Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.126
Filtrar
1.
Sci Rep ; 14(1): 21282, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261546

RESUMEN

Visceral cestodiases, like cysticercoses and echinococcoses, are caused by cystic larvae from parasites of the Cestoda class and are endemic or hyperendemic in many areas of the world. Current therapeutic approaches for these diseases are complex and present limitations and risks. Therefore, new safer and more effective treatments are urgently needed. The Niemann-Pick C1 (NPC1) protein is a cholesterol transporter that, based on genomic data, would be the solely responsible for cholesterol uptake in cestodes. Considering that human NPC1L1 is a known target of ezetimibe, used in the treatment of hypercholesterolemia, it has the potential for repurposing for the treatment of visceral cestodiases. Here, phylogenetic, selective pressure and structural in silico analyses were carried out to assess NPC1 evolutive and structural conservation, especially between cestode and human orthologs. Two NPC1 orthologs were identified in cestode species (NPC1A and NPC1B), which likely underwent functional divergence, leading to the loss of cholesterol transport capacity in NPC1A. Comparative interaction analyses performed by molecular docking of ezetimibe with human NPC1L1 and cestode NPC1B pointed out to similarities that consolidate the idea of cestode NPC1B as a target for the repurposing of ezetimibe as a drug for the treatment of visceral cestodiases.


Asunto(s)
Cestodos , Ezetimiba , Proteína Niemann-Pick C1 , Ezetimiba/farmacología , Ezetimiba/uso terapéutico , Humanos , Animales , Proteína Niemann-Pick C1/metabolismo , Cestodos/metabolismo , Cestodos/efectos de los fármacos , Cestodos/genética , Filogenia , Simulación del Acoplamiento Molecular , Reposicionamiento de Medicamentos/métodos , Simulación por Computador , Colesterol/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/química , Anticolesterolemiantes/farmacología , Anticolesterolemiantes/uso terapéutico
2.
Nat Commun ; 15(1): 7710, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231991

RESUMEN

As the first identified multidrug efflux pump in Mycobacterium tuberculosis (Mtb), EfpA is an essential protein and promising drug target. However, the functional and inhibitory mechanisms of EfpA are poorly understood. Here we report cryo-EM structures of EfpA in outward-open conformation, either bound to three endogenous lipids or the inhibitor BRD-8000.3. Three lipids inside EfpA span from the inner leaflet to the outer leaflet of the membrane. BRD-8000.3 occupies one lipid site at the level of inner membrane leaflet, competitively inhibiting lipid binding. EfpA resembles the related lysophospholipid transporter MFSD2A in both overall structure and lipid binding sites and may function as a lipid flippase. Combining AlphaFold-predicted EfpA structure, which is inward-open, we propose a complete conformational transition cycle for EfpA. Together, our results provide a structural and mechanistic foundation to comprehend EfpA function and develop EfpA-targeting anti-TB drugs.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transporte Biológico , Microscopía por Crioelectrón , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Conformación Proteica
3.
Nat Commun ; 15(1): 7722, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242571

RESUMEN

In Candida albicans, Cdr1 pumps azole drugs out of the cells to reduce intracellular accumulation at detrimental concentrations, leading to azole-drug resistance. Milbemycin oxime, a veterinary anti-parasitic drug, strongly and specifically inhibits Cdr1. However, how Cdr1 recognizes and exports azole drugs, and how milbemycin oxime inhibits Cdr1 remain unclear. Here, we report three cryo-EM structures of Cdr1 in distinct states: the apo state (Cdr1Apo), fluconazole-bound state (Cdr1Flu), and milbemycin oxime-inhibited state (Cdr1Mil). Both the fluconazole substrate and the milbemycin oxime inhibitor are primarily recognized within the central cavity of Cdr1 through hydrophobic interactions. The fluconazole is suggested to be exported from the binding site into the environment through a lateral pathway driven by TM2, TM5, TM8 and TM11. Our findings uncover the inhibitory mechanism of milbemycin oxime, which inhibits Cdr1 through competition, hindering export, and obstructing substrate entry. These discoveries advance our understanding of Cdr1-mediated azole resistance in C. albicans and provide the foundation for the development of innovative antifungal drugs targeting Cdr1 to combat azole-drug resistance.


Asunto(s)
Antifúngicos , Azoles , Candida albicans , Microscopía por Crioelectrón , Proteínas Fúngicas , Proteínas de Transporte de Membrana , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inhibidores , Antifúngicos/farmacología , Antifúngicos/química , Azoles/farmacología , Azoles/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/ultraestructura , Farmacorresistencia Fúngica , Fluconazol/farmacología , Sitios de Unión
4.
J Agric Food Chem ; 72(34): 19061-19070, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39148224

RESUMEN

Sorbicillinoids are a class of fungal polyketides with diverse structures and distinguished bioactivities. Although remarkable progress has been achieved in their chemistry and biosynthesis, the efflux of sorbicillinoids is poorly understood. Here, we found MFS transporter AcsorT was responsible for the biosynthesis of sorbicillinoids in Acremonium chrysogenum. Combinatorial knockout and subcellular location demonstrated that the plasma membrane-associated AcsorT was responsible for the transportation of sorbicillinol and subsequent formation of oxosorbicillinol and acresorbicillinol C via the berberine bridge enzyme-like oxidase AcsorD in the periplasm. Homology modeling and site-directed mutation revealed that Tyr303 and Arg436 were the key residues of AcsorT, which was further explained by molecular dynamics simulation. Based on our study, it was suggested that AcsorT modulates sorbicillinoid production by coordinating its biosynthesis and export, and a transport model of sorbicillinoids was proposed in A. chrysogenum.


Asunto(s)
Acremonium , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Acremonium/metabolismo , Acremonium/genética , Acremonium/química , Policétidos/metabolismo , Policétidos/química , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química
5.
Nat Commun ; 15(1): 7518, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209842

RESUMEN

Uptake of nucleobases and ascorbate is an essential process in all living organisms mediated by SLC23 transport proteins. These transmembrane carriers operate via the elevator alternating-access mechanism, and are composed of two rigid domains whose relative motion drives transport. The lack of large conformational changes within these domains suggests that the interdomain-linkers act as flexible tethers. Here, we show that interdomain-linkers are not mere tethers, but have a key regulatory role in dictating the conformational space of the transporter and defining the rotation axis of the mobile transport domain. By resolving a wide inward-open conformation of the SLC23 elevator transporter UraA and combining biochemical studies using a synthetic nanobody as conformational probe with hydrogen-deuterium exchange mass spectrometry, we demonstrate that interdomain-linkers control the function of transport proteins by influencing substrate affinity and transport rate. These findings open the possibility to allosterically modulate the activity of elevator proteins by targeting their linkers.


Asunto(s)
Proteínas Bacterianas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Conformación Proteica , Dominios Proteicos , Modelos Moleculares , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Transporte Biológico , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125891

RESUMEN

This research cloned and expressed the sugar transporter gene KM_SUT5 from Kluyveromyces marxianus GX-UN120, which displayed remarkable sugar transportation capabilities, including pentose sugars. To investigate the impact of point mutations on xylose transport capacity, we selected four sites, predicted the suitable amino acid sites by molecular docking, and altered their codons to construct the corresponding mutants, Q74D, Y195K, S460H, and Q464F, respectively. Furthermore, we conducted site-directed truncation on six sites of KM_SUT5p. The molecular modification resulted in significant changes in mutant growth and the D-xylose transport rate. Specifically, the S460H mutant exhibited a higher growth rate and demonstrated excellent performance across 20 g L-1 xylose, achieving the highest xylose accumulation under xylose conditions (49.94 µmol h-1 gDCW-1, DCW mean dry cell weight). Notably, mutant delA554-, in which the transporter protein SUT5 is truncated at position delA554-, significantly increased growth rates in both D-xylose and D-glucose substrates. These findings offer valuable insights into potential modifications of other sugar transporters and contribute to a deeper understanding of the C-terminal function of sugar transporters.


Asunto(s)
Proteínas Fúngicas , Kluyveromyces , Xilosa , Xilosa/metabolismo , Kluyveromyces/metabolismo , Kluyveromyces/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/química , Simulación del Acoplamiento Molecular , Mutación , Glucosa/metabolismo
7.
Commun Biol ; 7(1): 1051, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187619

RESUMEN

Efflux-mediated ß-lactam resistance is a major public health concern, reducing the effectiveness of ß-lactam antibiotics against many bacteria. Structural analyses show the efflux protein TolC in Gram-negative bacteria acts as a channel for antibiotics, impacting bacterial susceptibility and virulence. This study examines ß-lactam drug efflux mediated by TolC using experimental and computational methods. Molecular dynamics simulations of drug-free TolC reveal essential movements and key residues involved in TolC opening. A whole-gene-saturation mutagenesis assay, mutating each TolC residue and measuring fitness effects under ß-lactam selection, is performed. Here we show the TolC-mediated efflux of three antibiotics: oxacillin, piperacillin, and carbenicillin. Steered molecular dynamics simulations identify general and drug-specific efflux mechanisms, revealing key positions at TolC's periplasmic entry affecting efflux motions. Our findings provide insights into TolC's structural dynamics, aiding the design of new antibiotics to overcome bacterial efflux mechanisms.


Asunto(s)
Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Simulación de Dinámica Molecular , Resistencia betalactámica , Resistencia betalactámica/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antibacterianos/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Conformación Proteica
8.
Sci Adv ; 10(33): eado6229, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39141726

RESUMEN

The choline-glycine betaine pathway plays an important role in bacterial survival in hyperosmotic environments. Osmotic activation of the choline transporter BetT promotes the uptake of external choline for synthesizing the osmoprotective glycine betaine. Here, we report the cryo-electron microscopy structures of Pseudomonas syringae BetT in the apo and choline-bound states. Our structure shows that BetT forms a domain-swapped trimer with the C-terminal domain (CTD) of one protomer interacting with the transmembrane domain (TMD) of a neighboring protomer. The substrate choline is bound within a tryptophan prism at the central part of TMD. Together with functional characterization, our results suggest that in Pseudomonas species, including the plant pathogen P. syringae and the human pathogen Pseudomonas aeruginosa, BetT is locked at a low-activity state through CTD-mediated autoinhibition in the absence of osmotic stress, and its hyperosmotic activation involves the release of this autoinhibition.


Asunto(s)
Proteínas Bacterianas , Colina , Microscopía por Crioelectrón , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Colina/metabolismo , Colina/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pseudomonas syringae/metabolismo , Modelos Moleculares , Osmorregulación , Presión Osmótica , Betaína/metabolismo , Conformación Proteica , Unión Proteica , Relación Estructura-Actividad , Dominios Proteicos
9.
Structure ; 32(9): 1528-1543.e3, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39025067

RESUMEN

Many membrane transporters share the LeuT fold-two five-helix repeats inverted across the membrane plane. Despite hundreds of structures, whether distinct conformational mechanisms are supported by the LeuT fold has not been systematically determined. After annotating published LeuT-fold structures, we analyzed distance difference matrices (DDMs) for nine proteins with multiple available conformations. We identified rigid bodies and relative movements of transmembrane helices (TMs) during distinct steps of the transport cycle. In all transporters, the bundle (first two TMs of each repeat) rotates relative to the hash (third and fourth TMs). Motions of the arms (fifth TM) to close or open the intracellular and outer vestibules are common, as is a TM1a swing, with notable variations in the opening-closing motions of the outer vestibule. Our analyses suggest that LeuT-fold transporters layer distinct motions on a common bundle-hash rock and demonstrate that systematic analyses can provide new insights into large structural datasets.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
10.
J Phys Chem Lett ; 15(31): 7832-7839, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39052610

RESUMEN

Multidrug efflux pumps, especially those belonging to the class of resistance-nodulation-division (RND), are the key contributors to the rapidly growing multidrug resistance in Gram-negative bacteria. Understanding the role of efflux pumps in real-time drug transport dynamics across the complex dual-cell membrane envelope of Gram-negative bacteria is thus crucial for developing efficient antibiotics against them. Here, we employ second harmonic generation-based nonlinear spectroscopy to study the role of the tripartite efflux pump and its individual components. We systematically investigate the effect of periplasmic adaptor protein AcrA, inner membrane transporter protein AcrB, and outer membrane channel TolC on the overall drug transport in live Acr-type Escherichia coli and its mutant strain cells. Our results reveal that when one of its components is missing, the tripartite AcrAB-TolC efflux pump machinery in Escherichia coli can effectively function as a bipartite system, a fact that has never been demonstrated in live Gram-negative bacteria.


Asunto(s)
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Análisis Espectral/métodos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Transporte Biológico , Lipoproteínas
11.
J Phys Chem B ; 128(31): 7530-7537, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39066727

RESUMEN

Transporter proteins carry their substrate across the cell membrane by changing their conformation. Thus, conformational dynamics are crucial for transport function. However, clarifying the complete transport cycle is challenging even with the current structural biology approach. Molecular dynamics (MD) simulation is a computational approach that can provide the time-resolved conformational dynamics of transporter proteins in atomic details but suffers from a high computational cost. Here, we integrate state-of-the-art protein structure prediction AI, AlphaFold2 (AF2), with MD simulation to reduce the computational cost. Focusing on the transporter protein NarK, we first show that AF2 sampled broad conformations of NarK, including the inward-open, occluded, and outward-open states. We also applied the coevolution-informed mutation in AF2, identifying state-shifting mutations. Then, we show that MD simulations from AF2-generated outward-open conformation, which is experimentally unresolved, captured the essence of the conformational state. We also found that MD simulations from AF2-generated intermediates showed transient dynamics like a transition state connecting two conformational states. This study paves the way for efficient conformational sampling of transporter proteins.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Mutación , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética
12.
Subcell Biochem ; 104: 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963480

RESUMEN

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Microscopía por Crioelectrón , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
13.
Elife ; 132024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042711

RESUMEN

Proton-coupled oligopeptide transporters (POTs) are of great pharmaceutical interest owing to their promiscuous substrate binding site that has been linked to improved oral bioavailability of several classes of drugs. Members of the POT family are conserved across all phylogenetic kingdoms and function by coupling peptide uptake to the proton electrochemical gradient. Cryo-EM structures and alphafold models have recently provided new insights into different conformational states of two mammalian POTs, SLC15A1, and SLC15A2. Nevertheless, these studies leave open important questions regarding the mechanism of proton and substrate coupling, while simultaneously providing a unique opportunity to investigate these processes using molecular dynamics (MD) simulations. Here, we employ extensive unbiased and enhanced-sampling MD to map out the full SLC15A2 conformational cycle and its thermodynamic driving forces. By computing conformational free energy landscapes in different protonation states and in the absence or presence of peptide substrate, we identify a likely sequence of intermediate protonation steps that drive inward-directed alternating access. These simulations identify key differences in the extracellular gate between mammalian and bacterial POTs, which we validate experimentally in cell-based transport assays. Our results from constant-PH MD and absolute binding free energy (ABFE) calculations also establish a mechanistic link between proton binding and peptide recognition, revealing key details underpining secondary active transport in POTs. This study provides a vital step forward in understanding proton-coupled peptide and drug transport in mammals and pave the way to integrate knowledge of solute carrier structural biology with enhanced drug design to target tissue and organ bioavailability.


The cells in our body are sealed by a surrounding membrane that allows them to control which molecules can enter or leave. Desired molecules are often imported via transport proteins that require a source of energy. One way that transporter proteins achieve this is by simultaneously moving positively charged particles called protons across the membrane. Proteins called POTs (short for proton-coupled oligopeptide transporters) use this mechanism to import small peptides and drugsin to the cells of the kidney and small intestine. Sitting in the centre of these transporters is a pocket that binds to the imported peptide which has a gate on either side: an outer gate that opens towards the outside of the cell, and an inner gate that opens towards the cell's interior. The movement of protons from the outer to the inner gate is thought to shift the shape of the transporter from an outwards to an inwards-facing state. However, the molecular details of this energetic coupling are not well understood. To explore this, Lichtinger et al. used computer simulations to pinpoint where protons bind on POTs to trigger the gates to open. The simulations proposed that two sites together make up the outward-facing gate, which opens upon proton binding. Lichtinger et al. then validated these sites experimentally in cultured human cells that produce mutant POTs. After the desired peptide/drug has attached to the binding pocket, the protons then move to two more sites further down the transporter. This triggers the inner gate to open, which ultimately allows the small molecule to move into the cell. These findings represent a significant step towards understanding how POTs transport their cargo. Since POTs can transport a range of drugs from the digestive tract into the body, these results could help researchers design molecules that are better absorbed. This could lead to more orally available medications, making it easier for patients to adhere to their treatment regimen.


Asunto(s)
Simulación de Dinámica Molecular , Protones , Animales , Conformación Proteica , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Mamíferos/metabolismo , Transporte Biológico , Termodinámica
14.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000444

RESUMEN

The taurine transporter (TauT, SLC6A6) is a member of the solute carrier 6 (SLC6) family, which plays multiple physiological roles. The SLC6 family is divided into four subfamilies: GABA (γ-aminobutyric acid), monoamine, glycine and neutral amino acid transporters. Proteins from the GABA group, including the taurine transporter, are primarily considered therapeutic targets for treating central nervous system disorders. However, recent studies have suggested that inhibitors of SLC6A6 could also serve as anticancer agents. Overexpression of TauT has been associated with the progression of colon and gastric cancer. The pool of known ligands of this transporter is limited and the exact spatial structure of taurine transporter remains unsolved. Understanding its structure could aid in the development of novel inhibitors. Therefore, we utilized homology modelling techniques to create models of TauT. Docking studies and molecular dynamics simulations were conducted to describe protein-ligand interactions. We compared the obtained information for TauT with literature data on other members of the GABA transporter group. Our in silico analysis allowed us to characterize the transporter structure and point out amino acids crucial for ligand binding: Glu406, Gly62 and Tyr138. The significance of selected residues was confirmed through structural studies of mutants. These results will aid in the development of novel taurine transporter inhibitors, which can be explored as anticancer agents.


Asunto(s)
Proteínas Transportadoras de GABA en la Membrana Plasmática , Proteínas de Transporte de Membrana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Humanos , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/química , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Ligandos , Secuencia de Aminoácidos , Unión Proteica
15.
Biophys J ; 123(17): 2934-2955, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38932456

RESUMEN

Biomolecules often exhibit complex free energy landscapes in which long-lived metastable states are separated by large energy barriers. Overcoming these barriers to robustly sample transitions between the metastable states with classical molecular dynamics (MD) simulations presents a challenge. To circumvent this issue, collective variable (CV)-based enhanced sampling MD approaches are often employed. Traditional CV selection relies on intuition and prior knowledge of the system. This approach introduces bias, which can lead to incomplete mechanistic insights. Thus, automated CV detection is desired to gain a deeper understanding of the system/process. Analysis of MD data with various machine-learning algorithms, such as principal component analysis (PCA), support vector machine, and linear discriminant analysis (LDA) based approaches have been implemented for automated CV detection. However, their performance has not been systematically evaluated on structurally and mechanistically complex biological systems. Here, we applied these methods to MD simulations of the MFSD2A (Major Facilitator Superfamily Domain 2A) lysolipid transporter in multiple functionally relevant metastable states with the goal of identifying optimal CVs that would structurally discriminate these states. Specific emphasis was on the automated detection and interpretive power of LDA-based CVs. We found that LDA methods, which included a novel gradient descent-based multiclass harmonic variant, termed GDHLDA, we developed here, outperform PCA in class separation, exhibiting remarkable consistency in extracting CVs critical for distinguishing metastable states. Furthermore, the identified CVs included features previously associated with conformational transitions in MFSD2A. Specifically, conformational shifts in transmembrane helix 7 and in residue Y294 on this helix emerged as critical features discriminating the metastable states in MFSD2A. This highlights the effectiveness of LDA-based approaches in automatically extracting from MD trajectories CVs of functional relevance that can be used to drive biased MD simulations to efficiently sample conformational transitions in the molecular system.


Asunto(s)
Simportadores , Automatización , Análisis Discriminante , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Simulación de Dinámica Molecular , Análisis de Componente Principal , Simportadores/química
16.
J Mol Biol ; 436(16): 168652, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38871177

RESUMEN

TolC is the outer membrane protein responsible for antibiotic efflux in E. coli. Compared to other outer membrane proteins it has an unusual fold and has been shown to fold independently of commonly used periplasmic chaperones, SurA and Skp. Here we find that the assembly of TolC involves the formation of two folded intermediates using circular dichroism, gel electrophoresis, site-specific disulfide bond formation and radioactive labeling. First the TolC monomer folds, and then TolC assembles into a trimer both in detergent-free buffer and in the presence of detergent micelles. We find that a TolC trimer also forms in the periplasm and is present in the periplasm before it inserts in the outer membrane. The monomeric and trimeric folding intermediates may be used in the future to develop a new approach to antibiotic efflux pump inhibition by targeting the assembly pathway of TolC.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Membrana , Pliegue de Proteína , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Dicroismo Circular , Periplasma/metabolismo , Multimerización de Proteína
17.
Sci Rep ; 14(1): 13754, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877109

RESUMEN

The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA-TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.


Asunto(s)
Membrana Celular , Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Membrana , Transporte de Proteínas , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/química , Membrana Celular/metabolismo , Pliegue de Proteína , Unión Proteica , Mutación
18.
Proc Natl Acad Sci U S A ; 121(25): e2403273121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865266

RESUMEN

In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.


Asunto(s)
Compuestos de Amonio Cuaternario , Especificidad por Sustrato , Compuestos de Amonio Cuaternario/metabolismo , Compuestos de Amonio Cuaternario/química , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antiinfecciosos Locales/metabolismo , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/química , Modelos Moleculares
19.
Phys Chem Chem Phys ; 26(24): 17011-17027, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38835320

RESUMEN

Pseudomonas aeruginosa, a formidable pathogen renowned for its antimicrobial resistance, poses a significant threat to immunocompromised individuals. In this regard, the MexAB-OprM efflux pump acts as a pivotal line of defense by extruding antimicrobials from bacterial cells. The inner membrane homotrimeric protein MexB captures antibiotics and translocates them into the outer membrane OprM channel protein connected through the MexA adaptor protein. Despite extensive efforts, competitive inhibitors targeting the tight (T) protomer of the MexB protein have not received FDA approval for medical use. Over the past few years, allosteric inhibitors have become popular as alternatives to the classical competitive inhibitor-based approach because of their higher specificity, lower dosage, and reduced toxicological effects. Hence, in this study, we unveiled the existence of a transmembrane allosteric binding pocket of MexB inspired by the recent discovery of an important allosteric inhibitor, BDM88855, for the homolog AcrB protein. While repurposing BDM88855 proved ineffective in controlling the MexB loose (L) protomer, our investigation identified a promising alternative: a chlorine-containing variant of DB08385 (2-Cl DB08385 or Variant 1). Molecular dynamics simulations, including binding free energy estimation coupled with heterogeneous dielectric implicit membrane model (implicit-membrane MM/PBSA), interaction entropy (IE) analysis and potential of mean force (PMF) calculation, demonstrated Variant 1's superior binding affinity to the transmembrane pocket, displaying the highest energy barrier in the ligand unbinding process. To elucidate the allosteric crosstalk between the transmembrane and porter domain of MexB, we employed the 'eigenvector centrality' measure in the linear mutual information obtained from the protein correlation network. Notably, this study confirmed the presence of an allosteric transmembrane site in the MexB L protomer. In addition to this, Variant 1 emerged as a potent regulator of allosteric crosstalk, inducing an 'O-L intermediate state' in the MexB L protomer. This induced state might hold the potential to diminish substrate intake into the access pocket, leading to the ineffective efflux of antibiotics.


Asunto(s)
Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Simulación de Dinámica Molecular , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Farmacorresistencia Bacteriana/efectos de los fármacos
20.
J Mol Biol ; 436(16): 168665, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878854

RESUMEN

Transporters of the solute carrier superfamily (SLCs) are responsible for the transmembrane traffic of the majority of chemical substances in cells and tissues and are therefore of fundamental biological importance. As is often the case with membrane proteins that can be heavily glycosylated, a lack of reliable high-affinity binders hinders their functional analysis. Purifying and reconstituting transmembrane proteins in their lipidic environments remains challenging and standard approaches to generate binders for multi-transmembrane proteins, such as SLCs, channels or G protein-coupled receptors (GPCRs) are lacking. While generating protein binders to 27 SLCs, we produced full length protein or cell lines as input material for binder generation by selected binder generation platforms. As a result, we obtained 525 binders for 22 SLCs. We validated the binders with a cell-based validation workflow using immunofluorescent and immunoprecipitation methods to process all obtained binders. Finally, we demonstrated the potential applications of the binders that passed our validation pipeline in structural, biochemical, and biological applications using the exemplary protein SLC12A6, an ion transporter relevant in human disease. With this work, we were able to generate easily renewable and highly specific binders against SLCs, which will greatly facilitate the study of this neglected protein family. We hope that the process will serve as blueprint for the generation of binders against the entire superfamily of SLC transporters.


Asunto(s)
Unión Proteica , Proteínas Transportadoras de Solutos , Humanos , Proteínas Transportadoras de Solutos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/química , Células HEK293
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA