Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Respir Res ; 25(1): 299, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113018

RESUMEN

BACKGROUND: Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI. RESULTS: Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice. Senescent AECII induced Senescence-Associated Secretory Phenotype (SASP), consequently activating fibroblasts and macrophages to promote RILI development. In response to IR, elevated TNKS1BP1 interacted with and decreased CNOT4 to suppress EEF2 degradation. Ectopic expression of EEF2 accelerated AECII senescence. Using a model system of TNKS1BP1 knockout (KO) mice, we demonstrated that TNKS1BP1 KO prevents IR-induced lung tissue senescence and RILI. CONCLUSIONS: Notably, this study suggested that a regulatory mechanism of the TNKS1BP1/CNOT4/EEF2 axis in AECII senescence may be a potential strategy for RILI.


Asunto(s)
Células Epiteliales Alveolares , Senescencia Celular , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de la radiación , Células Epiteliales Alveolares/patología , Células Cultivadas , Senescencia Celular/efectos de la radiación , Senescencia Celular/fisiología , Quinasa del Factor 2 de Elongación/metabolismo , Quinasa del Factor 2 de Elongación/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/genética , Proteína 1 de Unión a Repeticiones Teloméricas/genética , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
2.
Cell Death Dis ; 15(7): 501, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003251

RESUMEN

Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a stress-responsive hub that inhibits the translation elongation factor eEF2, and consequently mRNA translation elongation, in response to hypoxia and nutrient deprivation. EEF2K is also involved in the response to DNA damage but its role in response to DNA crosslinks, as induced by cisplatin, is not known. Here we found that eEF2K is critical to mediate the cellular response to cisplatin. We uncovered that eEF2K deficient cells are more resistant to cisplatin treatment. Mechanistically, eEF2K deficiency blunts the activation of the DNA damage response associated ATM and ATR pathways, in turn preventing p53 activation and therefore compromising induction of cisplatin-induced apoptosis. We also report that loss of eEF2K delays the resolution of DNA damage triggered by cisplatin, suggesting that eEF2K contributes to DNA damage repair in response to cisplatin. In support of this, our data shows that eEF2K promotes the expression of the DNA repair protein ERCC1, critical for the repair of cisplatin-caused DNA damage. Finally, using Caenorhabditis elegans as an in vivo model, we find that deletion of efk-1, the worm eEF2K ortholog, mitigates the induction of germ cell death in response to cisplatin. Together, our data highlight that eEF2K represents an evolutionary conserved mediator of the DNA damage response to cisplatin which promotes p53 activation to induce cell death, or alternatively facilitates DNA repair, depending on the extent of DNA damage.


Asunto(s)
Caenorhabditis elegans , Cisplatino , Daño del ADN , Quinasa del Factor 2 de Elongación , Proteína p53 Supresora de Tumor , Cisplatino/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Quinasa del Factor 2 de Elongación/metabolismo , Quinasa del Factor 2 de Elongación/genética , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Reparación del ADN/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Apoptosis/efectos de los fármacos
3.
Alzheimers Dement ; 20(8): 5357-5374, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38934363

RESUMEN

INTRODUCTION: Cognitive impairment is a core feature of Down syndrome (DS), and the underlying neurobiological mechanisms remain unclear. Translation dysregulation is linked to multiple neurological disorders characterized by cognitive impairments. Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) by its kinase eEF2K results in inhibition of general protein synthesis. METHODS: We used genetic and pharmacological methods to suppress eEF2K in two lines of DS mouse models. We further applied multiple approaches to evaluate the effects of eEF2K inhibition on DS pathophysiology. RESULTS: We found that eEF2K signaling was overactive in the brain of patients with DS and DS mouse models. Inhibition of eEF2 phosphorylation through suppression of eEF2K in DS model mice improved multiple aspects of DS-associated pathophysiology including de novo protein synthesis deficiency, synaptic morphological defects, long-term synaptic plasticity failure, and cognitive impairments. DISCUSSION: Our data suggested that eEF2K signaling dysregulation mediates DS-associated synaptic and cognitive impairments. HIGHLIGHTS: Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) is increased in the Down syndrome (DS) brain. Suppression of the eEF2 kinase (eEF2K) alleviates cognitive deficits in DS models. Suppression of eEF2K improves synaptic dysregulation in DS models. Cognitive and synaptic impairments in DS models are rescued by eEF2K inhibitors.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Síndrome de Down , Quinasa del Factor 2 de Elongación , Factor 2 de Elongación Peptídica , Síndrome de Down/metabolismo , Síndrome de Down/patología , Animales , Ratones , Fosforilación , Quinasa del Factor 2 de Elongación/metabolismo , Quinasa del Factor 2 de Elongación/genética , Disfunción Cognitiva/metabolismo , Humanos , Factor 2 de Elongación Peptídica/metabolismo , Masculino , Encéfalo/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Femenino , Ratones Transgénicos
4.
Int Immunopharmacol ; 129: 111628, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38320351

RESUMEN

BACKGROUND: Liver cancer, particularly hepatocellular carcinoma (HCC), is characterized by a high mortality rate, attributed primarily to the establishment of an immunosuppressive microenvironment. Within this context, we aimed to elucidate the pivotal role of eukaryotic elongation factor 2 kinase (eEF2K) in orchestrating the infiltration and activation of natural killer (NK) cells within the HCC tumor microenvironment. By shedding light on the immunomodulatory mechanisms at play, our findings should clarify HCC pathogenesis and help identify potential therapeutic intervention venues. METHODS: We performed a comprehensive bioinformatics analysis to determine the functions of eEF2K in the context of HCC. We initially used paired tumor and adjacent normal tissue samples from patients with HCC to measure eEF2K expression and its correlation with prognosis. Subsequently, we enrolled a cohort of patients with HCC undergoing immunotherapy to examine the ability of eEF2K to predict treatment efficacy. To delve deeper into the mechanistic aspects, we established an eEF2K-knockout cell line using CRISPR/Cas9 gene editing. This step was crucial for verifying activation of the cGAS-STING pathway and the subsequent secretion of cytokines. To further elucidate the role of eEF2K in NK cell function, we applied siRNA-based techniques to effectively suppress eEF2K expression in vitro. For in vivo validation, we developed a tumor-bearing mouse model that enabled us to compare the infiltration and activation of NK cells within the tumor microenvironment following various treatment strategies. RESULTS: We detected elevated eEF2K expression within HCC tissues, and this was correlated with an unfavorable prognosis (30.84 vs. 20.99 months, P = 0.033). In addition, co-culturing eEF2K-knockout HepG2 cells with dendritic cells led to activation of the cGAS-STING pathway and a subsequent increase in the secretion of IL-2 and CXCL9. Moreover, inhibiting eEF2K resulted in notable NK cell proliferation along with apoptosis reduction. Remarkably, after combining NH125 and PD-1 treatments, we found a significant increase in NK cell infiltration within HCC tumors in our murine model. Our flow cytometry analysis revealed reduced NKG2A expression and elevated NKG2D expression and secretion of granzyme B, TNF-α, and IFN-γ in NK cells. Immunohistochemical examination confirmed no evidence of damage to vital organs in the mice treated with the combination therapy. Additionally, we noted higher levels of glutathione peroxidase and lipid peroxidation in the peripheral blood serum of the treated mice. CONCLUSION: Targeted eEF2K blockade may result in cGAS-STING pathway activation, leading to enhanced infiltration and activity of NK cells within HCC tumors. The synergistic effect achieved by combining an eEF2K inhibitor with PD-1 antibody therapy represents a novel and promising approach for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células Asesinas Naturales , Neoplasias Hepáticas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Microambiente Tumoral
5.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38103971

RESUMEN

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Asunto(s)
Quinasa del Factor 2 de Elongación , Biosíntesis de Proteínas , Quinasa del Factor 2 de Elongación/química , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Fosforilación , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo
6.
Cell Death Dis ; 14(12): 812, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071243

RESUMEN

Mesenchymal stem cells (MSCs) have great therapeutic advantages due to their immunosuppressive properties. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose signaling plays an important role in the immune system. AHR may be involved in the regulation of MSC-associated immunomodulatory functions. However, the mechanisms by which AHR controls the immunosuppressive functions of MSCs are not well understood. Here, we report that Ahr-deficient MSCs show decreased therapeutic efficacy against graft-versus-host disease (GVHD) compared to wild-type (WT)-MSCs. This was probably due to decreased iNOS protein expression, which is a key regulatory enzyme in MSC immunomodulation. The expression of eukaryotic elongation factor 2 kinase (eEF2K), which inhibits the elongation stage of protein synthesis, is significantly increased in the Ahr-deficient MSCs. Inhibition of eEF2K restored iNOS protein expression. AHR is known to act as an E3 ligase together with CUL4B. We observed constitutive binding of AHR to eEF2K. Consequently, ubiquitination and degradation of eEF2K were inhibited in Ahr-deficient MSCs and by the AHR antagonist CH223191 in WT-MSCs. In summary, AHR regulates the immunomodulatory functions of MSCs through ubiquitination of eEF2K, thereby controlling iNOS protein synthesis and its product, nitric oxide levels.


Asunto(s)
Células Madre Mesenquimatosas , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Ubiquitinación , Células Madre Mesenquimatosas/metabolismo , Inmunomodulación
7.
Signal Transduct Target Ther ; 8(1): 415, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875468

RESUMEN

CD4+ T cells, particularly IL-17-secreting helper CD4+ T cells, play a central role in the inflammatory processes underlying autoimmune disorders. Eukaryotic Elongation Factor 2 Kinase (eEF2K) is pivotal in CD8+ T cells and has important implications in vascular dysfunction and inflammation-related diseases such as hypertension. However, its specific immunological role in CD4+ T cell activities and related inflammatory diseases remains elusive. Our investigation has uncovered that the deficiency of eEF2K disrupts the survival and proliferation of CD4+ T cells, impairs their ability to secrete cytokines. Notably, this dysregulation leads to heightened production of pro-inflammatory cytokine IL-17, fosters a pro-inflammatory microenvironment in the absence of eEF2K in CD4+ T cells. Furthermore, the absence of eEF2K in CD4+ T cells is linked to increased metabolic activity and mitochondrial bioenergetics. We have shown that eEF2K regulates mitochondrial function and CD4+ T cell activity through the upregulation of the transcription factor, signal transducer and activator of transcription 3 (STAT3). Crucially, the deficiency of eEF2K exacerbates the severity of inflammation-related diseases, including rheumatoid arthritis, multiple sclerosis, and ulcerative colitis. Strikingly, the use of C188-9, a small molecule targeting STAT3, mitigates colitis in a murine immunodeficiency model receiving eEF2K knockout (KO) CD4+ T cells. These findings emphasize the pivotal role of eEF2K in controlling the function and metabolism of CD4+ T cells and its indispensable involvement in inflammation-related diseases. Manipulating eEF2K represents a promising avenue for novel therapeutic approaches in the treatment of inflammation-related disorders.


Asunto(s)
Quinasa del Factor 2 de Elongación , Interleucina-17 , Ratones , Animales , Interleucina-17/genética , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Linfocitos T CD8-positivos/metabolismo , Inflamación/genética , Linfocitos T CD4-Positivos
8.
mSphere ; 8(4): e0015623, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37272703

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite whose tachyzoite form causes disease via a lytic growth cycle. Its metabolic and cellular pathways are primarily designed to ensure parasite survival within a host cell. But during its lytic cycle, tachyzoites are exposed to the extracellular milieu and prolonged exposure requires activation of stress response pathways that include reprogramming the parasite proteome. Regulation of protein synthesis is therefore important for extracellular survival. We previously reported that in extracellularly stressed parasites, the elongation phase of protein synthesis is regulated by the Toxoplasma oxygen-sensing protein, PHYb. PHYb acts by promoting the activity of elongation factor eEF2, which is a GTPase that catalyzes the transfer of the peptidyl-tRNA from the A site to the P site of the ribosome. In the absence of PHYb, eEF2 is hyper-phosphorylated, which inhibits eEF2 from interacting with the ribosome. eEF2 kinases are atypical calcium-dependent kinases and BLAST analyses revealed the parasite kinase, CDPK3, as the most highly homologous to the Saccharomyces cerevisiae eEF2 kinase, RCK2. In parasites exposed to extracellular stress, loss of CDPK3 leads to decreased eEF2 phosphorylation and enhanced rates of elongation. Furthermore, co-immunoprecipitation studies revealed that CDPK3 and eEF2 interact in stressed parasites. Since CDPK3 and eEF2 normally localize to the plasma membrane and cytosol, respectively, we investigated how the two can interact. We report that under stress conditions, CDPK3 is not N-myristoylated likely leading to its cytoplasmic localization. In summary, we have identified a novel function for CDPK3 as the first protozoan extracellular stress-induced eEF2 kinase.IMPORTANCEAlthough it is an obligate intracellular parasite, Toxoplasma must be able to survive in the extracellular environment. Our previous work indicated that ensuring that elongation continues during protein synthesis is part of this stress response and that this is due to preventing phosphorylation of elongation factor 2. But the identity of the eEF2 kinase has remained unknown in Toxoplasma and other protozoan parasites. Here, we identify CDPK3 as the first protozoan eEF2 kinase and demonstrate that it is part of a stress response initiated when parasites are exposed to extracellular stress. We also demonstrate that CDPK3 engages eEF2 as a result of its relocalization from the plasma membrane to the cytosol.


Asunto(s)
Parásitos , Toxoplasma , Animales , Toxoplasma/metabolismo , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Calcio/metabolismo , Proteínas Quinasas/metabolismo
9.
J Biol Chem ; 299(6): 104813, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172726

RESUMEN

The calmodulin-activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), serves as a master regulator of translational elongation by specifically phosphorylating and reducing the ribosome affinity of the guanosine triphosphatase, eukaryotic elongation factor 2 (eEF-2). Given its critical role in a fundamental cellular process, dysregulation of eEF-2K has been implicated in several human diseases, including those of the cardiovascular system, chronic neuropathies, and many cancers, making it a critical pharmacological target. In the absence of high-resolution structural information, high-throughput screening efforts have yielded small-molecule candidates that show promise as eEF-2K antagonists. Principal among these is the ATP-competitive pyrido-pyrimidinedione inhibitor, A-484954, which shows high specificity toward eEF-2K relative to a panel of "typical" protein kinases. A-484954 has been shown to have some degree of efficacy in animal models of several disease states. It has also been widely deployed as a reagent in eEF-2K-specific biochemical and cell-biological studies. However, given the absence of structural information, the precise mechanism of the A-484954-mediated inhibition of eEF-2K has remained obscure. Leveraging our identification of the calmodulin-activatable catalytic core of eEF-2K, and our recent determination of its long-elusive structure, here we present the structural basis for its specific inhibition by A-484954. This structure, which represents the first for an inhibitor-bound catalytic domain of a member of the α-kinase family, enables rationalization of the existing structure-activity relationship data for A-484954 variants and lays the groundwork for further optimization of this scaffold to attain enhanced specificity/potency against eEF-2K.


Asunto(s)
Adenosina Trifosfato , Calmodulina , Quinasa del Factor 2 de Elongación , Animales , Humanos , Adenosina Trifosfato/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/química , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Dominio Catalítico , Relación Estructura-Actividad , Extensión de la Cadena Peptídica de Translación
10.
Am J Pathol ; 193(6): 813-828, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871751

RESUMEN

The principal mechanism underlying the reduced rate of protein synthesis in atrophied skeletal muscle is largely unknown. Eukaryotic elongation factor 2 kinase (eEF2k) impairs the ability of eukaryotic translation elongation factor 2 (eEF2) to bind to the ribosome via T56 phosphorylation. Perturbations in the eEF2k/eEF2 pathway during various stages of disuse muscle atrophy have been investigated utilizing a rat hind limb suspension (HS) model. Two distinct components of eEF2k/eEF2 pathway misregulation were demonstrated, observing a significant (P < 0.01) increase in eEF2k mRNA expression as early as 1-day HS and in eEF2k protein level after 3-day HS. We set out to determine whether eEF2k activation is a Ca2+-dependent process with involvement of Cav1.1. The ratio of T56-phosphorylated/total eEF2 was robustly elevated after 3-day HS, which was completely reversed by 1,2-bis (2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) and decreased by 1.7-fold (P < 0.05) by nifedipine. Transfection of C2C12 with cytomegalovirus promoter (pCMV)-eEF2k and administration with small molecules were used to modulate eEF2k and eEF2 activity. More importantly, pharmacologic enhancement of eEF2 phosphorylation induced phosphorylated ribosomal protein S6 kinase (T389) up-regulation and restoration of global protein synthesis in the HS rats. Taken together, the eEF2k/eEF2 pathway was up-regulated during disuse muscle atrophy involving calcium-dependent activation of eEF2k partly via Cav1.1. The study provides evidence, in vitro and in vivo, of the eEF2k/eEF2 pathway impact on ribosomal protein S6 kinase activity as well as protein expression of key atrophy biomarkers, muscle atrophy F-box/atrogin-1 and muscle RING finger-1.


Asunto(s)
Quinasa del Factor 2 de Elongación , Músculo Esquelético , Ratas , Animales , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo
11.
Mol Biol Rep ; 50(4): 3011-3022, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36652154

RESUMEN

BACKGROUND: Eukaryotic elongation factor 2 kinase (eukaryotic elongation factor 2 kinase, eEF2K) is a calcium calmodulin dependent protein kinase that keeps the highest energy consuming cellular process of protein synthesis under check through negative regulation. eEF2K pauses global protein synthesis rates at the translational elongation step by phosphorylating its only kown substrate elongation factor 2 (eEF2), a unique translocase activity in ekaryotic cells enabling the polypeptide chain elongation. Therefore, eEF2K is thought to preserve cellular energy pools particularly upon acute development of cellular stress conditions such as nutrient deprivation, hypoxia, or infections. Recently, high expression of this enzyme has been associated with poor prognosis in an array of solid tumor types. Therefore, in a growing number of studies tremendous effort is being directed to the development of treatment methods aiming to suppress eEF2K as a novel therapeutic approach in the fight against cancer. METHODS: In our study, we aimed to investigate the changes in the tumorigenicity of chordoma cells in presence of gene silencing for eEF2K. Taking a transient gene silencing approach using siRNA particles, eEF2K gene expression was suppressed in chordoma cells. RESULTS: Silencing eEF2K expression was associated with a slight increase in cellular proliferation and a decrease in death rates. Furthermore, no alteration in the sensitivity of chordoma cells to chemotherapy was detected in response to the decrease in eEF2K expression which intriguingly promoted suppression of cell migratory and invasion related properties. CONCLUSION: Our findings indicate that the loss of eEF2K expression in chordoma cell lines results in the reduction of metastatic capacity.


Asunto(s)
Cordoma , Quinasa del Factor 2 de Elongación , Humanos , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/química , Quinasa del Factor 2 de Elongación/metabolismo , Cordoma/genética , Fosforilación , Línea Celular , Transducción de Señal
12.
J Neurochem ; 166(1): 47-57, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34796967

RESUMEN

Understanding the molecular signaling mechanisms underlying cognition and neuronal plasticity would provide insights into the pathogenesis of neuronal disorders characterized by cognitive syndromes such as Alzheimer disease (AD). Phosphorylation of the mRNA translational factor eukaryotic elongation factor 2 (eEF2) by its specific kinase eEF2K is critically involved in protein synthesis regulation. In this review, we discussed recent studies on the roles of eEF2K/eEF2 signaling in the context of regulation/dysregulation of cognitive function and synaptic plasticity. We specifically focus on the discussion of recent evidence indicating suppression of eEF2K signaling as a potential novel therapeutic avenue for AD and related dementias (ADRDs).


Asunto(s)
Enfermedad de Alzheimer , Quinasa del Factor 2 de Elongación , Humanos , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Enfermedad de Alzheimer/genética , Plasticidad Neuronal , Transducción de Señal/fisiología , Cognición , Fosforilación/fisiología , Factor 2 de Elongación Peptídica/metabolismo
13.
Transl Psychiatry ; 12(1): 460, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319619

RESUMEN

Recent evidence links synaptic plasticity and mRNA translation, via the eukaryotic elongation factor 2 kinase (eEF2K) and its only known substrate, eEF2. However, the involvement of the eEF2 pathway in cocaine-induced neuroadaptations and cocaine-induced behaviours is not known. Knock-in (KI) mice and shRNA were used to globally and specifically reduce eEF2K expression. Cocaine psychomotor sensitization and conditioned place preference were used to evaluate behavioural outcome. Changes in eEF2 phosphorylation were determined by western blot analyses. No effect was observed on the AMPA/NMDA receptor current ratio in the ventral tegmental area, 24 h after cocaine injection in eEF2K-KI mice compared with WT. However, development and expression of cocaine psychomotor sensitization were decreased in KI mice. Phosphorylated eEF2 was decreased one day after psychomotor sensitization and returned to baseline at seven days in the nucleus accumbens (NAc) of WT mice, but not in eEF2K-KI mice. However, one day following cocaine challenge, phosphorylated eEF2 decreased in WT but not KI mice. Importantly, specific targeting of eEF2K expression by shRNA in the NAc decreased cocaine condition place preference. These results suggest that the eEF2 pathway play a role in cocaine-induced locomotor sensitization and conditioned place preference.


Asunto(s)
Cocaína , Quinasa del Factor 2 de Elongación , Animales , Ratones , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Cocaína/farmacología , ARN Interferente Pequeño/metabolismo , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Condicionamiento Clásico , Fosforilación , Núcleo Accumbens/metabolismo
15.
Anticancer Agents Med Chem ; 22(14): 2607-2618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35718922

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer deaths in the US due to the lack of effective targeted therapeutics and extremely poor prognosis. OBJECTIVE: The study aims to investigate the role of miR-193b and related signaling mechanisms in PDAC cell proliferation, invasion, and tumor growth. METHODS: Using PDAC cell lines, we performed cell viability, colony formation, in vitro wound healing, and matrigel invasion assays following transfection with miR-193b mimic or control-miR. To identify potential downstream targets of miR-193b, we utilized miRNA-target prediction algorithms and investigated the regulation of eukaryotic elongation factor-2 kinase (eEF2K) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways and mediators of epithelial mesenchymal transition (EMT). The role of miR-193b in PDAC tumorigenesis was evaluated in in vivo tumor growth of Panc-1 xenograft model in nude mice. RESULTS: We found that miR-193b is under expressed in PDAC cells compared to corresponding normal pancreatic epithelial cells and demonstrated that ectopic expression of miR-193b reduced cell proliferation, migration, invasion, and EMT through downregulation of eEF2K signaling in PDAC cells. miR-193b expression led to increased expression of E-Cadherin and Claudin-1 while decreasing Snail and TCF8/ZEB1 expressions via eEF2K and MAPK/ERK axis. In vivo systemic injection of miR-193b using lipid-nanoparticles twice a week reduced tumor growth of Panc-1 xenografts and eEF2K expression in nude mice. CONCLUSIONS: Our findings suggest that miR-193b expression suppresses PDAC cell proliferation, migration, invasion, and EMT through inhibition of eEF2K/MAPK-ERK oncogenic axis and that miR-193b-based RNA therapy might be an effective therapeutic strategy to control the growth of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , Animales , Carcinogénesis/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
16.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408842

RESUMEN

Decreasing the levels of certain proteins has been shown to be important for controlling cancer but it is currently unknown whether proteins could potentially be targeted by the inhibiting of protein synthesis. Under this circumstance, targeting protein translation could preferentially affect certain pathways, which could then be of therapeutic advantage when treating cancer. In this report, eukaryotic elongation factor-2 kinase (EEF2K), which is involved in protein translation, was shown to regulate cholesterol metabolism. Targeting EEF2K inhibited key parts of the cholesterol pathway in cancer cells, which could be rescued by the addition of exogenous cholesterol, suggesting that it is a potentially important pathway modulated by targeting this process. Specifically, targeting EEF2K significantly suppressed tumour cell growth by blocking mRNA translation of the cholesterol biosynthesis transcription factor, sterol regulatory element-binding protein (SREBP) 2, and the proteins it regulates. The process could be rescued by the addition of LDL cholesterol taken into the cells via non-receptor-mediated-uptake, which negated the need for SREBP2 protein. Thus, the levels of SREBP2 needed for cholesterol metabolism in cancer cells are therapeutically vulnerable by targeting protein translation. This is the first report to suggest that targeting EEF2K can be used to modulate cholesterol metabolism to treat cancer.


Asunto(s)
Quinasa del Factor 2 de Elongación , Melanoma , Colesterol/metabolismo , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Humanos , Biosíntesis de Proteínas , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
17.
Mol Autism ; 13(1): 1, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980259

RESUMEN

BACKGROUND: Dravet Syndrome is a severe childhood pharmaco-resistant epileptic disorder mainly caused by mutations in the SCN1A gene, which encodes for the α1 subunit of the type I voltage-gated sodium channel (NaV1.1), that causes imbalance between excitation and inhibition in the brain. We recently found that eEF2K knock out mice displayed enhanced GABAergic transmission and tonic inhibition and were less susceptible to epileptic seizures. Thus, we investigated the effect of inhibition of eEF2K on the epileptic and behavioral phenotype of Scn1a ± mice, a murine model of Dravet Syndrome. METHODS: To elucidate the role of eEF2K pathway in the etiopathology of Dravet syndrome we generated a new mouse model deleting the eEF2K gene in Scn1a ± mice. By crossing Scn1a ± mice with eEF2K-/- mice we obtained the three main genotypes needed for our studies, Scn1a+/+ eEF2K+/+ (WT mice), Scn1a ± eEF2K+/+ mice (Scn1a ± mice) and Scn1a ± eEF2K-/- mice, that were fully characterized for EEG and behavioral phenotype. Furthermore, we tested the ability of a pharmacological inhibitor of eEF2K in rescuing EEG alterations of the Scn1a ± mice. RESULTS: We showed that the activity of eEF2K/eEF2 pathway was enhanced in Scn1a ± mice. Then, we demonstrated that both genetic deletion and pharmacological inhibition of eEF2K were sufficient to ameliorate the epileptic phenotype of Scn1a ± mice. Interestingly we also found that motor coordination defect, memory impairments, and stereotyped behavior of the Scn1a ± mice were reverted by eEF2K deletion. The analysis of spontaneous inhibitory postsynaptic currents (sIPSCs) suggested that the rescue of the pathological phenotype was driven by the potentiation of GABAergic synapses. LIMITATIONS: Even if we found that eEF2K deletion was able to increase inhibitory synapses function, the molecular mechanism underlining the inhibition of eEF2K/eEF2 pathway in rescuing epileptic and behavioral alterations in the Scn1a ± needs further investigations. CONCLUSIONS: Our data indicate that pharmacological inhibition of eEF2K could represent a novel therapeutic intervention for treating epilepsy and related comorbidities in the Dravet syndrome.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Animales , Modelos Animales de Enfermedad , Quinasa del Factor 2 de Elongación/genética , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/terapia , Síndromes Epilépticos , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.1/genética
18.
J Neurochem ; 160(5): 524-539, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34932218

RESUMEN

It is imperative to develop novel therapeutic strategies for Alzheimer's disease (AD) and related dementia syndromes based on solid mechanistic studies. Maintenance of memory and synaptic plasticity relies on de novo protein synthesis, which is partially regulated by phosphorylation of eukaryotic elongation factor 2 (eEF2) via its kinase eEF2K. Abnormally increased eEF2 phosphorylation and impaired mRNA translation have been linked to AD. We recently reported that prenatal genetic suppression of eEF2K is able to prevent aging-related cognitive deficits in AD model mice, suggesting the therapeutic potential of targeting eEF2K/eEF2 signaling in AD. Here, we tested two structurally distinct small-molecule eEF2K inhibitors in two different lines of AD model mice after the onset of cognitive impairments. Our data revealed that treatment with eEF2K inhibitors improved AD-associated synaptic plasticity impairments and cognitive dysfunction, without altering brain amyloid ß (Aß) and tau pathology. Furthermore, eEF2K inhibition alleviated AD-associated defects in dendritic spine morphology, post-synaptic density formation, protein synthesis, and dendritic polyribosome assembly. Our results may offer critical therapeutic implications for AD, and the proof-of-principle study indicates translational implication of inhibiting eEF2K for AD and related dementia syndromes. Cover Image for this issue: https://doi.org/10.1111/jnc.15392.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Ratones , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Síndrome
19.
Cell Rep ; 37(5): 109918, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731624

RESUMEN

Ketamine is a noncompetitive glutamatergic N-methyl-d-aspartate receptor (NMDAR) antagonist that exerts rapid antidepressant effects. Preclinical studies identify eukaryotic elongation factor 2 kinase (eEF2K) signaling as essential for the rapid antidepressant action of ketamine. Here, we combine genetic, electrophysiological, and pharmacological strategies to investigate the role of eEF2K in synaptic function and find that acute, but not chronic, inhibition of eEF2K activity induces rapid synaptic scaling in the hippocampus. Retinoic acid (RA) signaling also elicits a similar form of rapid synaptic scaling in the hippocampus, which we observe is independent of eEF2K functioni. The RA signaling pathway is not required for ketamine-mediated antidepressant action; however, direct activation of the retinoic acid receptor α (RARα) evokes rapid antidepressant action resembling ketamine. Our findings show that ketamine and RARα activation independently elicit a similar form of multiplicative synaptic scaling that is causal for rapid antidepressant action.


Asunto(s)
Antidepresivos/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Ketamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Tretinoina/farmacología , Animales , Región CA1 Hipocampal/metabolismo , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptor alfa de Ácido Retinoico/agonistas , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Sinapsis/metabolismo , Factores de Tiempo
20.
Nat Commun ; 12(1): 6789, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815424

RESUMEN

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Cuerpos de Procesamiento/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular Tumoral , Microscopía por Crioelectrón , Quinasa del Factor 2 de Elongación/genética , Ganglios Espinales/citología , Humanos , Masculino , Ratones , Ratones Noqueados , Nelfinavir/farmacología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA