RESUMEN
Plant Snakin/GASA and defensin peptides are cysteine-rich molecules with a wide range of biological functions. They are included within the large family of plant antimicrobial peptides (AMPs), characterized by their structural stability, broad spectrum of activity, and diverse mechanisms of action. The Dilatata group of Paspalum includes five allotetraploids that share an equivalent genomic formula IIJJ. From RNA-seq data of seedling tissues, we performed an in silico characterization of the defensin and Snakin/GASA genes in these species and diploids with a II and JJ genome formula and studied the evolutionary consequences of polyploidy on the expression of the two AMPs families. A total of 107 defensins (distributed in eight groups) and 145 Snakin/GASA (grouped in three subfamilies) genes were identified. Deletions, duplications and/or gene silencing seem to have mediated the evolution of these genes in the allotetraploid species. In defensin genes, the IIJJ allopolyploids retained the I subgenome defensin copies in some of the identified groups supporting the closeness of their nuclear genome with the I subgenome species. In both AMPs families, orthologous genes in tetraploids exhibit higher similarity to each other than with diploids. This data supports the theory of a single origin for the allotetraploids. Several copies of both defensin and Snakin/GASA genes were detected in the five polyploids which could have arisen due to duplication events occurring independently during the diploidization processes in the allotetraploid taxa.
Asunto(s)
Defensinas , Diploidia , Proteínas de Plantas , Tetraploidía , Defensinas/genética , Defensinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Poliploidía , Filogenia , Perfilación de la Expresión Génica , Evolución MolecularRESUMEN
Anthocyanins are bioactive compounds responsible for various physiological processes in plants and provide characteristic colors to fruits and flowers. Their biosynthetic pathway is well understood; however, the enzymatic degradation mechanism is less explored. Anthocyanase (ß-glucosidase (BGL)), peroxidase (POD), and polyphenol oxidase (PPO) are enzymes involved in degrading anthocyanins in plants such as petunias, eggplants, and Sicilian oranges. The aim of this work was to investigate the physicochemical interactions between these enzymes and the identified anthocyanins (via UPLC-MS/MS) in cranberry (Vaccinium macrocarpon) through molecular docking to identify the residues likely involved in anthocyanin degradation. Three-dimensional models were constructed using the AlphaFold2 server based on consensus sequences specific to each enzyme. The models with the highest confidence scores (pLDDT) were selected, with BGL, POD, and PPO achieving scores of 87.6, 94.8, and 84.1, respectively. These models were then refined using molecular dynamics for 100 ns. Additionally, UPLC-MS/MS analysis identified various flavonoids in cranberries, including cyanidin, delphinidin, procyanidin B2 and B4, petunidin, pelargonidin, peonidin, and malvidin, providing important experimental data to support the study. Molecular docking simulations revealed the most stable interactions between anthocyanase and the anthocyanins cyanidin 3-arabinoside and cyanidin 3-glucoside, with a favorable ΔG of interaction between -9.3 and -9.2 kcal/mol. This study contributes to proposing a degradation mechanism and seeking inhibitors to prevent fruit discoloration.
Asunto(s)
Antocianinas , Catecol Oxidasa , Simulación del Acoplamiento Molecular , Vaccinium macrocarpon , Antocianinas/química , Antocianinas/metabolismo , Catecol Oxidasa/metabolismo , Catecol Oxidasa/química , Vaccinium macrocarpon/química , Peroxidasa/metabolismo , Peroxidasa/química , Espectrometría de Masas en Tándem , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Simulación de Dinámica Molecular , Simulación por Computador , Frutas/química , Frutas/metabolismo , Frutas/enzimologíaRESUMEN
MAIN CONCLUSION: Despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and diverge partially in stress signaling functions. The PAM2 motif represents a binding site for poly (A)-binding proteins (PABPs), often associated with RNA metabolism regulation. The PAM2-containing protein ERD15 stands out as a critical regulator of diverse stress responses in plants. Despite the relevance of the PAM2 motif, a comprehensive analysis of the PAM2 superfamily and ERD15-like subfamily in the plant kingdom is lacking. Here, we provide an extensive in silico analysis of the PAM2 superfamily and the ERD15-like subfamily in soybean, using Arabidopsis and rice sequences as prototypes. The Glycine max ERD15-like subfamily members were clustered in pairs, likely originating from DNA-based gene duplication, as the paralogs display high sequence conservation, similar exon/intron genome organization, and are undergoing purifying selection. Complementation analyses of an aterd15 mutant demonstrated that the plant ERD15-like subfamily members are functionally redundant in response to drought, osmotic stress, and dark-induced senescence. Nevertheless, the soybean members displayed differential expression profiles, biochemical activity, and subcellular localization, consistent with functional diversification. The expression profiles of Glyma04G138600 under salicylic acid (SA) and abscisic acid (ABA) treatments differed oppositely from those of the other GmERD15-like genes. Abiotic stress-induced coexpression analysis with soybean PABPs showed that Glyma04G138600 was clustered separately from other GmERD15s. In contrast to the AtERD15 stress-induced nuclear redistribution, Glyma04G138600 and Glyma02G260800 localized to the cytoplasm, while Glyma03G131900 fractionated between the cytoplasm and nucleus under normal and stress conditions. These data collectively indicate that despite modulating senescence and drought responses, the GmERD15-like subfamily members are differentially induced by multiple stresses and may diverge partially in stress signaling functions.
Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glycine max , Proteínas de Plantas , Estrés Fisiológico , Glycine max/genética , Glycine max/fisiología , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Arabidopsis/genética , Sequías , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Filogenia , Familia de MultigenesRESUMEN
Amidst increasing awareness of diet-health relationships, plant-derived bioactive peptides are recognized for their dual nutritional and health benefits. This study investigates bioactive peptides released after Alcalase hydrolysis of protein from chachafruto (Erythrina edulis), a nutrient-rich South American leguminous plant, focusing on their behavior during simulated gastrointestinal digestion. Evaluating their ability to scavenge radicals, mitigate oxidative stress, and influence immune response biomarkers, this study underscores the importance of understanding peptide interactions in digestion. The greatest contribution to the antioxidant activity was exerted by the low molecular weight peptides with ORAC values for the <3 kDa fraction of HES, GD-HES, and GID-HES of 0.74 ± 0.03, 0.72 ± 0.004, and 0.56 ± 0.01 (µmol TE/mg protein, respectively). GD-HES and GID-HES exhibited immunomodulatory effects, promoting the release of NO up to 18.52 and 8.58 µM, respectively. The findings of this study highlighted the potential of chachafruto bioactive peptides in functional foods and nutraceuticals, supporting human health through dietary interventions.
Asunto(s)
Antioxidantes , Digestión , Erythrina , Péptidos , Proteínas de Plantas , Hidrólisis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Péptidos/química , Péptidos/metabolismo , Erythrina/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Subtilisinas/metabolismo , Subtilisinas/química , Estrés Oxidativo , Tracto Gastrointestinal/metabolismoRESUMEN
Hydrogen peroxide (H2O2) transport by aquaporins (AQP) is a critical feature for cellular redox signaling. However, the H2O2 permeation mechanism through these channels remains poorly understood. Through functional assays, two Plasma membrane Intrinsic Protein (PIP) AQP from Medicago truncatula, MtPIP2;2 and MtPIP2;3 have been identified as pH-gated channels capable of facilitating the permeation of both water (H2O) and H2O2. Employing a combination of unbiased and enhanced sampling molecular dynamics simulations, we investigated the key barriers and translocation mechanisms governing H2O2 permeation through these AQP in both open and closed conformational states. Our findings reveal that both H2O and H2O2 encounter their primary permeation barrier within the selectivity filter (SF) region of MtPIP2;3. In addition to the SF barrier, a second energetic barrier at the NPA (asparagine-proline-alanine) region that is more restrictive for the passage of H2O2 than for H2O, was found. This behavior can be attributed to a dissimilar geometric arrangement and hydrogen bonding profile between both molecules in this area. Collectively, these findings suggest mechanistic heterogeneity in H2O and H2O2 permeation through PIPs.
Asunto(s)
Acuaporinas , Peróxido de Hidrógeno , Simulación de Dinámica Molecular , Proteínas de Plantas , Agua , Peróxido de Hidrógeno/metabolismo , Acuaporinas/metabolismo , Acuaporinas/química , Acuaporinas/genética , Agua/metabolismo , Agua/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Medicago truncatula/metabolismo , Medicago truncatula/genética , Membrana Celular/metabolismo , Enlace de HidrógenoRESUMEN
Ribosome biogenesis (RB) is a highly conserved process across eukaryotes that results in the assembly of functional ribosomal subunits. Studies in Saccharomyces cerevisiae and Homo sapiens have identified numerous RB factors (RBFs), including the NIP7 protein, which is involved in late-stage pre-60S ribosomal maturation. NIP7 expression has also been observed in Chlamydomonas reinhardtii, highlighting its evolutionary significance. This study aimed to characterize the function of the NIP7 protein from C. reinhardtii (CrNip7) through protein complementation assays and a paromomycin resistance test, assessing its ability to complement the role of NIP7 in yeast. Protein interaction studies were conducted via yeast two-hybrid assay to identify potential protein partners of CrNip7. Additionally, rRNA modeling analysis was performed using the predicted structure of CrNip7 to investigate its interaction with rRNA. The study revealed that CrNip7 can complement the role of NIP7 in yeast, implicating CrNip7 in the biogenesis of the 60S ribosomal subunit. Furthermore, two possible partner proteins of CrNip7, UNC-p and G-patch, were identified through yeast two-hybrid assay. The potential of these proteins to interact with CrNip7 was explored through in silico analyses. Furthermore, nucleic acid interaction was also evaluated, indicating the involvement of the N- and C-terminal domains of CrNIP7 in interacting with rRNA. Collectively, our findings provide valuable insights into the RBFs CrNip7, offering novel information for comparative studies on RB among eukaryotic model organisms, shedding light on its evolutionary conservation and functional role across species.
Asunto(s)
Chlamydomonas reinhardtii , Ribosomas , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos HíbridosRESUMEN
Successful plant reproduction depends on the adequate development of floral organs controlled by cell proliferation and other processes. The Stigma/style cell-cycle inhibitor 1 (SCI1) gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by Nicotiana tabacum SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pull-down experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). Interaction between the NtCDKG;2-NtCyclin L complex and NtRH35 is also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The yeast two-hybrid screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NF-κB activating protein (NKAP), and CACTIN. This work presents SCI1 and its interactors, the NtCDKG;2-NtCyclin L complex and NtRH35, as new spliceosome-associated proteins. Our findings reveal a network of interactions and indicate that SCI1 may regulate cell proliferation through the splicing process, providing new insights into the intricate molecular pathways governing plant development.
Asunto(s)
Proliferación Celular , Flores , Nicotiana , Proteínas de Plantas , Empalme del ARN , Flores/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Técnicas del Sistema de Dos Híbridos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Seqrutinator is an objective, flexible pipeline that removes sequences with sequencing and/or gene model errors and sequences from pseudogenes from complex, eukaryotic protein superfamilies. Testing Seqrutinator on major superfamilies BAHD, CYP, and UGT removes only 1.94% of SwissProt entries, 14% of entries from the model plant Arabidopsis thaliana, but 80% of entries from Pinus taeda's recent complete proteome. Application of Seqrutinator on crude BAHDomes, CYPomes, and UGTomes obtained from 16 plant proteomes shows convergence of the numbers of paralogues. MSAs, phylogenies, and particularly functional clustering improve drastically upon Seqrutinator application, indicating good performance.
Asunto(s)
Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Programas Informáticos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteoma , Familia de Multigenes , Análisis de Secuencia de Proteína , Bases de Datos de ProteínasRESUMEN
In vitro plant cultures are able to remove and metabolise xenobiotics, making them promising tools for decontamination strategies. In this work, we evaluated Brassica napus hairy roots (HRs) to tolerate and remove high concentrations of the azo dye Naphthol Blue-Black (NBB). Experiments were performed using both growing and resting culture systems at different pHs. Reuse of HRs biomass was evaluated in successive decolourisation cycles. Proteomics was applied to understand the molecular responses likely to be involved in the tolerance and removal of NBB. The HRs tolerated up to 480 µg mL-1 NBB, and 100 % removal was achieved at 180 µg mL-1 NBB after 10 days using both culture systems. Interestingly, the HRs are robust enough to be reused, showing 55-60 % removal even after three reuse cycles. The highest dye removal rates were achieved during the first 2 days of incubation, as initial removal is mainly driven by passive processes. Active mechanisms are triggered later by regulating the expression of proteins with different biological functions, mainly those related to xenobiotic metabolism, such as hydrolytic and redox enzymes. These results suggest that B. napus HRs are a robust tool that could make a significant contribution to textile wastewater treatment.
Asunto(s)
Biodegradación Ambiental , Brassica napus , Raíces de Plantas , Proteómica , Brassica napus/metabolismo , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Colorantes/metabolismo , Colorantes/química , Compuestos Azo/metabolismo , Compuestos Azo/química , Contaminantes Químicos del Agua/metabolismoRESUMEN
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Asunto(s)
Quitinasas , Fusarium , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Zea mays , Fusarium/genética , Fusarium/patogenicidad , Zea mays/microbiología , Zea mays/genética , Quitinasas/genética , Quitinasas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Genoma de Planta , FilogeniaRESUMEN
Oil palm (Elaeis guineensis Jacq.) is a highly productive crop economically significant for food, cosmetics, and biofuels. Abiotic stresses such as low water availability, salt accumulation, and high temperatures severely impact oil palm growth, physiology, and yield by restricting water flux among soil, plants, and the environment. While drought stress's physiological and biochemical effects on oil palm have been extensively studied, the molecular mechanisms underlying drought stress tolerance remain unclear. Under water deficit conditions, this study investigates two commercial E. guineensis cultivars, IRHO 7001 and IRHO 2501. Water deficit adversely affected the physiology of both cultivars, with IRHO 2501 being more severely impacted. After several days of water deficit, there was a 40% reduction in photosynthetic rate (A) for IRHO 7001 and a 58% decrease in IRHO 2501. Further into the drought conditions, there was a 75% reduction in A for IRHO 7001 and a 91% drop in IRHO 2501. Both cultivars reacted to the drought stress conditions by closing stomata and reducing the transpiration rate. Despite these differences, no significant variations were observed between the cultivars in stomatal conductance, transpiration, or instantaneous leaf-level water use efficiency. This indicates that IRHO 7001 is more tolerant to drought stress than IRHO 2501. A differential gene expression and network analysis was conducted to elucidate the differential responses of the cultivars. The DESeq2 algorithm identified 502 differentially expressed genes (DEGs). The gene coexpression network for IRHO 7001 comprised 274 DEGs and 46 predicted HUB genes, whereas IRHO 2501's network included 249 DEGs and 3 HUB genes. RT-qPCR validation of 15 DEGs confirmed the RNA-Seq data. The transcriptomic profiles and gene coexpression network analysis revealed a set of DEGs and HUB genes associated with regulatory and transcriptional functions. Notably, the zinc finger protein ZAT11 and linoleate 13S-lipoxygenase 2-1 (LOX2.1) were overexpressed in IRHO 2501 but under-expressed in IRHO 7001. Additionally, phytohormone crosstalk was identified as a central component in the response and adaptation of oil palm to drought stress.
Asunto(s)
Arecaceae , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Transcriptoma , Estrés Fisiológico/genética , Arecaceae/genética , Arecaceae/fisiología , Arecaceae/metabolismo , Perfilación de la Expresión Génica , Fotosíntesis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes.
Asunto(s)
Metilación de ADN , Glycine max , Redes y Vías Metabólicas , Reguladores del Crecimiento de las Plantas , Metilación de ADN/genética , Glycine max/genética , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Epigénesis Genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMEN
Plant glucanases and chitinases are defense proteins that participate in pathogenesis; however, very little is known about the glucanase (GLUC) and chitinase (CHIT) gene families in mango. Some mango cultivars are of great economic importance and can be affected by anthracnose, a postharvest disease caused by fungi of the genus Colletotrichum spp. This study identified and characterized 23 putative glucanases and 16 chitinases in the mango genome cv. Tommy Atkins. We used phylogenetic analyses to classify the glucanases into three subclasses (A, B, and C) and the chitinases into four classes (I, II, IV, and V). Information on the salicylic, jasmonic acid, and ethylene pathways was obtained by analyzing the cis-elements of the GLUC and CHIT class I and IV gene promoters. The expression profile of GLUC, CHIT class I, and CHIT class IV genes in mango cv. Ataulfo inoculated with two Colletotrichum spp. revealed different profile expression related to these fungi's level of virulence. In general, this study provides the basis for the functional validation of these target genes with which the regulatory mechanisms used by glucanases and chitinases as defense proteins in mango can be elucidated.
Asunto(s)
Quitinasas , Colletotrichum , Regulación de la Expresión Génica de las Plantas , Mangifera , Filogenia , Enfermedades de las Plantas , Colletotrichum/patogenicidad , Colletotrichum/genética , Mangifera/microbiología , Mangifera/genética , Quitinasas/genética , Quitinasas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Perfilación de la Expresión GénicaRESUMEN
There is a limited number of studies analyzing the molecular and biochemical processes regulating the metabolism of the maturation of Cocos nucifera L. zygotic embryos. Our research focused on the regulation of carbohydrate and lipid metabolic pathways occurring at three developmental stages of embryos from the Mexican Pacific tall (MPT) and the Yucatan green dwarf (YGD) cultivars. We used the TMT-synchronous precursor selection (SPS)-MS3 strategy to analyze the dynamics of proteomes from both embryos; 1044 and 540 proteins were determined for the MPT and YGD, respectively. A comparison of the differentially accumulated proteins (DAPs) revealed that the biological processes (BP) enriched in the MPT embryo included the glyoxylate and dicarboxylate metabolism along with fatty acid degradation, while in YGD, the nitrogen metabolism and pentose phosphate pathway were the most enriched BPs. Findings suggest that the MPT embryos use fatty acids to sustain a higher glycolytic/gluconeogenic metabolism than the YGD embryos. Moreover, the YGD proteome was enriched with proteins associated with biotic or abiotic stresses, e.g., peroxidase and catalase. The goal of this study was to highlight the differences in the regulation of carbohydrate and lipid metabolic pathways during the maturation of coconut YGD and MPT zygotic embryos.
Asunto(s)
Metabolismo de los Hidratos de Carbono , Cocos , Ácidos Grasos , Proteínas de Plantas , Semillas , Ácidos Grasos/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Cocos/metabolismo , Proteómica/métodos , Proteoma/metabolismo , Metabolismo de los Lípidos , Regulación de la Expresión Génica de las PlantasRESUMEN
With the emergence of multidrug-resistant microorganisms, microbial agents have become a serious global threat, affecting human health and various plants. Therefore, new therapeutic alternatives, such as chitin-binding proteins, are necessary. Chitin is an essential component of the fungal cell wall, and chitin-binding proteins exhibit antifungal activity. In the present study, chitin-binding peptides isolated from Capsicum chinense seeds were characterized and evaluated for their in vitro antimicrobial effect against the growth of Candida and Fusarium fungi. Proteins were extracted from the seeds and subsequently the chitin-binding proteins were separated by chitin affinity chromatography. After chromatography, two fractions, Cc-F1 (not retained on the column) and Cc-F2 (retained on the column), were obtained. Electrophoresis revealed major protein bands between 6.5 and 26.6 kDa for Cc-F1 and only a ~ 6.5 kDa protein band for Cc-F2, which was subsequently subjected to mass spectrometry. The protein showed similarity with hevein-like and endochitinase and was then named Cc-Hev. Data are available via ProteomeXchange with identifier PXD054607. Next, we predicted the three-dimensional structure of the peptides and performed a peptide docking with (NAG)3. Subsequently, growth inhibition assays were performed to evaluate the ability of the peptides to inhibit microorganism growth. Cc-Hev inhibited the growth of C. albicans (up to 75% inhibition) and C. tropicalis (100% inhibition) and induced a 65% decrease in cell viability for C. albicans and 100% for C. tropicalis. Based on these results, new techniques to combat fungal diseases could be developed through biotechnological applications; therefore, further studies are needed.
Asunto(s)
Antifúngicos , Candida , Capsicum , Quitina , Quitinasas , Fusarium , Semillas , Semillas/química , Antifúngicos/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/metabolismo , Quitina/farmacología , Fusarium/efectos de los fármacos , Quitinasas/farmacología , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/aislamiento & purificación , Candida/efectos de los fármacos , Candida/enzimología , Lectinas de Plantas/farmacología , Lectinas de Plantas/química , Lectinas de Plantas/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Péptidos/química , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Péptidos Catiónicos AntimicrobianosRESUMEN
Fragaria chiloensis is a Chilean native species that softens intensively during its ripening. Its softening is related to cell wall disassembly due to the participation of cell wall degrading enzymes. Softening of F. chiloensis fruit can be accelerated by ABA treatment which is accompanied by the increment in the expression of key cell wall degrading genes, however the molecular machinery involved in the transcriptional regulation has not been studied until now. Therefore, the participation of two MADS-box transcription factors belonging to different subfamilies, FchAGL9 and FchSHP, was addressed. Both TFs are members of type-II MADS-box family (MIKC-type) and localized in the nucleus. FchAGL9 and FchSHP are expressed only in flower and fruit tissues, rising as the fruit softens with the highest expression level at C3-C4 stages. EMSA assays demonstrated that FchAGL9 binds to CArG sequences of RIN and SQM, meanwhile FchSHP interacts only with RIN. Bimolecular fluorescence complementation and yeast two-hybrid assays confirmed FchAGL9-FchAGL9 and FchAGL9-FchSHP interactions. Hetero-dimer structure was built through homology modeling concluding that FchSHP monomer binds to DNA. Functional validation by Luciferase-dual assays indicated that FchAGL9 transactivates FchRGL and FchPG's promoters, meanwhile FchSHP transactivates those of FchEXP2, FchRGL and FchPG. Over-expression of FchAGL9 in C2 F. chiloensis fruit rises FchEXP2 and FchEXP5 transcripts, meanwhile the over-expression of FchSHP also increments FchXTH1 and FchPL; in both cases there is a down-regulation of FchRGL and FchPG. In summary, we provided evidence of FchAGL9 and FchSHP participating in the transcription regulation associated to F. chiloensis's softening.
Asunto(s)
Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Proteínas de Plantas , Frutas/genética , Frutas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fragaria/genética , Fragaria/metabolismoRESUMEN
Grapevine (Vitis vinifera L.) crops are continuously exposed to biotic and abiotic stresses, which can cause genetic and epigenetic alterations. To determine the possible effects of grapevine cryopreservation on the regulation of DNA demethylase genes, this work studied the expression of DNA demethylase genes in cryopreserved and post-cryopreserved grapevine tissues. V. vinifera DNA demethylases were characterized by in silico analysis, and gene expression quantification was conducted by RTâqPCR. Three DNA demethylase sequences were found: VIT_13s0074g00450 (VvDMT), VIT_08s0007g03920 (VvROS1), and VIT_06s0061g01270 (VvDML3). Phylogenetic analysis revealed that the sequences from V. vinifera and A. thaliana had a common ancestry. In the promoters of responsive elements to transcription factors such as AP-2, Myb, bZIP, TBP, and GATA, the conserved domains RRM DME and Perm CXXC were detected. These responsive elements play roles in the response to abiotic stress and the regulation of cell growth. These data helped us characterize the V. vinifera DNA demethylase genes. Gene expression analysis indicated that plant vitrification solution 2 (PVS2) treatment does not alter the expression of DNA demethylase genes. The expression levels of VvDMT and VvROS1 increased in response to cryopreservation by vitrification. Furthermore, in post-cryopreservation, VvROS1 was highly induced, and VvDML3 was repressed in all the treatment groups. Gene expression differences between different treatments and tissues may play roles in controlling methylation patterns during gene regulation in tissues stressed by cryopreservation procedures and in the post-cryopreservation period during plant growth and development.
Asunto(s)
Criopreservación , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Vitis , Vitis/genética , Vitis/crecimiento & desarrollo , Criopreservación/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Semillas/genética , Semillas/crecimiento & desarrollo , Desmetilación del ADN , Cigoto/metabolismo , Metilación de ADN , Crioprotectores/farmacologíaRESUMEN
Faced with the emergence of multiresistant microorganisms that affect human health, microbial agents have become a serious global threat, affecting human health and plant crops. Antimicrobial peptides have attracted significant attention in research for the development of new microbial control agents. This work's goal was the structural characterization and analysis of antifungal activity of chitin-binding peptides from Capsicum baccatum and Capsicum frutescens seeds on the growth of Candida and Fusarium species. Proteins were initially submitted to extraction in phosphate buffer pH 5.4 and subjected to chitin column chromatography. Posteriorly, two fractions were obtained for each species, Cb-F1 and Cf-F1 and Cb-F2 and Cf-F2, respectively. The Cb-F1 (C. baccatum) and Cf-F1 (C. frutescens) fractions did not bind to the chitin column. The electrophoresis results obtained after chromatography showed two major protein bands between 3.4 and 14.2 kDa for Cb-F2. For Cf-F2, three major bands were identified between 6.5 and 14.2 kDa. One band from each species was subjected to mass spectrometry, and both bands showed similarity to nonspecific lipid transfer protein. Candida albicans and Candida tropicalis had their growth inhibited by Cb-F2. Cf-F2 inhibited the development of C. albicans but did not inhibit the growth of C. tropicalis. Both fractions were unable to inhibit the growth of Fusarium species. The toxicity of the fractions was tested in vivo on Galleria mellonella larvae, and both showed a low toxicity rate at high concentrations. As a result, the fractions have enormous promise for the creation of novel antifungal compounds.
Asunto(s)
Antifúngicos , Candida , Quitina , Fusarium , Simulación del Acoplamiento Molecular , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/metabolismo , Quitina/química , Quitina/metabolismo , Fusarium/efectos de los fármacos , Candida/efectos de los fármacos , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Animales , Capsicum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Pruebas de Sensibilidad Microbiana , Unión Proteica , Conformación ProteicaRESUMEN
A novel MADS-box transcription factor from Pinus radiata D. Don was characterized. PrMADS11 encodes a protein of 165 amino acids for a MADS-box transcription factor belonging to group II, related to the MIKC protein structure. PrMADS11 was differentially expressed in the stems of pine trees in response to 45° inclination at early times (1 h). Arabidopsis thaliana was stably transformed with a 35S::PrMADS11 construct in an effort to identify the putative targets of PrMADS11. A massive transcriptome analysis revealed 947 differentially expressed genes: 498 genes were up-regulated, and 449 genes were down-regulated due to the over-expression of PrMADS11. The gene ontology analysis highlighted a cell wall remodeling function among the differentially expressed genes, suggesting the active participation of cell wall modification required during the response to vertical stem loss. In addition, the phenylpropanoid pathway was also indicated as a PrMADS11 target, displaying a marked increment in the expression of the genes driven to the biosynthesis of monolignols. The EMSA assays confirmed that PrMADS11 interacts with CArG-box sequences. This TF modulates the gene expression of several molecular pathways, including other TFs, as well as the genes involved in cell wall remodeling. The increment in the lignin content and the genes involved in cell wall dynamics could be an indication of the key role of PrMADS11 in the response to trunk inclination.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/genética , Pared Celular/metabolismo , Pared Celular/genética , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Lignina/metabolismo , Lignina/biosíntesis , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Plantas Modificadas Genéticamente/genéticaRESUMEN
Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and ß-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.