Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Med Eng Phys ; 131: 104227, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39284651

RESUMEN

Mechanical testing machines are used to evaluate kinematics, kinetics, wear, and efficacy of spinal implants. The simulation of "physiological" spinal loading conditions necessitates the simultaneous use of multiple actuators. The challenge in achieving a desired loading profile lies in achieving close synchronization of these actuators. Errors in load application can be attributed to both the control system and the intrinsic sample response. Moreover, the presence of friction in the setup can have an impact on the measured outcome. The optimization of setup parameters can substantially improve the ability to simulate spinal loading conditions and obtain reliable data on implant performance. In this study, a reproducible kinematic test protocol was developed to evaluate the sensitivity of the kinetic response (i.e., measured loads, moments, and stiffnesses) of a cervical disc prosthesis to several testing parameters. In this context, five ceramic ball and socket sample implants were mounted in a 6 DOF material testing machine and tested with a constant axial compressive force of 100 N in two motion modes: 1) flexion-extension (±7.5°) and 2) lateral bending (±6°). Parameters including rotation rate, slider friction, friction between the samples' articulating surfaces, and moment arm were considered to determine their effects on measured kinetic parameters. The sensitivity analysis indicated that all setup parameters except friction between the samples' articulating surfaces had a substantial effect on the results. The findings were then compared to predictions from a free body diagram to determine the optimal setup parameters. Consequently, the setup with the lowest rotation rate and employing passive sliders yielded results that were consistent with the free body diagram. This study demonstrated the significance of a comprehensive setup evaluation for reliable and reproducible testing of spinal implants, also for comparison between labs.


Asunto(s)
Vértebras Cervicales , Ensayo de Materiales , Cinética , Vértebras Cervicales/cirugía , Vértebras Cervicales/fisiología , Prótesis e Implantes , Disco Intervertebral/fisiología , Disco Intervertebral/cirugía , Fenómenos Biomecánicos , Fricción , Pruebas Mecánicas , Humanos , Soporte de Peso
2.
Med Eng Phys ; 131: 104228, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39284654

RESUMEN

This study focuses on evaluating the failure resistance of a previously reduced tibia with internal fixation implants as PLate (PL) or InterMedullary Nail (IMN), subjected later to a tibial lateral trauma. To replicate this type of trauma, which can be caused by a road accident, a three-point bending test is considered using experimental tests and numerical simulations. The withstand evaluation of the tibia-PL and tibia-IMN structures was conducted by following the load transfer through, the bone and the used implants. The analysis, up to tibia failure, required the use of an elasto-plastic behavior law coupled to damage. The model parameters were identified using experimental tests. Il was shown that the tibia-IMN structure provided a bending resistant load up to three-times higher than the tibia-PL. In fact, the used screws for plate fixation induced a high level of stress in the vicinity of threaded region, leading to a crack initiation and a damage propagation. However, in tibia-IMN structure the highest stress was generated in the trapped zone between the loader and the nail, promoting crack formation. From a biomechanical point of view, the structure with IMN is safer than the structure with PL, whose fixation induces earlier damage in bone.


Asunto(s)
Ensayo de Materiales , Tibia , Fracturas de la Tibia , Tibia/cirugía , Fracturas de la Tibia/cirugía , Fracturas de la Tibia/fisiopatología , Humanos , Placas Óseas , Fenómenos Biomecánicos , Pruebas Mecánicas , Estrés Mecánico , Fijación Interna de Fracturas/instrumentación , Análisis de Elementos Finitos , Clavos Ortopédicos
3.
J Mech Behav Biomed Mater ; 158: 106689, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153409

RESUMEN

Accurate transverse deformation measurements are required for the estimation of the Poisson function and volume ratio. In this study, pure silicone and soft composite specimens were subjected to uniaxial tension, and the digital image correlation method was used to measure longitudinal and in- and out-of-plane transverse stretches. To minimize the effects of measurement errors on parameter estimation, the measured transverse stretches were defined in terms of the longitudinal stretch using a new formulation based on Poisson's ratios and two stretch-dependent parameters. From this formulation, Poisson functions and volume ratio for soft materials under large deformations were obtained. The results showed that pure silicone can be considered isotropic and nearly incompressible under large deformations, as expected. In contrast, Poisson's ratio of silicone reinforced with extensible fabric can exceed classical bounds, including negative value (auxetic behavior). The incompressibility assumption can be employed for describing the stress-stretch curve of pure silicone, while volume ratios are required for soft composites. Data of human skin, aortic wall, and annulus fibrosus from the literature were selected and analyzed. Except for the aortic wall, which can be considered nearly incompressible, the studied soft tissues must be regarded as compressible. All tissues presented anisotropic behavior.


