Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.886
Filtrar
1.
J Safety Res ; 90: 86-99, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251301

RESUMEN

INTRODUCTION: There is a need for improved drug driving enforcement to promote greater driver compliance with drug driving laws. In Australia, Roadside Drug Testing (RDT) suffers from operational challenges that undermine its effectiveness in reducing drug driving. OBJECTIVE: To identify potential improvements to RDT, this study investigated the extent to which drivers perceive RDT to be procedurally just and that the policing of drug driving and the associated laws are legitimate. These perceptions were then compared with those applying to Random Breath Testing (RBT) and examined in relation to their respective influence on intentions to drug and drink drive in the future. METHOD: A sample of 1,483 licensed drivers from three Australian states completed an online survey. RESULTS: Those participants who reported engaging in drug driving perceived RDT to be less procedurally just than non-drug drivers. Similarly, drug drivers perceived the police and associated drug driving laws to be less legitimate than non-drug drivers. Furthermore, drug drivers who had been tested at an RDT operation in the past perceived RDT to be less procedurally just and considered drug driving policing and laws to be less legitimate, compared with the corresponding perceptions of drink drivers who had been tested at an RBT operation. A regression analysis indicated that stronger intentions to drug drive in the future were associated with lower perceptions of police legitimacy and the legitimacy of drug driving laws, but not with the elements of procedural justice. However, follow-up analyses indicated that the influence of procedural justice on intentions was mediated by the two legitimacy variables, thus weakening its direct impact on intentions. PRACTICAL APPLICATIONS: The results highlight the need for road safety authorities to enhance the perceived legitimacy of drug driving enforcement and associated laws. Changes to current police practices and/or drug-driving laws may also be needed to enhance the effectiveness of RDT.


Asunto(s)
Conducir bajo la Influencia , Intención , Aplicación de la Ley , Policia , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Australia , Conducir bajo la Influencia/legislación & jurisprudencia , Adulto Joven , Conducción de Automóvil/legislación & jurisprudencia , Conducción de Automóvil/psicología , Encuestas y Cuestionarios , Detección de Abuso de Sustancias/legislación & jurisprudencia , Percepción , Adolescente , Pruebas Respiratorias
2.
Philos Trans A Math Phys Eng Sci ; 382(2281): 20230323, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39246081

RESUMEN

The growing demand for wearable healthcare devices has led to an urgent need for cost-effective, wireless and portable breath monitoring systems. However, it is essential to explore novel nanomaterials that combine state-of-the-art flexible sensors with high performance and sensing capabilities along with scalability and industrially acceptable processing. In this study, we demonstrate a highly efficient NiS2-based flexible capacitive sensor fabricated via a solution-processible route using a novel single-source precursor [Ni{S2P(OPr)2}2]. The developed sensor could precisely detect the human respiration rate and exhibit rapid responsiveness, exceptional sensitivity and selectivity at ambient temperatures, with an ultra-fast response and recovery. The device effectively differentiates the exhaled breath patterns including slow, fast, oral and nasal breath, as well as post-exercise breath rates. Moreover, the sensor shows outstanding bending stability, repeatability, reliable and robust sensing performance and is capable of contactless sensing. The sensor was further employed with a user-friendly wireless interface to facilitate smartphone-enabled real-time breath monitoring systems. This work opens up numerous avenues for cost-effective, sustainable and versatile sensors with potential applications for Internet of Things-based flexible and wearable electronics.This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.


Asunto(s)
Nanoestructuras , Dispositivos Electrónicos Vestibles , Humanos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Nanoestructuras/química , Níquel/química , Respiración , Frecuencia Respiratoria , Tecnología Inalámbrica/instrumentación , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Diseño de Equipo , Teléfono Inteligente , Capacidad Eléctrica
3.
Metabolomics ; 20(5): 102, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242444

RESUMEN

INTRODUCTION: Volatile organic compounds (VOCs) can arise from underlying metabolism and are detectable in exhaled breath, therefore offer a promising route to non-invasive diagnostics. Robust, precise, and repeatable breath measurement platforms able to identify VOCs in breath distinguishable from background contaminants are needed for the confident discovery of breath-based biomarkers. OBJECTIVES: To build a reliable breath collection and analysis method that can produce a comprehensive list of known VOCs in the breath of a heterogeneous human population. METHODS: The analysis cohort consisted of 90 pairs of breath and background samples collected from a heterogenous population. Owlstone Medical's Breath Biopsy® OMNI® platform, consisting of sample collection, TD-GC-MS analysis and feature extraction was utilized. VOCs were determined to be "on-breath" if they met at least one of three pre-defined metrics compared to paired background samples. On-breath VOCs were identified via comparison against purified chemical standards, using retention indexing and high-resolution accurate mass spectral matching. RESULTS: 1471 VOCs were present in > 80% of samples (breath and background), and 585 were on-breath by at least one metric. Of these, 148 have been identified covering a broad range of chemical classes. CONCLUSIONS: A robust breath collection and relative-quantitative analysis method has been developed, producing a list of 148 on-breath VOCs, identified using purified chemical standards in a heterogenous population. Providing confirmed VOC identities that are genuinely breath-borne will facilitate future biomarker discovery and subsequent biomarker validation in clinical studies. Additionally, this list of VOCs can be used to facilitate cross-study data comparisons for improved standardization.


Asunto(s)
Pruebas Respiratorias , Cromatografía de Gases y Espectrometría de Masas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Pruebas Respiratorias/métodos , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Biomarcadores/análisis , Anciano , Adulto Joven , Espiración
4.
BMJ Open ; 14(9): e087026, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284696

RESUMEN

INTRODUCTION: The WHO estimates a gap of about 30% between the incident (10.6 million) and notified (7.5 million) cases of tuberculosis (TB). Combined with the growing recognition in prevalence surveys of the high proportion of cases identified who are asymptomatic or paucisymptomatic, these data underscore how current symptom screening approaches and use of diagnostic tests with suboptimal performance on sputum miss large numbers of cases. Thus, the development of sputum-free biomarker-based tests for diagnosis is becoming necessary, which the WHO has already identified as a priority for new TB diagnostics.The objective of this study is to evaluate a combination of exhaled breath condensate (EBC) samples and mycobacterial lipoarabinomannan (LAM) as point-of-care (POC) assays to identify TB patients. METHODS AND ANALYSIS: This prospective diagnostic accuracy study is conducted at the TB Screening and Treatment Centre of International Center for Diarrhoeal Disease Research, Bangladesh, on a cohort of adults and adolescents >11 years of age. A total of 614 individuals with presumptive pulmonary TB based on TB signs, symptoms and radiography are being recruited from 28 August 2023. Spot sputum is collected for standard reference testing (L-J culture, GeneXpert MTB/Rif, acid-fast Bacilli microscopy) to fine-tune categorisation of TB disease status for each participant, defined as (1) definite TB (at least one positive standard reference test); (2) probable TB (not microbiologically confirmed but under TB treatment); (3) possible TB (no TB treatment but signs, symptoms and radiography suggestive of TB); (4) other respiratory disease (microbiologically not confirmed and no radiography presenting abnormalities compatible with TB); and (5) unknown (no microbiological evidence with normal/no TB abnormalities with radiography). Urine and EBC specimens will be subjected to LAM POC testing and biobanked for further investigation. Statistical analyses will include an assessment of diagnostic accuracy by constructing receiver operating curves and calculating sensitivity and specificity, as well as post-test probabilities. ETHICS AND DISSEMINATION: The study protocol was approved by the Research Review Committee as well as the Ethical Review Committee of icddr,b and recorded under a protocol reference number, PR-2301. Results will be submitted to open-access peer-reviewed journals, presented at academic meetings, and shared with national and international policymaking bodies.


Asunto(s)
Pruebas Respiratorias , Lipopolisacáridos , Tuberculosis Pulmonar , Humanos , Lipopolisacáridos/análisis , Tuberculosis Pulmonar/diagnóstico , Pruebas Respiratorias/métodos , Estudios Prospectivos , Biomarcadores/análisis , Bangladesh , Adulto , Pruebas en el Punto de Atención , Sensibilidad y Especificidad , Sistemas de Atención de Punto , Masculino , Femenino , Adolescente , Mycobacterium tuberculosis/aislamiento & purificación , Esputo/microbiología
5.
Respir Res ; 25(1): 340, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285462

