conseguinte este trabalho teve como objetivo analisar a capacidade das imagens-radar de banda X multitemporais e polarizadas obtidas pelo satélite COSMO-SkyMed (COnstellation of small Satellites for Mediterranean basin Observation), no modo intensidade, isoladamente e agregados às informações texturais, na caracterização temática de uso e cobertura da terra no município de Humaitá/AM. A metodologia empregada consistiu da: análise das imagens duais obtidas em duas aquisições subsequentes, de forma a explorar a potencialidade do conjunto de dados na forma quad-pol intensidade; extração dos atributos texturais a partir da matriz de coocorrência (Gray Level Co-occurrence Matrix) e posterior classificação contextual; avaliação estatística de desempenho temático das imagens intensidade e texturais, isoladas e em grupos polarizados. Dentre os vários resultados alcançados, foi verificado que o grupo formado somente pelas imagens intensidade apresentou o melhor desempenho, comparado àqueles contendo os atributos texturais. Nesta separabilidade, estavam envolvidas as classes de floresta, floresta aluvial, reflorestamento, savana, pasto e queimada, obtendo-se 66% de acurácia total e valor Kappa de 0,55. Os resultados mostraram que as imagens de banda X do COSMO-SkyMed, modo StripMap (Ping-Pong), multipolarizadas, têm potencial moderado para a caracterização e monitoramento da dinâmica de uso e cobertura da terra na Amazônia brasileira.
Asunto(s)
Mapeo Geográfico , Monitoreo del Ambiente , Radar/instrumentación , Usos del Suelo , Ecosistema Amazónico , Tecnología de Sensores Remotos/métodosRESUMEN
The use of radar imagery is an alternative source of information to support the monitoring of the Amazon region, since the optical images have imaging limitations in tropical areas due to the occurrence of clouds. Therefore, the goal of this study is to analyze the radar images in X-band multi-temporal polarized obtained by COSMO-SkyMed satellite (COnstellation of small Satellites for Mediterranean basin Observation), in the intensity mode, isolated and/or combined with textural information, to thematic characterization of land use/land cover in the Humaitل, Amazonas State region. The methodology used includes: analysis of the dual images obtained during two subsequent acquisitions, in order to explore the potential of the dataset as a quad-pol intensity; extraction of textural attributes from the co-occurrence matrix (Gray Level Co-occurrence Matrix) and subsequent contextual classification; statistical assessment of the thematic performance of the intensity and textural images, isolated and in polarized groups. Within the results achieved, the group formed only by the intensity images presented a better performance if compared to those containing the textural attributes. In this discrimination, the classes involved were forest, alluvial forest, reforestation, savannah, pasture and burned areas, yielding 66% overall accuracy and a Kappa value of 0.55. The results showed that X band images, from COSMO-SkyMed, StripMap mode (Ping-Pong), multi-polarized, presents a moderate potential to characterize and monitor the dynamics of land use/land land cover in the Brazilian Amazon.(AU)
A utilização de imagens de radar é fonte alternativa de informações para subsidiar o monitoramento da região amazônica, visto que as imagens ópticas têm limitações de imageamento em zonas tropicais face a ocorrência de nuvens. Por conseguinte este trabalho teve como objetivo analisar a capacidade das imagens-radar de banda X multitemporais e polarizadas obtidas pelo satélite COSMO-SkyMed (COnstellation of small Satellites for Mediterranean basin Observation), no modo intensidade, isoladamente e agregados às informações texturais, na caracterização temática de uso e cobertura da terra no município de Humaitá/AM. A metodologia empregada consistiu da: análise das imagens duais obtidas em duas aquisições subsequentes, de forma a explorar a potencialidade do conjunto de dados na forma quad-pol intensidade; extração dos atributos texturais a partir da matriz de coocorrência (Gray Level Co-occurrence Matrix) e posterior classificação contextual; avaliação estatística de desempenho temático das imagens intensidade e texturais, isoladas e em grupos polarizados. Dentre os vários resultados alcançados, foi verificado que o grupo formado somente pelas imagens intensidade apresentou o melhor desempenho, comparado àqueles contendo os atributos texturais. Nesta separabilidade, estavam envolvidas as classes de floresta, floresta aluvial, reflorestamento, savana, pasto e queimada, obtendo-se 66% de acurácia total e valor Kappa de 0,55. Os resultados mostraram que as imagens de banda X do COSMO-SkyMed, modo StripMap (Ping-Pong), multipolarizadas, têm potencial moderado para a caracterização e monitoramento da dinâmica de uso e cobertura da terra na Amazônia brasileira.(AU)
Asunto(s)
Mapeo Geográfico , Radar/instrumentación , Monitoreo del Ambiente , Usos del Suelo , Tecnología de Sensores Remotos/métodos , Ecosistema AmazónicoRESUMEN
Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.