Asunto(s)
Ensayo de Materiales , Estrés Mecánico , Anisotropía , Humanos , Siliconas/química , Fenómenos Mecánicos , Distribución de Poisson , Piel , Fenómenos Biomecánicos , Pruebas Mecánicas
4.
J Mech Behav Biomed Mater ; 158: 106688, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153410

RESUMEN

Adequate primary stability is a pre-requisite for the osseointegration and long-term success of dental implants. Primary stability depends essentially on the bone mechanical integrity at the implantation site. Clinically, a qualitative evaluation can be made on medical images, but finite element (FE) simulations can assess the primary stability of a bone-implant construct quantitatively based on high-resolution CT images. However, FE models lack experimental validation on clinically relevant bone anatomy. The aim of this study is to validate such an FE model on human jawbones. Forty-seven bone biopsies were extracted from human cadaveric jawbones. Dental implants of two sizes (Ø3.5 mm and Ø4.0 mm) were inserted and the constructs were subjected to a quasi-static bending-compression loading protocol. Those mechanical tests were replicated with sample-specific non-linear homogenized FE models. Bone was modeled with an elastoplastic constitutive law that included damage. Density-based material properties were mapped based on µCT images of the bone samples. The experimental ultimate load was better predicted by FE (R2 = 0.83) than by peri-implant bone density (R2 = 0.54). Unlike bone density, the simulations were also able to capture the effect of implant diameter. The primary stability of a dental implant in human jawbones can be predicted quantitatively with FE simulations. This method may be used for improving the design and insertion protocols of dental implants.


Asunto(s)
Implantes Dentales , Análisis de Elementos Finitos , Maxilares , Humanos , Maxilares/fisiología , Fenómenos Mecánicos , Estrés Mecánico , Anciano , Fenómenos Biomecánicos , Masculino , Femenino , Persona de Mediana Edad , Pruebas Mecánicas , Ensayo de Materiales
5.
Med Eng Phys ; 130: 104194, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39160012

RESUMEN

Intervertebral disc herniation is not a common injury in the adolescent population, but the correlation between trauma and herniation warrants concern. Previous research demonstrated the capacity for rapid internal pressurization to reduce the mechanical integrity of the intervertebral disc's annulus fibrosus, even in the absence of fracture. The purpose of this study was to modify previous internal pressurization procedures towards a more transferable injury model, then investigate the capacity for these procedures to damage the mechanical integrity of the annulus fibrosus. Porcine cervical motion segments with intact facet joints were confined between a vice and force plate under 300 N of static compression, then a single, manual, rapid internal pressurization was delivered. Posterolateral annulus samples were extracted and situated in a 180° peel test configuration, exposing the interlamellar matrix of samples to separations of 0.5 mm/s, until complete separation of the sample occurred. Multilayer tensile testing was performed on superficial and mid-span samples of annulus by applying uniaxial tension of 1 %/s to 50 % strain. Compared to unpressurized controls, rapid pressurization causing fracture resulted in reduced lamellar adhesion and increased toe-region stress and strain properties in the annulus. Morphological assessment reported similar fracture patterns between endplate fractures achieved in the present experiment and endplate fractures documented in human patients. Mechanical plus morphological results suggest that rapid internal pressurization resulting in endplate fracture may represent a potent mechanism for subsequent damage to the intervertebral disc.


Asunto(s)
Anillo Fibroso , Presión , Animales , Porcinos , Fenómenos Biomecánicos , Fenómenos Mecánicos , Estrés Mecánico , Pruebas Mecánicas , Disco Intervertebral/lesiones , Resistencia a la Tracción
6.
Med Eng Phys ; 130: 104199, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39160027

RESUMEN

Quantifying the mechanical behavior of skin has been foundational in applications of cosmetics, surgical techniques, forensic science, and protective clothing development. However, previous puncture studies have lacked consistent and physiological boundary conditions of skin. To determine natural skin tension, excision of in situ porcine skin resulted in significantly different diameter reduction (shrinkage) in leg (19.5 %) and abdominal skin (38.4 %) compared to flank skin (28.5 %) (p = 0.047). To examine effects of initial tension and pre-conditioning, five conditions of initial tension (as percentage of diameter increase) and pre-conditioning were tested in quasistatic puncture with a 5 mm spherical impactor using an electrohydraulic load frame and custom clamping apparatus. Samples with less than 5 % initial tension resulted in significantly greater (p = 0.011) force at failure (279.2 N) compared to samples with greater than 25 % initial tension (195.1 N). Eight pre-conditioning cycles of 15 mm displacement reduced hysteresis by 45 %. The coefficient of variance was substantially reduced for force, force normalized by cutis thickness, displacement, stiffness, and strain energy up to 46 %. Pre-conditioned samples at physiological initial tension (14-25 %) resulted in significantly greater (p = 0.03) normalized forces at failure (278.3 N/mm) compared to non-conditioned samples of the same initial tension (234.4 N/mm). Pre-conditioned samples with 14-25 % initial tension, representing physiological boundary conditions, resulted in the most appropriate failure thresholds with the least variation. For in vitro puncture studies, the magnitude of applied initial tension should be defined based on anatomical location, through a shrinkage experimentation, to match natural tension of skin. Characterizing the biological behavior and tolerances of skin may be utilized in finite element models to aid in protective clothing development and forensic science analyses.


Asunto(s)
Piel , Animales , Porcinos , Ensayo de Materiales , Fenómenos Biomecánicos , Punciones , Fenómenos Mecánicos , Estrés Mecánico , Fenómenos Fisiológicos de la Piel , Pruebas Mecánicas
7.
Med Eng Phys ; 130: 104210, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39160032

RESUMEN

In addition to human donor bones, bone models made of synthetic materials are the gold standard substitutes for biomechanical testing of osteosyntheses. However, commercially available artificial bone models are not able to adequately reproduce the mechanical properties of human bone, especially not human osteoporotic bone. To overcome this issue, new types of polyurethane-based synthetic osteoporotic bone models have been developed. Its base materials for the cancellous bone portion and for the cortical portion have already been morphologically and mechanically validated against human bone. Thus, the aim of this study was to combine the two validated base materials for the two bone components to produce femur models with real human geometry, one with a hollow intramedullary canal and one with an intramedullary canal filled with synthetic cancellous bone, and mechanically validate them in comparison to fresh frozen human bone. These custom-made synthetic bone models were fabricated from a computer-tomography data set in a 2-step casting process to achieve not only the real geometry but also realistic cortical thicknesses of the femur. The synthetic bones were tested for axial compression, four-point bending in two planes, and torsion and validated against human osteoporotic bone. The results showed that the mechanical properties of the polyurethane-based synthetic bone models with hollow intramedullary canals are in the range of those of the human osteoporotic femur. Both, the femur models with the hollow and spongy-bone-filled intramedullary canal, showed no substantial differences in bending stiffness and axial compression stiffness compared to human osteoporotic bone. Torsional stiffnesses were slightly higher but within the range of human osteoporotic femurs. Concluding, this study shows that the innovative polyurethane-based femur models are comparable to human bones in terms of bending, axial compression, and torsional stiffness.


Asunto(s)
Fuerza Compresiva , Fémur , Ensayo de Materiales , Osteoporosis , Poliuretanos , Poliuretanos/química , Humanos , Fémur/diagnóstico por imagen , Fémur/fisiopatología , Fenómenos Biomecánicos , Osteoporosis/diagnóstico por imagen , Osteoporosis/fisiopatología , Pruebas Mecánicas
8.
J Mech Behav Biomed Mater ; 158: 106644, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39088941

RESUMEN

Ceramic lattices hold great potential for bone scaffolds to facilitate bone regeneration and integration of native tissue with medical implants. While there have been several studies on additive manufacturing of ceramics and their osseointegrative and osteoconductive properties, there is a lack of a comprehensive examination of their mechanical behavior. Therefore, the aim of this study was to assess the mechanical properties of different additively manufactured ceramic lattice structures under different loading conditions and their overall ability to mimic bone tissue properties. Eleven different lattice structures were designed and manufactured with a porosity of 80% using two materials, hydroxyapatite (HAp) and zirconium dioxide (ZrO2). Six cell-based lattices with cubic and hexagonal base, as well as five Voronoi-based lattices were considered in this study. The samples were manufactured using lithography-based ceramic additive manufacturing and post-processed thermally prior to mechanical testing. Cell-based lattices with cubic and hexagonal base, as well as Voronoi-based lattices were considered in this study. The lattices were tested under four loading conditions: compression, four-point bending, shear and tension. The manufacturing process of the different ceramics leads to different deviations of the lattice geometry, hence, the elastic properties of one structure cannot be directly inferred from one material to another. ZrO2 lattices prove to be stiffer than HAp lattices of the same designed structure. The Young's modulus for compression of ZrO2 lattices ranges from 2 to 30GPa depending on the used lattice design and for HAp 200MPa to 3.8GPa. The expected stability, the load where 63.2% of the samples are expected to be destroyed, of the lattices ranges from 81 to 553MPa and for HAp 6 to 42MPa. For the first time, a comprehensive overview of the mechanical properties of various additively manufactured ceramic lattice structures is provided. This is intended to serve as a reference for designers who would like to expand the design capabilities of ceramic implants that will lead to an advancement in their performance and ability to mimic human bone tissue.


Asunto(s)
Cerámica , Durapatita , Ensayo de Materiales , Fenómenos Mecánicos , Circonio , Circonio/química , Cerámica/química , Durapatita/química , Pruebas Mecánicas , Porosidad
9.
J Mech Behav Biomed Mater ; 158: 106662, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096682

RESUMEN

Minimally invasive spine treatments have been sought after for elderly patients with comorbidities suffering from advanced degenerative disc disease. Percutaneous cement discoplasty (PCD) is one such technique where cement is injected into a degenerated disc with a vacuum phenomenon to relieve patients from pain. Adjacent vertebral fractures (AVFs) are however an inherent risk, particularly for osteoporotic patients, due to the high stiffness of the used cements. While low-modulus cements have been developed for vertebroplasty through the addition of linoleic acid, there are no such variations with a high-viscosity base cement, which is likely needed for the discoplasty application. Therefore, a low-modulus polymethyl methacrylate was developed by the addition of 12%vol. linoleic acid to a high-viscosity bone cement (hv-LA-PMMA). Initial experimental validation of the cement was performed by mechanical testing under compression over a period of 24 weeks, after storage in 37 °C phosphate buffer saline (PBS) solution. Furthermore, cement extracts were used to evaluate residual monomer release and the cytotoxicity of hv-LA-PMMA using fibroblastic cells. Relative to the base commercial cement, a significant reduction of Young's modulus and compressive strength of 36% and 42% was observed, respectively. Compression-tension fatigue tests at 5 MPa gave an average fatigue limit of 31,078 cycles. This was higher than another low-modulus cement and comparable to the fatigue properties of the disc annulus tissue. Monomer release tests showed that hv-LA-PMMA had a significantly higher release between 24 h and 7 days compared to the original bone cement, similarly to other low-modulus cements. Also, the control cement showed cytocompatibility at all time points of extract collection for 20-fold dilution, while hv-LA-PMMA only showed the same for extract collections at day 7. However, the 20-fold dilution was needed for both the control and the hv-LA-PMMA extracts to demonstrate more than 70% fibroblast viability at day 7. In conclusion, the mechanical testing showed promise in the use of linoleic acid in combination with a high-viscosity PMMA cement to achieve properties adequate to the application. Further testing and in vivo studies are however required to fully evaluate the mechanical performance and biocompatibility of hv-LA-PMMA for possible future clinical application.


Asunto(s)
Cementos para Huesos , Ácido Linoleico , Ensayo de Materiales , Fenómenos Mecánicos , Cementos para Huesos/química , Animales , Ácido Linoleico/química , Ratones , Pruebas Mecánicas , Polimetil Metacrilato/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Viscosidad , Fuerza Compresiva , Humanos
10.
J Mech Behav Biomed Mater ; 159: 106679, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180890

RESUMEN

Implant subsidence into the underlying trabecular bone is a common problem in orthopaedic surgeries; however, the ability to pre-operatively predict implant subsidence remains limited. Current state-of-the-art computational models for predicting subsidence have issues addressing this clinical problem, often resulting from the size and complexity of existing subject-specific, image-based finite element (FE) models. The current study aimed to develop a simplified approach to FE modeling of subject-specific trabecular bone indentation resulting from implant penetration. Confined indentation experiments of human trabecular bone with flat- and sharp-tip indenters were simulated using FE analysis. A generalized continuum-level approach using a meshless smoothed particle hydrodynamics (SPH) approach and an isotropic crushable foam (CF) material model was developed for the trabecular bone specimens. Five FE models were generated with CF material parameters calibrated to cadaveric specimens spanning a range of bone mineral densities (BMD). Additionally, an alternative model configuration was developed that included consideration of bone marrow, with bone and marrow material parameters assigned to elements randomly according to bone volume (BV%) measurements of experimental specimens, owing to the non-uniform nature of trabecular bone tissue microstructure. Statistical analysis found significant correlation between the shapes of the numerical and experimental force-displacement curves. FE models accurately captured the bone densification patterns observed experimentally. Inclusion of marrow elements offered improved response prediction of the flat-tip indenter tests. Ultimately, the developed approach demonstrates the ability of a generalizable continuum-level SPH approach to capture bone variability using clinical bone imaging metrics without needing detailed image-based geometries, a significant step towards simplified subject-specific modeling of implant subsidence.


Asunto(s)
Hueso Esponjoso , Análisis de Elementos Finitos , Hueso Esponjoso/fisiología , Hueso Esponjoso/diagnóstico por imagen , Humanos , Pruebas Mecánicas , Ensayo de Materiales , Fenómenos Mecánicos , Fenómenos Biomecánicos , Densidad Ósea , Anciano , Masculino , Femenino
11.
J Mech Behav Biomed Mater ; 159: 106691, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39182251

RESUMEN

The anterior cruciate ligament is one of the important tissues to maintain the stability of the human knee joint, but it is difficult for this ligament to self-heal after injury. Consequently, transplantation of artificial ligaments (ALs) has gained widespread attention as an important alternative treatment method in recent years. However, accurately predicting the intricate mechanical properties of ALs remains a formidable challenge, particularly when employing theoretical frameworks such as braiding theory. This obstacle presents a significant impediment to achieving optimal AL design. Therefore, in this study, a high-precision machine learning model based on an artificial neural network was developed to rapidly and accurately predict the mechanical properties of ALs. The results showed that the proposed model achieved a reduction of 45.22% and 50.17% in the normalized root mean square error on the testing set when compared to traditional machine learning models (Random Forest and Support Vector Machine), demonstrating its higher accuracy. In addition, the design of ALs with desired mechanical properties was achieved by optimizing the braiding parameters, and its effectiveness was verified through experiments. The mechanical properties of the prepared ALs were able to fully meet the desired targets and were at least 2% higher. Finally, the influence weights of different braiding parameters on the mechanical properties of ALs were analyzed by feature importance.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Aprendizaje Automático , Fenómenos Mecánicos , Reconstrucción del Ligamento Cruzado Anterior/métodos , Ensayo de Materiales , Humanos , Ligamento Cruzado Anterior/cirugía , Redes Neurales de la Computación , Fenómenos Biomecánicos , Ligamentos/cirugía , Órganos Artificiales , Pruebas Mecánicas
12.
J Mech Behav Biomed Mater ; 159: 106686, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39167915

RESUMEN

Pessaries are removable gynecological prosthetic devices that provide mechanical support for temporary or long-term symptom relief of pelvic floor disorders, such as pelvic organ prolapse and stress urinary incontinence. To date, limited mechanical tests have been performed on physical pessary designs to characterize their behaviour under load; however, custom pessary manufacturing is expensive and time consuming. As an alternative, finite element (FE) modeling can provide detailed numerical insight into the response of a pessary design under load but to date has seen limited application, with little data available for pessary silicone materials. This study aimed to identify hyperelastic material models for two silicone materials used in custom pessary cocoon moulded manufacturing towards FE analysis of ring with support (RWS) pessaries. It was hypothesized that hyperelastic material models could be identified to capture the force and deformation response of multiple RWS sizes under different boundary conditions and silicone materials (Shore 60A and 40A). To understand the material characteristics of pessary silicone, uniaxial tension and compression tests were performed then the experimental data was fit with Mooney-Rivlin (MR) material models. To ensure the material models characterize the pessary behaviour, data from mechanical tests representing the RWS pessary folding and modified 3-point bending were compared to FE recreations (FEBio) of the same tests with the MR materials applied to the pessaries. The FE model results demonstrated good agreement in the force-displacement response for the fold and 3-point bending models for different pessary sizes and silicone stiffnesses. This work demonstrates the hyperelastic material models' efficacy and will enable future studies to improve biomechanical analysis of silicone pessary designs.


Asunto(s)
Elasticidad , Análisis de Elementos Finitos , Ensayo de Materiales , Pesarios , Siliconas , Siliconas/química , Estrés Mecánico , Pruebas Mecánicas
13.
J Mech Behav Biomed Mater ; 159: 106699, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39173496

RESUMEN

The outstanding mechanical properties of lobster claw exoskeletons are intricately tied to their internal microstructure. Investigating this relationship can offer vital insights for designing high-performance additive manufacturing structures. Fractal theory, with its fractional dimensional perspective, suits the complexity of real-world phenomena. Our study examines fully hydrated lobster claw exoskeletons using a multifaceted approach: four-point bending tests, scanning electron microscopy observations, and fractal models. Test results reveal superior mechanical properties in longitudinal specimens. Scanning electron microscopy shows non-uniform fiber helical structures and porous elements in the exoskeleton. Fracture mechanisms involve both breaking fiber fragments perpendicular to the cross-section and tearing between these fragments. The observed crack propagation paths exhibit statistical self-similarity. Consequently, we develop fractal models for the crack propagation paths in longitudinal and transverse specimens, calculating crack extension forces. Using the box-counting method and its improved variant, we determine the fractal dimensions of specimen sections. The fractal dimension of longitudinal models exceeds that of transverse models, and calculated crack extension forces are higher in longitudinal models. These findings align well with experimental data, demonstrating fractal theory's efficacy in analyzing the lobster claw exoskeleton's anisotropic mechanical properties.


Asunto(s)
Fractales , Fenómenos Mecánicos , Anisotropía , Animales , Fenómenos Biomecánicos , Ensayo de Materiales , Pruebas Mecánicas , Pezuñas y Garras/anatomía & histología , Nephropidae
14.
Proc Inst Mech Eng H ; 238(7): 774-792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045911

RESUMEN

When treating orthopaedic damage or illness and accidental fracture, bone grafting remains the gold standard of treatment. In cases where this approach does not seem achievable, bone tissue engineering can offer scaffolding as a substitute. Defective and fractured bone tissue is extracted and substituted with porous scaffold structures to aid in the process of tissue regeneration. 3D bioprinting has demonstrated enormous promise in recent years for producing scaffold structures with the necessary capabilities. In order to create composite biomaterial inks for 3D bioprinting, three different materials were combined such as silk fibroin, bone particles, and synthetic biopolymer poly (ε-caprolactone) (PCL). These biomaterials were used to fabricate the two composites scaffolds such as: silk fibroin + bovine bone (SFB) and silk fibroin + bovine bone + Polycaprolactone (SFBP). The biomechanical, structural, and biological elements of the manufactured composite scaffolds were characterized in order to determine their suitability as a possible biomaterial for the production of bone tissue. The in vitro bioactivity of the two composite scaffolds was assessed in the simulated body fluids, and the swelling and degradation characteristics of the two developed scaffolds were analyzed separately over time. The results showed that the mechanical durability of the composite scaffolds was enhanced by the bovine bone particles, up to a specific concentration in the silk fibroin matrix. Furthermore, the incorporation of bone particles improved the bioactive composite scaffolds' capacity to generate hydroxyapatite in vitro. The combined findings show that the two 3D printed bio-composites scaffolds have the required mechanical strength and may be applied to regeneration of bone tissue and restoration, since they resemble the characteristics of native bone.


Asunto(s)
Materiales Biocompatibles , Fibroínas , Ensayo de Materiales , Impresión Tridimensional , Andamios del Tejido , Fibroínas/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Bovinos , Andamios del Tejido/química , Huesos/cirugía , Fenómenos Mecánicos , Poliésteres/química , Pruebas Mecánicas , Prótesis e Implantes
15.
Acta Biomater ; 185: 266-280, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39048027

RESUMEN

Advanced numerical simulations of the mechanical behavior of human skin require thorough calibration of the material's constitutive models based on experimental ex vivo mechanical tests along with images of tissue microstructure for a variety of biomedical applications. In this work, a total of 14 human healthy skin samples and 4 additional scarred skin samples were experimentally analyzed to gain deep insights into the biomechanics of human skin. In particular, second harmonic generation (SHG) microscopy was used to extract detailed images of the distribution of collagen fibers, which were subsequently processed using a three-dimensional Fourier transform-based method recently proposed by the authors to quantify the distribution of fiber orientations. Mechanical tests under both biaxial and uniaxial loading were performed to calibrate the relevant mechanical parameters of two widely used constitutive models of soft fiber-reinforced biological tissues that account for non-symmetrical fiber dispersion. The calibration of the models allowed us to identify correlations between the mechanical parameters of the constitutive models considered. STATEMENT OF SIGNIFICANCE: Constitutive models for soft collagenous tissues can accurately reproduce the complex nonlinear and anisotropic mechanical behavior of skin. However, a comprehensive analysis of both microstructural and mechanical parameters is still missing for human skin. In this study, these parameters are determined by combining biaxial mechanical tests and SHG stacks of collagen fibers on ex vivo healthy human skin samples. The constitutive parameters are provided for two widely used hyperelastic models and enable accurate characterization of skin mechanical behavior for advanced numerical simulations.


Asunto(s)
Modelos Biológicos , Microscopía de Generación del Segundo Armónico , Piel , Humanos , Fenómenos Biomecánicos , Microscopía de Generación del Segundo Armónico/métodos , Pruebas Mecánicas , Femenino , Colágeno/química , Adulto , Fenómenos Fisiológicos de la Piel , Masculino , Estrés Mecánico
16.
J Mech Behav Biomed Mater ; 158: 106651, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059120

RESUMEN

Quantitative assessment of skin mechanical properties can play a pivotal role in diagnosing and tracking various dermatological conditions. Myoton is a promising tool that rapidly and noninvasively measures five skin biomechanical parameters. Accurate interpretation of these parameters requires systematic in vitro testing with easy-to-fabricate, cost-effective skin-mimicking phantoms with controllable properties. In this study, we assessed the ability of phantoms made with 5% and 10% gelatin crosslinked with microbial transglutaminase (mTG) to mimic the human skin for Myoton measurements. We discovered that each of the five Myoton parameters displayed moderate to high correlations with shear elastic modulus of the phantoms. Furthermore, Myoton effectively tracked changes in the mechanical properties of these models over time. Additionally, we designed bilayer phantoms incorporating both dermis and subcutaneous tissue-mimicking layers. Myoton successfully distinguished changes in the mechanical properties of the bilayer phantoms due to the introduction of a stiff 2 mm top layer. We also found that 5% mTG-gelatin phantoms mimic Myoton measurements from healthy subjects and 10% phantoms mimic patients with sclerotic chronic graft-versus-host disease (cGVHD). Therefore, multi-layered mTG-gelatin models for skin and soft tissues can serve as standardized testbeds to study different sclerotic skin conditions in a systematic manner.


Asunto(s)
Gelatina , Fenómenos Mecánicos , Fantasmas de Imagen , Piel , Gelatina/química , Fenómenos Biomecánicos , Humanos , Ensayo de Materiales/instrumentación , Pruebas Mecánicas
17.
J Mech Behav Biomed Mater ; 158: 106653, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074439

RESUMEN

The remarkable mechanical properties of nickel-titanium (NiTi) shape memory alloy, particularly its super-elasticity, establish it as the material of choice for fabricating self-expanding vascular stents, including the metallic backbone of peripheral stents and the metallic frame of stent-grafts. The super-elastic nature of NiTi substantially influences the mechanical performance of vascular stents, thereby affecting their clinical effectiveness and safety. This property shows marked sensitivity to the primary parameters of the heat treatment process used in device fabrication, specifically temperature and processing time. In this context, this study integrates experimental and computational analyses to explore the potential of designing the mechanical characteristics of NiTi vascular stents by adjusting heat treatment parameters. To reach this aim, differently heat-treated NiTi wire samples were experimentally characterized using calorimetric and uniaxial tensile testing. Subsequently, the mechanical response of a stent-graft model featuring a metallic frame made of NiTi wire was assessed in terms of radial forces generated at various implantation diameters through finite element analysis. The stent-graft served as an illustrative case of NiTi vascular stent to investigate the impact of the heat treatment parameters on its mechanical response. From the study a strong linear relationship emerged between NiTi super-elastic parameters (i.e., austenite finish temperature, martensite elastic modulus, upper plateau stress, lower plateau stress and transformation strain) and heat treatment parameters (R2 > 0.79, p-value < 0.001) for the adopted ranges of temperature and processing time. Additionally, a strong linear relationship was observed between: (i) the radial force generated by the stent-graft during expansion and the heat treatment parameters (R2 > 0.82, p-value < 0.001); (ii) the radial force generated by the stent-graft during expansion and the lower plateau stress of NiTi (R2 > 0.93, p-value < 0.001). In conclusion, the findings of this study suggest that designing and optimizing the mechanical properties of NiTi vascular stents by finely tuning temperature and processing time of the heat treatment process is feasible.


Asunto(s)
Análisis de Elementos Finitos , Calor , Ensayo de Materiales , Fenómenos Mecánicos , Níquel , Titanio , Titanio/química , Níquel/química , Stents , Resistencia a la Tracción , Estrés Mecánico , Aleaciones/química , Pruebas Mecánicas , Stents Metálicos Autoexpandibles
18.
J Orthop Surg Res ; 19(1): 416, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030623

RESUMEN

BACKGROUND: The displacement and rotation of the Kirschner wire (K-wire) in the traditional tension band wiring (TBW) led to a high rate of postoperative complications. The anti-rotation tension band wiring (ARTBW) could address these issues and achieve satisfactory clinical outcomes. This study aimed to investigate the biomechanical performance of the ARTBW in treating transverse patellar fracture compared to traditional TBW using finite element analysis (FEA) and mechanical testing. METHODS: We conducted a FEA to evaluate the biomechanical performance of traditional TBW and ARTBW at knee flexion angles of 20°, 45°, and 90°. Furthermore, we compared the mechanical properties under a 45° knee flexion through static tensile tests and dynamic fatigue testing. The K-wire pull-out test was also conducted to evaluate the bonding strength between K-wires and cancellous bone of two surgical approaches. RESULTS: The outcome of FEA demonstrated the compression force on the articular surface of ARTBW was 28.11%, 27.32%, and 52.86% higher than traditional TBW at knee flexion angles of 20°, 45°, and 90°, respectively. In mechanical testing, the mechanical properties of ARTBW were similar to the traditional TBW. In the K-wire pull-out test, the pull-out strength of ARTBW was significantly greater than the traditional TBW (111.58 ± 2.38 N vs. 64.71 ± 4.22 N, P < 0.001). CONCLUSIONS: The ARTBW retained the advantages of traditional TBW, and achieved greater compression force of articular surface, and greater pull-out strength of K-wires. Moreover, ARTBW effectively avoided the rotation of the K-wires. Therefore, ARTBW demonstrates potential as a promising technique for treating patellar fractures.


Asunto(s)
Hilos Ortopédicos , Análisis de Elementos Finitos , Fracturas Óseas , Rótula , Humanos , Rótula/cirugía , Rótula/lesiones , Fracturas Óseas/cirugía , Fijación Interna de Fracturas/métodos , Fijación Interna de Fracturas/instrumentación , Pruebas Mecánicas/métodos , Fenómenos Biomecánicos , Rotación , Masculino , Rango del Movimiento Articular
19.
J Biomech Eng ; 146(11)2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949883

RESUMEN

This study sought to evaluate the effects of prolonged cyclic loading on the tissue-level mechanical properties of the spinal annulus fibrosus. Functional spinal units (FSUs) were obtained from porcine cervical spines at the C3-C4 and C5-C6 levels. Following a 15-min preload of 300 N of axial compression, the FSUs were split into three groups: the cyclic loading group cycled between 0.35 MPa and 0.95 MPa for 2 h (n = 8); the static loading group was compressed at 0.65 MPa for 2 h (n = 10); and a control group which only underwent the 300 N preload (n = 11). Following loading, samples of the annulus were excised to perform intralamellar tensile testing and interlamellar 180 deg peel tests. Variables analyzed from the intralamellar test were stress and strain at the end of the toe region, stress and strain at initial failure (yield point), Young's modulus, ultimate stress, and strain at ultimate stress. Variables evaluated from the interlamellar tests were lamellar adhesion strength, adhesion strength variability, and stiffness. The analysis showed no significant differences between conditions on any measured variable; however, there was a trend (p = 0.059) that cyclically loaded tissues had increased adhesion strength variability compared to the static and control conditions. The main finding of this study is that long-duration axial loading did not impact the intra- or interlamellar mechanical properties of the porcine annulus. A trend of increased adhesion strength variability in cyclically loaded samples could indicate a potential predisposition of the annulus to delamination.


Asunto(s)
Anillo Fibroso , Estrés Mecánico , Soporte de Peso , Animales , Anillo Fibroso/fisiología , Porcinos , Fenómenos Biomecánicos , Pruebas Mecánicas , Ensayo de Materiales , Resistencia a la Tracción , Módulo de Elasticidad/fisiología
20.
J Mech Behav Biomed Mater ; 157: 106631, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986216

RESUMEN

Fall-related hip fractures are a serious public health issue in older adults. As most mechanistic hip fracture risk prediction models incorporate tissue tolerance, test methods that can accurately characterize the fracture force of the femur (and factors that influence it) are imperative. While bone possesses viscoelastic properties, experimental characterization of rate-dependencies has been inconsistent in the whole-femur literature. The goal of this study was to investigate the influence of experimental paradigm on loading rate and fracture force (both means and variability) during mechanical tests simulating lateral fall loadings on the proximal femur. Six pairs of matched femurs were split randomly between two test paradigms: a 'lower rate' materials testing system (MTS) with a constant displacement rate of 60 mm/s, and a hip impact test system (HIT) comprised of a custom-built vertical drop tower utilizing an impact velocity of 4 m/s. The loading rate was 88-fold higher for the HIT (mean (SD) = 2465.49 (807.38) kN/s) compared to the MTS (27.78 (10.03) kN/s) paradigm. However, no difference in fracture force was observed between test paradigms (mean (SD) = 4096.4 (1272.6) N for HIT, and 3641.3 (1285.8) N for MTS). Within-paradigm variability was not significantly different across paradigms for either loading rate or fracture force (coefficients of variation ranging from 0.311 to 0.361). Within each test paradigm, significant positive relationships were observed between loading rate and fracture force (HIT adjusted R2 = 0.833, p = 0.007; MTS adjusted R2 = 0.983, p < 0.0001). Overall, this study provides evidence that energy-based impact simulators can be a valid method to measure femoral bone strength in the context of fall-related hip fractures. This study motivates future research to characterize potential non-linear relationships between loading rate and fracture threshold at both macro and microscales.


Asunto(s)
Accidentes por Caídas , Fémur , Ensayo de Materiales , Soporte de Peso , Humanos , Fémur/fisiología , Anciano , Masculino , Pruebas Mecánicas , Femenino , Fenómenos Biomecánicos , Fracturas del Fémur/fisiopatología , Anciano de 80 o más Años , Estrés Mecánico , Fracturas Femorales Proximales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA