RESUMEN
Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.
Asunto(s)
Quimiocina CXCL9 , Filogenia , Receptores CXCR3 , Salmo salar , Animales , Salmo salar/inmunología , Salmo salar/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/inmunología , Regulación de la Expresión Génica , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Virus de la Necrosis Pancreática Infecciosa/inmunologíaRESUMEN
The production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout (Oncorhynchus mykiss) and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored. In this study, we analyzed the transcriptome and genome-wide DNA methylation in the skeletal muscle of rainbow trout seven days after cortisol administration. We identified 550 differentially expressed genes (DEGs) by RNA-seq and 9059 differentially methylated genes (DMGs) via whole-genome bisulfite sequencing (WGBS) analysis. KEGG enrichment analysis showed that cortisol modulates the differential expression of genes associated with nucleotide metabolism, ECM-receptor interaction, and the regulation of actin cytoskeleton pathways. Similarly, cortisol induced the differential methylation of genes associated with focal adhesion, adrenergic signaling in cardiomyocytes, and Wnt signaling. Through integrative analyses, we determined that 126 genes showed a negative correlation between up-regulated expression and down-regulated methylation. KEGG enrichment analysis of these genes indicated participation in ECM-receptor interaction, regulation of actin cytoskeleton, and focal adhesion. Using RT-qPCR, we confirmed the differential expression of lamb3, itga6, limk2, itgb4, capn2, and thbs1. This study revealed for the first time the molecular responses of skeletal muscle to cortisol at the transcriptomic and whole-genome DNA methylation levels in rainbow trout.
Asunto(s)
Metilación de ADN , Hidrocortisona , Músculo Esquelético , Oncorhynchus mykiss , Estrés Fisiológico , Transcriptoma , Animales , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Hidrocortisona/metabolismo , Hidrocortisona/farmacología , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Estrés Fisiológico/genética , Epigénesis Genética , Epigenómica/métodos , Perfilación de la Expresión Génica , Proteínas de Peces/genética , Proteínas de Peces/metabolismoRESUMEN
Psalidodon bifasciatus is a fish species sensitive to physical and chemical changes in water. It serves as a good bioindicator of temperature variations and is utilized in environmental monitoring studies in Brazilian rivers. The objective of this study was to evaluate antioxidant defense biomarkers in the heart, brain, and muscle of P. bifasciatus exposed to a 10 °C thermal increase. P. bifasciatus were collected and divided into a control group (21 °C) and groups subjected to thermal shock (31 °C) for periods of 2, 6, 12, 24, and 48h. Two-way ANOVA indicated that a 10 °C temperature increase caused oxidative stress in P. bifasciatus. This was evidenced by altered levels of lipid peroxidation (LPO), carbonylated proteins (PCO), and glutathione peroxidase (GPx) in the heart, catalase (CAT) and LPO in the brain, and LPO in the muscle. Principal component analysis (PCA) and integrated biomarker response (IBR) analysis indicated that, compared to the heart and muscle, the brain exhibited a greater activation of the antioxidant response. Sensitivity analysis indicated that the muscle was the most sensitive organ, followed by the brain and heart. Our results indicate that the stress response is tissue-specific through the activation of distinct mechanisms. These responses may be associated with the tissue's function as well as its energy demand. As expected, P. bifasciatus showed changes in response to thermal stress, with the brain showing the greatest alteration in antioxidant defenses and the muscle being the most sensitive tissue.
Asunto(s)
Antioxidantes , Respuesta al Choque Térmico , Animales , Antioxidantes/metabolismo , Respuesta al Choque Térmico/fisiología , Estrés Oxidativo/fisiología , Biomarcadores/metabolismo , Encéfalo/metabolismo , Peroxidación de Lípido , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Miocardio/metabolismo , Proteínas de Peces/metabolismo , Músculos/metabolismoRESUMEN
Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.
Asunto(s)
Characidae , Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Animales , Characidae/genética , Characidae/embriología , Transcriptoma/genética , Evolución Biológica , Cuevas , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Gastrulación/genética , Evolución MolecularRESUMEN
The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.
Asunto(s)
Enfermedades de los Peces , Inmunidad Innata , Filogenia , Piscirickettsia , Infecciones por Piscirickettsiaceae , Renibacterium , Salmo salar , Animales , Piscirickettsia/genética , Inmunidad Innata/genética , Salmo salar/microbiología , Salmo salar/genética , Salmo salar/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/genética , Infecciones por Piscirickettsiaceae/veterinaria , Renibacterium/genética , Renibacterium/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Evolución MolecularRESUMEN
Intelectins belong to a family of lectins with specific and transitory carbohydrate interaction capabilities. These interactions are related to the activity of agglutinating pathogens, as intelectins play a significant role in immunity. Despite the prominent immune defense function of intelectins, limited information about its structural characteristics and carbohydrate interaction properties is available. This study investigated an intelectin transcript identified in RNA-seq data obtained from the South American lungfish (Lepidosiren paradoxa), namely LpITLN2-B. The structural analyses predicted LpITLN2-B to be a homo-trimeric globular protein with the fibrinogen-like functional domain (FReD), exhibiting a molecular mass of 57 kDa. The quaternary structure is subdivided into three monomers, A, B, and C, and each domain comprises 11 ß-sheets: an anti-parallel ß-sheet, a ß-hairpin, and a disordered ß-sheet structure. Molecular docking demonstrates a significant interaction with disaccharides rather than monosaccharides. The preferential interaction with disaccharides highlights the potential interaction with pathogen molecules, such as LPS and Poly(I:C). The hemagglutination assay inhibited lectins activity, especially maltose and sucrose, highlighting lectin activity in L. paradoxa samples. Overall, our results show the potential relevance of LpITLN2-B in L. paradoxa immune defense against pathogens.
Asunto(s)
Proteínas de Peces , Peces , Inmunidad Innata , Lectinas , Animales , Lectinas/química , Lectinas/metabolismo , Lectinas/inmunología , Lectinas/genética , Peces/inmunología , Peces/genética , Proteínas de Peces/genética , Proteínas de Peces/química , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunologíaRESUMEN
The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.
Asunto(s)
Hígado , Metalotioneína , Metales Pesados , Óxido Nítrico Sintasa de Tipo II , Ríos , Contaminantes Químicos del Agua , Animales , Metalotioneína/metabolismo , Contaminantes Químicos del Agua/toxicidad , Metales Pesados/toxicidad , Óxido Nítrico Sintasa de Tipo II/metabolismo , Brasil , Hígado/efectos de los fármacos , Hígado/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Characiformes/metabolismo , Masculino , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Peces/metabolismo , FemeninoRESUMEN
NK-lysin is a potent antimicrobial peptide (AMP) with antimicrobial activity against bacteria, fungi, viruses, and parasites. NK-lysin is a type of granulysin, a member of the saposin-like proteins family first isolated from a pig's small intestine. In previous work, for the first time, we identified four variants of nk-lysin from Atlantic salmon (Salmo salar) using EST sequences. In the present study, we reported and characterized two additional transcripts of NK-lysin from S. salar. Besides, we evaluated the tissue distribution of three NK-lysins from S. salar and assessed the antimicrobial, hemolytic, and immunomodulatory activities and signaling pathways of three NK-lysin-derived peptides. The synthetic peptides displayed antimicrobial activity against Piscirickettsia salmonis (LF-89) and Flavobacterium psychrophilum. These peptides induced the expression of immune genes related to innate and adaptive immune responses in vitro and in vivo. The immunomodulatory activity of the peptides involves the mitogen-activated protein kinases-mediated signaling pathway, including p38, extracellular signal-regulated kinase 1/2, and/or c-Jun N-terminal kinases. Besides, the peptides modulated the immune response induced by pathogen-associated molecular patterns (PAMPs). Our findings show that NK-lysin could be a highly effective immunostimulant or vaccine adjuvant for use in fish aquaculture.
Asunto(s)
Péptidos Antimicrobianos , Proteínas de Peces , Proteolípidos , Salmo salar , Animales , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Proteínas de Peces/farmacología , Inmunidad Innata , Proteolípidos/metabolismo , Proteolípidos/farmacología , Salmo salar/inmunología , Transducción de SeñalRESUMEN
Thermal variations due to global climate change are expected to modify the distributions of marine ectotherms, with potential pathogen translocations. This is of particular concern at high latitudes where cold-adapted stenothermal fish such as the Notothenioids occur. However, little is known about the combined effects of thermal fluctuations and immune challenges on the balance between cell damage and repair processes in these fish. The aim of this study was to determine the effect of thermal variation on specific genes involved in the ubiquitination and apoptosis pathways in two congeneric Notothenioid species, subjected to simulated bacterial and viral infections. Adult fish of Harpagifer bispinis and Harpagifer antarcticus were collected from Punta Arenas (Chile) and King George Island (Antarctica), respectively, and distributed as follows: injected with PBS (control), LPS (2.5 mg/kg) or Poly I:C (2 mg/kg) and then submitted to 2, 5 and 8 °C. After 1 week, samples of gills, liver and spleen were taken to evaluate the expression by real-time PCR of specific genes involved in ubiquitination (E3-ligase enzyme) and apoptosis (BAX and SMAC/DIABLO). Gene expression was tissue-dependent and increased with increasing temperature in the gills and liver while showing an opposite pattern in the spleen. Studying a pair of sister species that occur across the Antarctic Polar Front can help us understand the particular pressures of intertidal lifestyles and the effect of temperature in combination with biological stressors on cell damage and repair capacity in a changing environment.
Asunto(s)
Apoptosis , Perciformes , Temperatura , Animales , Regiones Antárticas , Perciformes/inmunología , Perciformes/genética , Poli I-C/farmacología , Ubiquitina/genética , Ubiquitina/metabolismo , Lipopolisacáridos/farmacología , Regulación de la Expresión Génica , Branquias/metabolismo , Branquias/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Bazo/inmunología , Bazo/metabolismoRESUMEN
The commercial value of Peruvian hake (Merluccius gayi peruanus) meat is low because of its soft texture. This study investigated the major factor contributing to the gel-forming ability of Peruvian hake surimi by comparing the effects of endogenous protease activity and parasitic infection. Heat-induced gels could not be obtained at 50 °C-90 °C. Surimi with severe parasitic infection showed a stronger gel-forming ability. The endogenous protease activities were the main factor influencing the Peruvian hake meat proteolysis and contributed to the low gel-forming ability, rather than parasitic infection. Specifically, endogenous cysteine proteases played an essential role in protein degradation and low gel-forming ability. Moreover, endogenous transglutaminase was also shown to be involved in the gel-forming ability upon heating at 40 °C. These results suggested that Peruvian hake meat could be used as a raw material of frozen surimi for fish gel by inhibiting the activity of endogenous proteases.
Asunto(s)
Proteasas de Cisteína , Gadiformes , Perciformes , Animales , Gadiformes/metabolismo , Calor , Perú , Peces/metabolismo , Perciformes/metabolismo , Productos Pesqueros/análisis , Proteínas de Peces/metabolismoRESUMEN
Exocyst complex component 3 Sec6 of mammals, one of the components of the exocyst complex, participates in numerous cellular functions, such as promoting cell migration and inhibiting apoptosis. In this study, the Sec6 was obtained from Epinephelus coioides, an economically important cultured fish. The full length of E. coioides Sec6 was 2655 bp including a 245 bp 5' UTR, a 154 bp 3' UTR, and a 2256 bp open reading frame (ORF) encoding 751 amino acids, with a molecular mass of 86.76 kDa and a theoretical pI of 5.57. Sec6 mRNA was detected in all the tissues examined, but the expression level is different in these tissues. Using fluorescence microscopy, Sec6 were distributed in both the nucleus and the cytoplasm. After SGIV infection, the expression of E. coioides Sec6 was significantly up-regulated in both trunk kidney and spleen response to Singapore grouper iridovirus (SGIV), an important pathogens of E. coioides. Sec6 could increase the SGIV-induced cytopathic effects (CPE), the expression of the SGIV genes VP19, LITAF, MCP, ICP18 and MCP, and the viral titers. Besides, E. coioides Sec6 significantly downregulated the promoter of NF-κB and AP-1, and inhibited the SGIV-induced apoptosis. The results demonstrated that E. coioides Sec6 might play important roles in SGIV infection.
Asunto(s)
Lubina , Infecciones por Virus ADN , Enfermedades de los Peces , Iridovirus , Ranavirus , Animales , Lubina/genética , Lubina/metabolismo , Clonación Molecular , Infecciones por Virus ADN/veterinaria , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , FilogeniaRESUMEN
The membrane-anchored and soluble Toll-like Receptor 5 -TLR5M and TLR5S, respectively-from teleost recognize bacterial flagellin and induce the pro-inflammatory cytokines expression in a MyD88-dependent manner such as the TLR5 mammalian orthologous receptor. However, it has not been demonstrated whether the induced signaling pathway by these receptors activate innate effector mechanisms MyD88-dependent in salmonids. Therefore, in this work we study the MyD88 dependence on the induction of TLR5M/TLR5S signaling pathway mediated by flagellin as ligand on the activation of some innate effector mechanisms. The intracellular and extracellular Reactive Oxygen Species (ROS) production and conditioned supernatants production were evaluated in RTS11 cells, while the challenge with Piscirickettsia salmonis was evaluated in SHK-1 cells. Our results demonstrate that flagellin directly stimulates ROS production and indirectly stimulates it through the production of conditioned supernatants, both in a MyD88-dependent manner. Additionally, flagellin stimulation prevents the cytotoxicity induced by infection with P. salmonis in a MyD88-dependent manner. In conclusion we demonstrate that MyD88 is an essential adapter protein in the activation of the TLR5M/TLR5S signaling pathway mediated by flagellin in salmonids, which leads downstream to the induction of innate effector mechanisms, promoting immuno-protection against a bacterial challenge with P. salmonis.
Asunto(s)
Proteínas de Peces , Factor 88 de Diferenciación Mieloide , Infecciones por Piscirickettsiaceae/veterinaria , Salmonidae , Receptor Toll-Like 5 , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Flagelina , Regulación de la Expresión Génica , Inmunidad Innata , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Piscirickettsia/patogenicidad , Infecciones por Piscirickettsiaceae/inmunología , Especies Reactivas de Oxígeno , Salmonidae/genética , Salmonidae/inmunología , Salmonidae/microbiología , Transducción de Señal , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismoRESUMEN
Oxidative stress in aquatic organisms might suppress the immune system and propagate infectious diseases. This study aimed to investigate the protective effect of polyphenolic extracts from spent coffee grounds (SCG) against oxidative stress, induced by H2O2, in C. viridis brain cells, through an in vitro model. Hydrophilic extracts from SCG are rich in quinic, ferulic and caffeic acids and showed antioxidant capacity in DPPH, ORAC and FRAP assays. Furthermore, pretreatment of C. viridis brain cells with the polyphenolic extracts from SCG (230 and 460 µg/mL) for 24 h prior to 100 µM H2O2 exposure (1 h) significantly increased antioxidant enzymes activity (superoxide dismutase and catalase) and reduced lipid peroxidation (measured by MDA levels). These results suggest that polyphenols found in SCG extracts exert an antioxidative protective effect against oxidative stress in C. viridis brain cells by stimulating the activity of SOD and CAT.
Asunto(s)
Antioxidantes/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Café/química , Perciformes/metabolismo , Animales , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Encéfalo/citología , Catalasa/metabolismo , Células Cultivadas , Coffea/química , Proteínas de Peces/metabolismo , Explotaciones Pesqueras , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Peróxido de Hidrógeno/farmacología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Polifenoles , Superóxido Dismutasa/metabolismoRESUMEN
In salmon farming, viruses are responsible for outbreaks that produce significant economic losses for which there is a lack of control tools other than vaccines. Type I interferon has been successfully used for treating some chronic viral infections in humans. However, its application in salmonids depends on the proper design of a vehicle that allows its massive administration, ideally orally. In mammals, administration of recombinant probiotics capable of expressing cytokines has shown local and systemic therapeutic effects. In this work, we evaluate the use of Lactococcus lactis as a type I Interferon expression system in Atlantic salmon, and we analyze its ability to stimulate the antiviral immune response against IPNV, in vivo and in vitro. The interferon expressed in L. lactis, even though it was located mainly in the bacterial cytoplasm, was functional, stimulating Mx and PKR expression in CHSE-214 cells, and reducing the IPNV viral load in SHK-1 cells. In vivo, the oral administration of this L. lactis producer of Interferon I increases Mx and PKR expression, mainly in the spleen, and to a lesser extent, in the head kidney. The oral administration of this strain also reduces the IPNV viral load in Atlantic salmon specimens challenged with this pathogen. Our results show that oral administration of L. lactis producing Interferon I induces systemic effects in Atlantic salmon, allowing to stimulate the antiviral immune response. This probiotic could have effects against a wide variety of viruses that infect Atlantic salmon and also be effective in other salmonids due to the high identity among their type I interferons.
Asunto(s)
Infecciones por Birnaviridae/prevención & control , Proteínas de Peces/metabolismo , Inmunidad Innata , Virus de la Necrosis Pancreática Infecciosa/patogenicidad , Interferón Tipo I/metabolismo , Lactococcus lactis/metabolismo , Probióticos , Salmo salar/microbiología , Animales , Infecciones por Birnaviridae/inmunología , Infecciones por Birnaviridae/microbiología , Infecciones por Birnaviridae/virología , Línea Celular , Proteínas de Peces/genética , Explotaciones Pesqueras , Interacciones Huésped-Patógeno , Virus de la Necrosis Pancreática Infecciosa/crecimiento & desarrollo , Virus de la Necrosis Pancreática Infecciosa/inmunología , Interferón Tipo I/genética , Lactococcus lactis/genética , Lactococcus lactis/inmunología , Proteínas de Resistencia a Mixovirus/metabolismo , Salmo salar/genética , Salmo salar/inmunología , Salmo salar/virología , Carga Viral , eIF-2 Quinasa/metabolismoRESUMEN
The white shrimp Litopenaeus vannamei is exposed to hypoxic conditions in natural habitats and in shrimp farms. Hypoxia can retard growth, development and affect survival in shrimp. The hypoxia-inducible factor 1 (HIF-1) regulates many genes involved in glucose metabolism, antioxidant proteins, including metallothionein (MT) and apoptosis. In previous studies we found that the L. vannamei MT gene expression changed during hypoxia, and MT silencing altered cell apoptosis; in this study we investigated whether the silencing of HIF-1 affected MT expression and apoptosis. Double-stranded RNA (dsRNA) was used to silence HIF-1α and HIF-1ß under normoxia, hypoxia, and hypoxia plus reoxygenation. Expression of HIF-1α, HIF-1ß and MT, and apoptosis in hemocytes or caspase-3 expression in gills, were measured at 0, 3, 24 and 48 h of hypoxia and hypoxia followed by 1 h of reoxygenation. The results showed that hemocytes HIF-1α expression was induced during hypoxia and reoxygenation at 3 h, while HIF-1ß decreased at 24 and 48 h. In normoxia, HIF-1 silencing in hemocytes increased apoptosis at 3 h and decreased at 48 h; while in gills, caspase-3 increased at 3, 24 and 48 h. In hypoxia, HIF-1 silencing decreased apoptosis in hemocytes at 3 h, but caspase-3 increased in gills. During reoxygenation, apoptosis in hemocytes and caspase-3 in gills increased. During normoxia in hemocytes, silencing of HIF-1 decreased MT expression, but in gills, MT increased. During hypoxia and reoxygenation, silencing induced MT in hemocytes and gills. These results indicate HIF-1 differential participation in MT expression regulation and apoptosis during different oxygen conditions.
Asunto(s)
Apoptosis , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Proteínas de Peces/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Metalotioneína/metabolismo , Oxígeno/metabolismo , Penaeidae/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Proteínas de Peces/genética , Regulación de la Expresión Génica , Branquias/metabolismo , Branquias/patología , Hemocitos/metabolismo , Hemocitos/patología , Hipoxia/genética , Hipoxia/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Metalotioneína/genética , Penaeidae/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Tropical gar (Atractosteus tropicus) thrives in aquatic habitats with high levels of total nitrogen (TAN) and unionized ammonia (NH3). However, the tolerance of TAN and NH3, the excretion mechanisms involved, and the effects of these chemicals on routine metabolism are still unknown. Therefore, our objectives were to assess the acute toxicity of TAN and NH3 in A. tropicus juveniles after a 96-h exposure (LC50-96 h) to NH4Cl and after chronic exposure to two concentrations (15% and 30% of LC50-96 h TAN) for 12 days, as well as to evaluate the transcriptional effects associated with Rhesus proteins (rhag, rhbg, rhcg) and ion transporters (NHE, NKA, NKCC, and CFTR) in gills and skin; and to determine the effects of TAN and NH3 on routine metabolism through oxygen consumption (µM g-1 h-1) and gill ventilation frequency (beats min-1). LC50-96 h values were 100.20 ± 11.21 mg/L for TAN and 3.756 ± 0.259 mg/L for NH3. The genes encoding Rhesus proteins and ion transporters in gills and skin showed a differential expression according to TAN concentrations and exposure time. Oxygen consumption on day 12 showed significant differences between treatments with 15% and 30% TAN. Gill ventilation frequency on day 12 was higher in fish exposed to 30% TAN. In conclusion, A. tropicus juveniles are highly tolerant to TAN, showing upregulation of the genes involved in TAN excretion through gills and skin, which affects routine oxygen consumption and energetic cost. These findings are relevant for understanding adaptations in the physiological response of a tropical ancestral air-breathing fish.
Asunto(s)
Amoníaco/toxicidad , Proteínas Portadoras/metabolismo , Proteínas de Peces/metabolismo , Peces/metabolismo , Nitrógeno/toxicidad , Animales , Proteínas Portadoras/genética , Proteínas de Peces/genética , Peces/crecimiento & desarrollo , Branquias/efectos de los fármacos , Branquias/metabolismo , Branquias/patología , Transporte Iónico , Larva , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Contaminantes Químicos del Agua/toxicidadRESUMEN
Lactic acid bacteria are a powerful vehicle for releasing of cytokines and immunostimulant peptides at the gastrointestinal level after oral administration. However, its therapeutic application against pathogens that affect rainbow trout and Atlantic salmon has been little explored. Type II interferon in Atlantic salmon activates the antiviral response, protecting against viral infection, but its role against bacterial infection has not been tested in vivo. In this work, through the design of a recombinant lactic acid bacterium capable of producing Interferon gamma from Atlantic salmon, we explore its role against bacterial infection and the ability to stimulate systemic immune response after oral administration of the recombinant probiotic. Recombinant interferon was active in vitro, mainly stimulating IL-6 expression in SHK-1 cells. In vivo, oral administration of the recombinant probiotic produced an increase in IL-6, IFNγ and IL-12 in the spleen and kidney, in addition to stimulating the activity of lysozyme in serum. The challenge trials indicated that the administration of the IFNγ-producing probiotic doubled the survival in fish infected with F. psychrophilum. In conclusion, our results showed that the oral administration of lactic acid bacteria producing IFNγ managed to stimulate the immune response at a systemic level, conferring protection against pathogens, showing a biotechnological potential for its application in aquaculture.
Asunto(s)
Proteínas de Peces/metabolismo , Infecciones por Flavobacteriaceae/prevención & control , Flavobacterium/patogenicidad , Interferón gamma/metabolismo , Lactococcus lactis/metabolismo , Oncorhynchus mykiss/microbiología , Probióticos/administración & dosificación , Administración Oral , Animales , Línea Celular , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/metabolismo , Infecciones por Flavobacteriaceae/microbiología , Flavobacterium/inmunología , Interacciones Huésped-Patógeno , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/inmunología , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/inmunología , Oncorhynchus mykiss/metabolismo , FilogeniaRESUMEN
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient in widely used broad-spectrum herbicides. Even though the toxicity mechanism of this herbicide in vertebrates is poorly understood, evidence suggests that glyphosate is an endocrine disruptor capable of producing morphological anomalies as well as cardiotoxic and neurotoxic effects. We used the zebraï¬sh model to assess the effects of early life glyphosate exposure on the development of cartilage and bone tissues and organismal responses. We found functional alterations, including a reduction in the cardiac rate, significant changes in the spontaneous tail movement pattern, and defects in craniofacial development. These effects were concomitant with alterations in the level of the estrogen receptor alpha osteopontin and bone sialoprotein. We also found that embryos exposed to glyphosate presented spine deformities as adults. These developmental alterations are likely induced by changes in protein levels related to bone and cartilage formation.
Asunto(s)
Huesos/efectos de los fármacos , Anomalías Craneofaciales/inducido químicamente , Glicina/análogos & derivados , Herbicidas/toxicidad , Teratógenos/toxicidad , Animales , Huesos/anomalías , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/veterinaria , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Receptor alfa de Estrógeno/metabolismo , Femenino , Proteínas de Peces/metabolismo , Glicina/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Osteopontina/metabolismo , Sialoglicoproteínas/metabolismo , Pez Cebra/anomalías , Pez Cebra/metabolismo , GlifosatoRESUMEN
Long-chain (≥C20) polyunsaturated fatty acids (LC-PUFA), including eicosapentaenoic acid (EPA, 20:5n-3), arachidonic acid (ARA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), are essential in multiple physiological processes, especially during early development of vertebrates. LC-PUFA biosynthesis is achieved by two key families of enzymes, fatty acyl desaturases (Fads) and elongation of very long-chain fatty acid (Elovl). The present study determined the expression patterns of genes encoding desaturases (fads1 and fads2) and elongases (elovl2 and elovl5) involved in the LC-PUFA biosynthesis during early life-stages of the tropical gar Atractosteus tropicus. We further analyzed the fatty acid profiles during early development of A. tropicus to evaluate the impact of Fads and Elovl enzymatic activities. Specific oligonucleotides were designed from A. tropicus transcriptome to perform qPCR (quantitative polymerase chain reaction) on embryonic and larval stages, along with several organs (intestine, white muscle, brain, liver, heart, mesenteric adipose, kidney, gill, swim bladder, stomach, and spleen) collected from juvenile specimens. Fatty acid content of feeds and embryonic and larval stages were analyzed. Results show that fads1, fads2, elovl2 and elovl5 expression was detected from embryonic stages with expression peaks from day 15 post hatching, which could be related to transcriptional and dietary factors. Moreover, fads1, fads2 and elovl2 showed a higher expression in intestine, while elovl5 showed a higher expression in liver, suggesting that the tropical gar activates its LC-PUFA biosynthetic machinery to produce ARA, EPA and DHA to satisfy physiological demands at crucial developmental milestones during early development.
Asunto(s)
Ácido Graso Desaturasas/genética , Elongasas de Ácidos Grasos/genética , Ácidos Grasos Insaturados/biosíntesis , Proteínas de Peces/metabolismo , Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Lipogénesis , Animales , Proteínas de Peces/genética , Peces/genética , Peces/crecimiento & desarrollo , TranscriptomaRESUMEN
Ray-finned fishes of the superorder Ostariophysi are primarily freshwater (FW), and normally stenohaline. Differently, fishes of the superorder Acanthopterygii are essentially marine, and frequently euryhaline, with some secondary FW. Na+/K+-ATPase-immunoreactive ionocytes were localized in the branchial epithelia of 4 species of Ostariophysi and 3 of Acanthopterygii. The Ostariophysi grass carp (Ctenopharyngodon idella, Cypriniformes), twospot Astyanax (Astyanax bimaculatus) and piracanjuba (Brycon orbignyanus), Characiformes, and the jundiá (Rhamdia quelen, Siluriformes), all from FW, displayed ionocytes in the filament plus secondary lamellae (F + SL). In their turn, all the three species of Acanthopterygii showed immunoreactive ionocytes in the filaments only (F). They were the Nile tilapia (Oreochromis niloticus, Cichliformes) in FW, the dog snapper (Lutjanus jocu, Perciformes) in seawater (SW), and the green puffer (Sphoeroides greeleyi, Tetraodontiformes) in SW. Ionocytes normally extend their distribution to the secondary lamellae (F + SL) in Ostariophysi. In Acanthopterygii, we find more plasticity: ionocytes are more frequently restricted to the filament in SW, but also spread to SL in FW. It may be that the occurrence of ionocytes in SL is the ancestral condition, but some euryhaline acanthopterygians rely on the space of the SL for placement of additional ionocytes when in FW absorbing salt. Our study contributed to the identification of the pattern of ionocyte distribution in gills of Ostariophysi in respect to that of Acanthopterygii.