RESUMEN

BACKGROUND: The reference values of eNO have certain differences among people of different countries and races. We aimed to obtain the reference value of eNO in healthy children and adolescents (6-18 years old) in China and to explore the associations between the reference values with ages, gender, heights, BMI, and regions. METHODS: We measured FeNO50 levels in 5949 healthy Chinese children and adolescents, FeNO200 and CaNO levels in 658 participants from 16 provinces of 7 administrative areas in China aged 6-18. All persons were studied after obtaining informed consent from children and their parents. RESULTS: The mean FeNO50 of 5949 Chinese children and adolescents aged 6-18 years was 14.1 ppb, with a 95% confidence interval of 1-38.1 ppb. The mean FeNO200 of 658 persons was 6.9 ppb with a 95% upper confidence interval of 15.0 ppb, and the mean CaNO was 3.0 ppb with a 95% upper confidence interval of 11.2 ppb. In the 6-11 age group, age and height were correlated with the logarithm of FeNO50 (P < 0.001, P < 0.05). There was no significant correlation between the logarithm of FeNO200 and gender, age, height and BMI (all P > 0.05). The logarithm of CaNO was correlated with gender (P < 0.05). In the 12-18 age group, gender, height, and region were correlated with the logarithm of FeNO50 (all P < 0.001). There was only a weak correlation between the logarithm of FeNO200 and height (P < 0.001). The logarithm of CaNO was negatively correlated with age (P < 0.05). CONCLUSIONS: Higher FeNO50, FeNO200 and CaNO values were found in healthy children and adolescents in China compared with foreign reports, and is affected by age, height, gender, and region. This study provides useful references for clinical application of eNO in children, especially Asian children.


Asunto(s)
Pruebas Respiratorias , Espiración , Óxido Nítrico , Humanos , Adolescente , Niño , Masculino , Femenino , Valores de Referencia , China/epidemiología , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Estudios Transversales , Espiración/fisiología , Pruebas Respiratorias/métodos , Voluntarios Sanos , Factores de Edad
7.
Am J Clin Nutr ; 120(3): 630-637, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232603

RESUMEN

BACKGROUND: The breath carbon isotope ratio (CIR) was recently identified as a noninvasive candidate biomarker of short-term added sugars (AS) intake. OBJECTIVES: This study aimed to better understand the potential of the breath CIR as a dietary biomarker. We evaluated the effects of short-term and long-term intakes of AS, animal protein (AP), and related variables on breath CIR, in the context of typical dietary intake patterns. METHODS: We conducted a 15-d controlled feeding study of 100 adults (age 18-70 y, 55% females) in Phoenix, AZ. Participants were provided individualized diets that approximated habitual food intakes and recorded the timing of food consumption. Three breath samples (fasting, midday, and evening) were collected on each of 3 nonconsecutive study days. We modeled the effects of dietary intake in each of 8 h preceding collection of the breath sample on breath CIR with a linear mixed model, which also included 15-d mean intakes, sex, age, and BMI. RESULTS: Median (IQR) intakes of AS and AP in our study were 65 (38) and 67 (33) g/d, respectively. Midday and evening breath CIRs correlated strongly with each other (0.80) and with fasting breath CIR (0.77 and 0.68, respectively). In our linear mixed models, breath CIR increased by AS consumed 1-4 h before sample collection, AP consumed 3-6 h before sample collection, and 15-d intakes of AS and AP, all with similar effect sizes. The breath CIR was also inversely associated with 15-d intakes of intrinsic sugars and plant protein; thus, associations with 15-d intakes were particularly strong when expressed proportionally as the AS ratio (added sugars/total sugars) and AP ratio (animal protein/total protein). CONCLUSIONS: The breath CIR is a promising measure of long-term intakes of AS and AP, especially as proportional intakes. Approaches to increase specificity would benefit the further development of this biomarker.


Asunto(s)
Biomarcadores , Pruebas Respiratorias , Isótopos de Carbono , Humanos , Femenino , Adulto , Masculino , Persona de Mediana Edad , Adulto Joven , Anciano , Adolescente , Biomarcadores/metabolismo , Biomarcadores/análisis , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/análisis , Azúcares de la Dieta/administración & dosificación , Dieta
8.
ACS Appl Mater Interfaces ; 16(36): 47973-47987, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225263

RESUMEN

Owing to the correlation between acetone in human's exhaled breath (EB) and blood glucose, the development of EB acetone gas-sensing devices is important for early diagnosis of diabetes diseases. In this article, a noninvasive blood glucose detection device through acetone sensing in EB, based on an α-Fe2O3-multiwalled carbon nanotube (MWCNT) nanocomposite, was successfully developed. Different amounts of α-Fe2O3 were added to the MWCNTs by a simple solution method. The optimized acetone gas sensor showed a response of 5.15 to 10 ppm acetone gas at 200 °C. Also, the fabricated sensor showed very good sensing properties even in an atmosphere with high relative humidity. Since the EB has high humidity, the proposed sensor is a promising device to exactly detect the amount of acetone in EB with high humidity. The sensor was powered by a 3200 mAh battery with the possibility of charging using mains electricity. To increase the reliability and calibration of the sensing device, a practical test was taken to detect acetone EB from 50 volunteers, and a deep learning algorithm (DLA) was used to detect the effect of various factors on the amount of acetone in each person's acetone EB. The proposed device with ±15 errors had almost 85% correct responses. Also, the proposed device had excellent response, short response time, good selectivity, and good repeatability, leading it to be a suitable candidate for noninvasive blood glucose sensing.


Asunto(s)
Acetona , Glucemia , Pruebas Respiratorias , Aprendizaje Profundo , Nanocompuestos , Nanotubos de Carbono , Acetona/análisis , Nanotubos de Carbono/química , Humanos , Nanocompuestos/química , Glucemia/análisis , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Compuestos Férricos/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Espiración
9.
Int J Occup Med Environ Health ; 37(3): 351-359, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39239929

RESUMEN

OBJECTIVES: To find possible relationship between asthma exacerbation and metabolomic profile of airways, assessed by non-invasive method - free volatile organic compounds (VOCs) in exhaled air in children. MATERIAL AND METHODS: The study included 80 children aged 4-18 years with asthma: 42 children with a min. 3 asthma exacerbations in the past 12 months, and 38 children without a history of exacerbations in the past year. During the study visit, each patient was examined, medical history (including information regarding atopy and eosinophil blood count) was taken, spirometry and fractional exhaled nitric oxide (FeNO) were tested, an exhaled air sample was taken to test for the presence of VOCs, and the patient also completed standardized form - Asthma Control Questionnaire. Volatile organic compounds were measured by combined gas chromatography coupled to mass spectrometry. RESULTS: The obtained results of VOCs were correlated with the history of the disease. The 2 gas profiles were defined and they formed 2 clinically distinct clusters (p = 0.085). Cluster 2 was characterized for children with a higher number of bronchial asthma exacerbations and worse lung function parameters (predicted percentage forced expiratory volume in 1 s [FEV1] [p = 0.023], FEV1/ forced vital capacity ratio [FVC] [p = 0.0219]). The results were independent of the age, sex, BMI, atopy (house dust mite allergy) and eosinophil blood count. CONCLUSIONS: The study findings suggest that a relative group of gases may be a useful predictor of having asthma exacerbations in children. Additionally, a single FeNO value was unlikely to be clinically useful in predicting asthma exacerbations in children. The VOCs profile reflecting the metabolism of the airway epithelium and local microbiota was associated with the course of asthma, which strongly justifies further prospective validation studies. Int J Occup Med Environ Health. 2024;37(3):351-59.


Asunto(s)
Asma , Pruebas Respiratorias , Compuestos Orgánicos Volátiles , Humanos , Asma/fisiopatología , Asma/diagnóstico , Niño , Compuestos Orgánicos Volátiles/análisis , Masculino , Femenino , Adolescente , Preescolar , Espiración , Espirometría
10.
Nutrients ; 16(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39203877

RESUMEN

The rise in food intolerances and celiac disease, along with advanced diagnostic techniques, has prompted health professionals to seek effective and economical testing methods. This study evaluates combining genetic tests with routine carbohydrate-absorption breath tests to classify patients with chronic gastrointestinal disorders into therapeutic groups, enhancing dietary management and improving gut health and quality of life. Forty-nine patients with suspected carbohydrate intolerance underwent genetic testing for lactase non-persistence, hereditary fructose intolerance, and celiac disease risk. Simultaneously, breath tests assessed lactose and fructose absorption. The lactase non-persistence genotype appeared in 36.7% of cases, with one hereditary fructose-intolerance case in a heterozygous condition. Celiac disease risk markers (HLA-DQ2/8 haplotypes) were found in 49.0% of the population. Secondary lactose and/or fructose malabsorption was present in 67.3% of patients, with 66.1% of lactase non-persistence individuals showing secondary lactose malabsorption. Fructose malabsorption was prevalent in 45.8% of patients at risk for celiac disease. Two main treatment groups were defined based on genetic results, indicating primary and irreversible gastrointestinal disorder causes, followed by a sub-classification using breath test results. Genetic testing is a valuable tool for designing dietary management plans, avoiding unnecessary diet restrictions, and reducing recovery times.


Asunto(s)
Pruebas Respiratorias , Enfermedad Celíaca , Intolerancia a la Fructosa , Enfermedades Gastrointestinales , Pruebas Genéticas , Lactasa , Intolerancia a la Lactosa , Humanos , Femenino , Masculino , Adulto , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/genética , Persona de Mediana Edad , Pruebas Respiratorias/métodos , Pruebas Genéticas/métodos , Intolerancia a la Fructosa/genética , Intolerancia a la Fructosa/dietoterapia , Intolerancia a la Fructosa/diagnóstico , Enfermedades Gastrointestinales/dietoterapia , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/diagnóstico , Intolerancia a la Lactosa/genética , Intolerancia a la Lactosa/dietoterapia , Intolerancia a la Lactosa/diagnóstico , Enfermedad Crónica , Lactasa/genética , Lactasa/deficiencia , Lactasa/metabolismo , Anciano , Intolerancia Alimentaria/genética , Adulto Joven , Adolescente , Fructosa
11.
Cells ; 13(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39195245

RESUMEN

Recent advancements in asthma management include non-invasive methodologies such as sputum analysis, exhaled breath condensate (EBC), and fractional exhaled nitric oxide (FeNO). These techniques offer a means to assess airway inflammation, a critical feature of asthma, without invasive procedures. Sputum analysis provides detailed insights into airway inflammation patterns and cellular composition, guiding personalized treatment strategies. EBC collection, reflecting bronchoalveolar lining fluid composition, provides a non-invasive window into airway physiology. FeNO emerges as a pivotal biomarker, offering insights into eosinophilic airway inflammation and aiding in asthma diagnosis, treatment monitoring, and the prediction of exacerbation risks. Despite inherent limitations, each method offers valuable tools for a more comprehensive assessment of asthma. Combining these techniques with traditional methods like spirometry may lead to more personalized treatment plans and improved patient outcomes. Future research is crucial to refine protocols, validate biomarkers, and establish comprehensive guidelines in order to enhance asthma management with tailored therapeutic strategies and improved patient outcomes.


Asunto(s)
Asma , Biomarcadores , Pruebas Respiratorias , Esputo , Humanos , Asma/diagnóstico , Asma/fisiopatología , Asma/metabolismo , Esputo/metabolismo , Pruebas Respiratorias/métodos , Biomarcadores/metabolismo , Espiración , Óxido Nítrico/metabolismo , Óxido Nítrico/análisis
12.
Theranostics ; 14(11): 4240-4255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113791

RESUMEN

Background: The sensitivity and specificity of current breath biomarkers are often inadequate for effective cancer screening, particularly in colorectal cancer (CRC). While a few exhaled biomarkers in CRC exhibit high specificity, they lack the requisite sensitivity for early-stage detection, thereby limiting improvements in patient survival rates. Methods: In this study, we developed an advanced Mass Spectrometry-based volatilomics platform, complemented by an enhanced breath sampler. The platform integrates artificial intelligence (AI)-assisted algorithms to detect multiple volatile organic compounds (VOCs) biomarkers in human breath. Subsequently, we applied this platform to analyze 364 clinical CRC and normal exhaled samples. Results: The diagnostic signatures, including 2-methyl, octane, and butyric acid, generated by the platform effectively discriminated CRC patients from normal controls with high sensitivity (89.7%), specificity (86.8%), and accuracy (AUC = 0.91). Furthermore, the metastatic signature correctly identified over 50% of metastatic patients who tested negative for carcinoembryonic antigen (CEA). Fecal validation indicated that elevated breath biomarkers correlated with an inflammatory response guided by Bacteroides fragilis in CRC. Conclusion: This study introduces a sophisticated AI-aided Mass Spectrometry-based platform capable of identifying novel and feasible breath biomarkers for early-stage CRC detection. The promising results position the platform as an efficient noninvasive screening test for clinical applications, offering potential advancements in early detection and improved survival rates for CRC patients.


Asunto(s)
Inteligencia Artificial , Biomarcadores de Tumor , Pruebas Respiratorias , Neoplasias Colorrectales , Detección Precoz del Cáncer , Compuestos Orgánicos Volátiles , Humanos , Neoplasias Colorrectales/diagnóstico , Pruebas Respiratorias/métodos , Compuestos Orgánicos Volátiles/análisis , Masculino , Persona de Mediana Edad , Femenino , Anciano , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Detección Precoz del Cáncer/métodos , Sensibilidad y Especificidad , Espectrometría de Masas/métodos , Adulto
13.
BMC Pharmacol Toxicol ; 25(1): 45, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118152

RESUMEN

BACKGROUND: Concentrations of metoprolol in exhaled breath condensate (EBC) have not been investigated. Herein, we aim to determine the metoprolol levels in EBC, plasma, and urine samples. METHODS: Biological samples were collected from 39 patients receiving metoprolol. Metoprolol was determined using liquid chromatography mass spectrometery. The obtained metoprolol levels in biological fluids were investigated for possible inter-correlations. RESULTS: Acceptable linearity was obtained with coefficient of determinations equal to 0.9998, 0.9941, and 0.9963 for EBC, plasma, and urine samples, respectively. The calibration curves were linear in the ranges of 0.6-500, 0.4-500, and 0.7-10,000 µg·L- 1 regarding EBC, plasma, and urine samples, respectively. The detection and quantification limits were (0.18, 0.12, and 0.21 µg·L- 1) and (0.60, 0.40, and 0.70 µg·L- 1) for EBC, plasma, and urine samples, respectively. The relative standard deviations for the intra- and inter-day replications were obtained between 5.2 and 6.1 and 3.3-4.6%, respectively. The obtained mean metoprolol levels in EBC, plasma, and urine samples of 39 patients were 5.35, 70.76, and 1943.1 µg·L- 1. There were correlations between daily dose and plasma and urinary concentrations of metoprolol in the investigated samples, whereas no significant correlation was observed for daily dose and EBC levels. The correlation among plasma-urine levels was significant, however, the non-significant correlation was obtained between plasma and EBC concentrations. CONCLUSION: Metoprolol levels varied widely due to the metabolic pattern of the Azeri population, different dosages received by the patients, formulation effects, age, sex, and interactions with the co-administered drugs. A poor correlation of EBC-plasma concentrations and a significant correlation of plasma-urine concentrations were observed. Further investigations are required to provide the updated services to personalized medicine departments.


Asunto(s)
Metoprolol , Metoprolol/orina , Metoprolol/farmacocinética , Metoprolol/sangre , Humanos , Femenino , Masculino , Estudios Transversales , Persona de Mediana Edad , Adulto , Anciano , Pruebas Respiratorias/métodos , Cromatografía Liquida/métodos , Antagonistas de Receptores Adrenérgicos beta 1/orina , Antagonistas de Receptores Adrenérgicos beta 1/sangre , Antagonistas de Receptores Adrenérgicos beta 1/farmacocinética , Antagonistas de Receptores Adrenérgicos beta 1/análisis , Adulto Joven
14.
Adv Clin Chem ; 122: 53-114, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39111965

RESUMEN

The detection of volatile organic compounds (VOCs) in breath has become a potential method for early cancer screening. Although this approach has attracted increasing attention from the both scientific and medical communities, it has not received appreciable traction in the clinical setting. There are two main obstacles. One involves the identification of specific biomarkers or combinations thereof especially in early cancer. The other is the lack the specialized equipment for breath analysis having the appropriate sensitivity and specificity. Using metabolomics, this chapter examines the research strategies involving gas biomarkers in cancer patient breath, cancer cell gas metabolites and synthetic biomarkers. We briefly explore gas biomarkers of seven cancers and introduce principles of detection and clinical application. Large analytical instruments and small sensor technology are highlighted. Challenges to VOC analysis are presented including clinical use, extraction and detection, miniaturization efforts and examination of metabolic VOC pathways. Finally, VOCs in cancer and in exhaled breath detection technology are summarized and future prospects explored.


Asunto(s)
Pruebas Respiratorias , Neoplasias , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Pruebas Respiratorias/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Biomarcadores de Tumor/análisis , Espiración , Metabolómica/métodos
16.
J Breath Res ; 18(4)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39089291

RESUMEN

Polymeric bags are a widely applied, simple, and cost-effective method for the storage and offline analysis of gaseous samples. Various materials have been used as sampling bags, all known to contain impurities and differing in their cost, durability, and storage capabilities. Herein, we present a comparative study of several well-known bag materials, Tedlar (PVF), Kynar (PVDF), Teflon (PTFE), and Nalophan (PET), as well as a new material, ethylene vinyl copolymer (EVOH), commonly used for storing food. We investigated the influences of storage conditions, humidity, bag cleaning, and light exposure on volatile organic compound concentration (acetone, acetic acid, isoprene, benzene, limonene, among others) in samples of exhaled human breath stored in bags for up to 48 h. Specifically, we show high losses of short-chain fatty acids (SCFAs) in bags of all materials (for most SCFAs, less than 50% after 8 h of storage). We found that samples in Tedlar, Nalophan, and EVOH bags undergo changes in composition when exposed to UV radiation over a period of 48 h. We report high initial impurity levels in all the bags and their doubling after a period of 48 h. We compare secondary electrospray ionization and proton transfer reaction mass spectrometry in the context of offline analysis after storage in sampling bags. We provide an analytical perspective on the temporal evolution of bag contents by presenting the intensity changes of all significantm/zfeatures. We also present a simple, automated, and cost-effective offline sample introduction system, which enables controlled delivery of collected gaseous samples from polymeric bags into the mass spectrometer. Overall, our findings suggest that sampling bags exhibit high levels of impurities, are sensitive to several environmental factors (e.g. light exposure), and provide low recoveries for some classes of compounds, e.g. SCFAs.


Asunto(s)
Pruebas Respiratorias , Polímeros , Humanos , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Polímeros/análisis , Compuestos Orgánicos Volátiles/análisis , Espiración , Manejo de Especímenes/métodos , Manejo de Especímenes/instrumentación
17.
J Hazard Mater ; 478: 135462, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126854

RESUMEN

For hazardous gas monitoring and non-invasive diagnosis of diabetes using breath analysis, porous foams assembled by Co3O4 nanoparticles were designed as sensing electrode materials to fabricate efficient yttria-stabilized zirconia (YSZ)-based acetone sensors. The sensitivity of the sensors was improved by varying the sintering temperature to regulate the morphology. Compared to other materials sintered at different temperatures, the porous Co3O4 nanofoams sintered at 800 °C exhibited the highest electrochemical catalytic activity during the electrochemical test. The response of the corresponding Co3O4-based sensor to 10 ppm acetone was -77.2 mV and it exhibited fast response and recovery times. Moreover, the fabricated sensor achieved a low detection limit of 0.05 ppm and a high sensitivity of -56 mV/decade in the acetone concentration range of 1-20 ppm. The sensor also exhibited excellent repeatability, acceptable selectivity, good O2/humidity resistance, and long-term stability during continuous measurements for over 30 days. Moreover, the fabricated sensor was used to determine the acetone concentration in the exhaled breaths of patients with diabetic ketosis. The results indicated that it could distinguish between healthy individuals and patients with diabetic ketosis, thereby proving its abilities to diagnose and monitor diabetic ketosis. Based on its excellent sensitivity and exhaled breath measurement results, the developed sensor has broad application prospects.


Asunto(s)
Acetona , Pruebas Respiratorias , Cobalto , Electrodos , Óxidos , Itrio , Circonio , Acetona/análisis , Circonio/química , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , Itrio/química , Humanos , Porosidad , Cobalto/química , Cobalto/análisis , Óxidos/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Límite de Detección
18.
Nano Lett ; 24(33): 10139-10147, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39109658

RESUMEN

Surface-enhanced Raman scattering (SERS) offers a promising, cost-effective alternative for the rapid, sensitive, and quantitative analysis of potential biomarkers in exhaled gases, which is crucial for early disease diagnosis. However, a major challenge in SERS is the effective detection of gaseous analytes, primarily due to difficulties in enriching and capturing them within the substrate's "hotspot" regions. This study introduces an advanced gas sensor combining mesoporous gold (MesoAu) and metal-organic frameworks (MOFs), exhibiting high sensitivity and rapid detection capabilities. The MesoAu provides abundant active sites and interconnected mesopores, facilitating the diffusion of analytes for detection. A ZIF-8 shell enveloping MesoAu further enriches target molecules, significantly enhancing sensitivity. A proof-of-concept experiment demonstrated a detection limit of 0.32 ppb for gaseous benzaldehyde, indicating promising prospects for the rapid diagnosis of early stage lung cancer. This research also pioneers a novel approach for constructing hierarchical plasmonic nanostructures with immense potential in gas sensing.


Asunto(s)
Pruebas Respiratorias , Gases , Oro , Estructuras Metalorgánicas , Espectrometría Raman , Estructuras Metalorgánicas/química , Pruebas Respiratorias/métodos , Oro/química , Gases/análisis , Gases/química , Humanos , Espectrometría Raman/métodos , Porosidad , Nanoestructuras/química , Benzaldehídos/química , Límite de Detección , Nanopartículas del Metal/química
19.
ACS Sens ; 9(8): 4047-4057, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39093722

RESUMEN

Exhaled breath electrochemical sensing is a promising biomedical technology owing to its portability, painlessness, cost-effectiveness, and user-friendliness. Here, we present a novel approach for target analysis in exhaled breath by integrating a comfortable paper-based collector into an N95 face mask, providing a universal solution for analyzing several biomarkers. As a model analyte, we detected SARS-CoV-2 spike protein from the exhaled breath by sampling the target analyte into the collector, followed by its detection out of the N95 face mask using a magnetic bead-based electrochemical immunosensor. This approach was designed to avoid any contact between humans and the chemicals. To simulate human exhaled breath, untreated saliva samples were nebulized on the paper collector, revealing a detection limit of 1 ng/mL and a wide linear range of 3.7-10,000 ng/mL. Additionally, the developed immunosensor exhibited high selectivity toward the SARS-CoV-2 spike protein, compared to other airborne microorganisms, and the SARS-CoV-2 nucleocapsid protein. Accuracy assessments were conducted by analyzing the simulated breath samples spiked with varying concentrations of SARS-CoV-2 spike protein, resulting in satisfactory recovery values (ranging from 97 ± 4 to 118 ± 1%). Finally, the paper-based hybrid immunosensor was successfully applied for the detection of SARS-CoV-2 in real human exhaled breath samples. The position of the collector in the N95 mask was evaluated as well as the ability of this paper-based analytical tool to identify the positive patient.


Asunto(s)
Técnicas Biosensibles , Pruebas Respiratorias , COVID-19 , Papel , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , COVID-19/diagnóstico , COVID-19/virología , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/inmunología , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Límite de Detección , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Espiración , Respiradores N95 , Saliva/química , Saliva/virología
20.
J Chromatogr A ; 1734: 465296, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213840

RESUMEN

Secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS) is a powerful method for the analysis of exhaled breath in real time. However, feature annotation is challenging due to the flow-injection nature of the technique. To evaluate alternative methods for enhancing feature annotation, a study was conducted where the exhaled breath of sixteen subjects was condensed and analyzed using dynamic headspace vacuum in-trap extraction gas chromatography-mass spectrometry (DHS-V-ITEX-GC-MS) and liquid chromatography coupled to mass spectrometry (LC-MS) using polar and reverse-phase conditions along with a data-independent MS2-acquisition method based on multiple injections. The annotation results obtained from these methods were compared to those from SESI-HRMS. The use of these techniques on breath condensate is unprecedented. The GC-MS method primarily detected compounds of exogenous origin, particularly additives in oral hygiene products like menthol. On the other hand, LC-MS detected a vast number of features, especially with the utilized data-independent acquisition method. Chemical classes to these features were assigned in-silico. In positive ion mode, mostly amino acids and amines were detected, while the largest group in negative ion mode consisted of carboxylic acids. Approximately 25% and 5% of SESI features had a corresponding match with LC-MS and GC-MS. While both GC-MS and LC-MS methods partially overlapped with the SESI features, there was limited overlap of both in the mass-to-charge range from 150 to 200. In conclusion, both GC-MS and LC-MS analysis of breath condensate can serve as supplementary tools for annotating features obtained from SESI-MS. However, to increase confidence in the annotation results, combining these methods with additional on-line fragmentation techniques is recommended.


Asunto(s)
Pruebas Respiratorias , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masa por Ionización de Electrospray , Humanos , Pruebas Respiratorias/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Masculino , Compuestos Orgánicos Volátiles/análisis , Adulto , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA