Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 62(1): 80-91, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33165601

RESUMEN

Plants adjust to unfavorable conditions by altering physiological activities, such as gene expression. Although previous studies have identified multiple stress-induced genes, the function of many genes during the stress responses remains unclear. Expression of ERD7 (EARLY RESPONSE TO DEHYDRATION 7) is induced in response to dehydration. Here, we show that ERD7 plays essential roles in both plant stress responses and development. In Arabidopsis, ERD7 protein accumulated under various stress conditions, including exposure to low temperature. A triple mutant of Arabidopsis lacking ERD7 and two closely related homologs had an embryonic lethal phenotype, whereas a mutant lacking the two homologs and one ERD7 allele had relatively round leaves, indicating that the ERD7 gene family has essential roles in development. Moreover, the importance of the ERD7 family in stress responses was evidenced by the susceptibility of the mutant lines to cold stress. ERD7 protein was found to bind to several, but not all, negatively charged phospholipids and was associated with membranes. Lipid components and cold-induced reduction in PIP2 in the mutant line were altered relative to wild type. Furthermore, membranes from the mutant line had reduced fluidity. Taken together, ERD7 and its homologs are important for plant stress responses and development and associated with the modification in membrane lipid composition.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Membrana Celular/metabolismo , Proteínas de Cloroplastos/fisiología , Respuesta al Choque por Frío , Lípidos de la Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/química , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Lípidos de la Membrana/análisis , Fosfatos de Fosfatidilinositol/metabolismo , Fosfolípidos/análisis , Fosfolípidos/metabolismo
2.
BMC Plant Biol ; 19(1): 524, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775615

RESUMEN

BACKGROUND: Plastid-encoded RNA polymerase (PEP) plays an essential role in chloroplast development by governing the expression of genes involved in photosynthesis. At least 12 PEP-associated proteins (PAPs), including FSD3/PAP4, regulate PEP activity and chloroplast development by modulating formation of the PEP complex. RESULTS: In this study, we identified FSD3S, a splicing variant of FSD3; the FSD3 and FSD3S transcripts encode proteins with identical N-termini, but different C-termini. Characterization of FSD3 and FSD3S proteins showed that the C-terminal region of FSD3S contains a transmembrane domain, which promotes FSD3S localization to the chloroplast membrane but not to nucleoids, in contrast to FSD3, which localizes to the chloroplast nucleoid. We also found that overexpression of FSD3S negatively affects photosynthetic activity and chloroplast development by reducing expression of genes involved in photosynthesis. In addition, FSD3S failed to complement the chloroplast developmental defects in the fsd3 mutant. CONCLUSION: These results suggest FSD3 and FSD3S, with their distinct localization patterns, have different functions in chloroplast development, and FSD3S negatively regulates expression of PEP-dependent chloroplast genes, and development of chloroplasts.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Proteínas de Cloroplastos/fisiología , Cloroplastos/fisiología , Plastidios/genética , Empalme Alternativo , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Superóxido Dismutasa/metabolismo
3.
J Exp Bot ; 68(20): 5615-5627, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29053825

RESUMEN

The chloroplast, as the photosynthetic organelle of plants, plays a crucial role in plant development. Extensive studies have been conducted on chloroplast development; however, the related regulatory mechanism still remains elusive. Here, we characterized a mutant with defective chloroplasts in Arabidopsis, termed pigment-defective mutant3 (pdm3), which exhibits a distinct albino phenotype in leaves, eventually leading to pdm3 seedling lethality under autotrophic growth conditions. Electron microscopy demonstrated that the number of thylakoids was reduced and the structure of those thylakoids was disrupted in the pdm3 mutant, which eventually led to the breakdown of chloroplasts. Sequence analysis showed that PDM3 encodes a chloroplast protein consisting of 12 pentratricopeptide repeat domains that belongs to the P subgroup. Both confocal microscopic analysis and immunoblotting in the chloroplast protein fraction showed that PDM3 was located in the stroma. Furthermore, analysis of the transcript profiles of chloroplast genes revealed that plastid-encoded polymerase-dependent transcript levels were markedly reduced, while nuclear-encoded polymerase-dependent transcript levels were increased in pdm3 mutants. In addition, we found that the splicing of introns in trnA, ndhB, and clpP-1 is also affected in pdm3. Taken together, we propose that PDM3 plays an essential role in chloroplast development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas de Cloroplastos/fisiología , Cloroplastos/metabolismo , Fotosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Pigmentos Biológicos/metabolismo
4.
J Biol Chem ; 292(17): 6952-6964, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28283569

RESUMEN

The biogenesis and maintenance of cell organelles such as mitochondria and chloroplasts require the import of many proteins from the cytosol, a process that is controlled by phosphorylation. In the case of chloroplasts, the import of hundreds of different proteins depends on translocons at the outer and inner chloroplast membrane (TOC and TIC, respectively) complexes. The essential protein TOC159 functions thereby as an import receptor. It has an N-terminal acidic (A-) domain that extends into the cytosol, controls receptor specificity, and is highly phosphorylated in vivo However, kinases that phosphorylate the TOC159 A-domain to enable protein import have remained elusive. Here, using co-purification with TOC159 from Arabidopsis, we discovered a novel component of the chloroplast import machinery, the regulatory kinase at the outer chloroplast membrane 1 (KOC1). We found that KOC1 is an integral membrane protein facing the cytosol and stably associates with TOC. Moreover, KOC1 phosphorylated the A-domain of TOC159 in vitro, and in mutant koc1 chloroplasts, preprotein import efficiency was diminished. koc1 Arabidopsis seedlings had reduced survival rates after transfer from the dark to the light in which protein import into plastids is required to rapidly complete chloroplast biogenesis. In summary, our data indicate that KOC1 is a functional component of the TOC machinery that phosphorylates import receptors, supports preprotein import, and contributes to efficient chloroplast biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/fisiología , Proteínas de Cloroplastos/fisiología , Cromatografía de Afinidad , Citosol/metabolismo , Escherichia coli/metabolismo , Espectrometría de Masas , Mutación , Fosforilación , Dominios Proteicos , Transporte de Proteínas , Proteínas Recombinantes/metabolismo
5.
Biochim Biophys Acta ; 1847(9): 939-48, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25762164

RESUMEN

Plastids, such as chloroplasts, are widely distributed endosymbiotic organelles in plants and algae. Apart from their well-known functions in photosynthesis, they have roles in processes as diverse as signal sensing, fruit ripening, and seed development. As most plastid proteins are produced in the cytosol, plastids have developed dedicated translocon machineries for protein import, comprising the TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes. Multiple lines of evidence reveal that protein import via the TOC complex is actively regulated, based on the specific interplay between distinct receptor isoforms and diverse client proteins. In this review, we summarize recent advances in our understanding of protein import regulation, particularly in relation to control by the ubiquitin-proteasome system (UPS), and how such regulation changes plastid development. The diversity of plastid import receptors (and of corresponding preprotein substrates) has a determining role in plastid differentiation and interconversion. The controllable turnover of TOC components by the UPS influences the developmental fate of plastids, which is fundamentally linked to plant development. Understanding the mechanisms by which plastid protein import is controlled is critical to the development of breakthrough approaches to increase the yield, quality and stress tolerance of important crop plants, which are highly dependent on plastid development. This article is part of a Special Issue entitled: Chloroplast Biogenesis.


Asunto(s)
Proteínas de Cloroplastos/fisiología , Plastidios/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Ubiquitina/metabolismo , Transporte de Proteínas , Ubiquitinación
6.
PLoS One ; 9(4): e94126, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718683

RESUMEN

Plant mitochondrial transcription termination factor (mTERF) genes comprise a large family with important roles in regulating organelle gene expression. In this study, a comprehensive database search yielded 31 potential mTERF genes in maize (Zea mays L.) and most of them were targeted to mitochondria or chloroplasts. Maize mTERF were divided into nine main groups based on phylogenetic analysis, and group IX represented the mitochondria and species-specific clade that diverged from other groups. Tandem and segmental duplication both contributed to the expansion of the mTERF gene family in the maize genome. Comprehensive expression analysis of these genes, using microarray data and RNA-seq data, revealed that these genes exhibit a variety of expression patterns. Environmental stimulus experiments revealed differential up or down-regulation expression of maize mTERF genes in seedlings exposed to light/dark, salts and plant hormones, respectively, suggesting various important roles of maize mTERF genes in light acclimation and stress-related responses. These results will be useful for elucidating the roles of mTERF genes in the growth, development and stress response of maize.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Genes de Plantas , Proteínas Mitocondriales/genética , Proteínas de Plantas/genética , Zea mays/genética , Adaptación Fisiológica/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/clasificación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/clasificación , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/fisiología , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Secuencia Conservada , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Proteínas Mitocondriales/química , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/fisiología , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad de Órganos , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/fisiología , Regiones Promotoras Genéticas/genética , Conformación Proteica , Sales (Química)/farmacología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/efectos de la radiación
7.
Plant Cell ; 24(10): 4266-80, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23110894

RESUMEN

Chloroplast RNA metabolism is mediated by a multitude of nuclear encoded factors, many of which are highly specific for individual RNA processing events. In addition, a family of chloroplast ribonucleoproteins (cpRNPs) has been suspected to regulate larger sets of chloroplast transcripts. This together with their propensity for posttranslational modifications in response to external cues suggested a potential role of cpRNPs in the signal-dependent coregulation of chloroplast genes. We show here on a transcriptome-wide scale that the Arabidopsis thaliana cpRNPs CP31A and CP29A (for 31 kD and 29 kD chloroplast protein, respectively), associate with large, overlapping sets of chloroplast transcripts. We demonstrate that both proteins are essential for resistance of chloroplast development to cold stress. They are required to guarantee transcript stability of numerous mRNAs at low temperatures and under these conditions also support specific processing steps. Fine mapping of cpRNP-RNA interactions in vivo suggests multiple points of contact between these proteins and their RNA ligands. For CP31A, we demonstrate an essential function in stabilizing sense and antisense transcripts that span the border of the small single copy region and the inverted repeat of the chloroplast genome. CP31A associates with the common 3'-terminus of these RNAs and protects them against 3'-exonucleolytic activity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Cloroplastos/fisiología , Frío , ARN del Cloroplasto/metabolismo , Proteínas de Unión al ARN/fisiología , Ribonucleoproteínas/fisiología , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Secuencia de Bases , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/fisiología , Datos de Secuencia Molecular , Fenotipo , Procesamiento Postranscripcional del ARN , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Análisis de Secuencia de ARN
8.
PLoS One ; 7(8): e42924, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22905186

RESUMEN

Most chloroplast and mitochondrial proteins are encoded by nuclear genes, whose functions remain largely unknown because mutant alleles are lacking. A reverse genetics screen for mutations affecting the mitochondrial transcription termination factor (mTERF) family in Arabidopsis thaliana allowed us to identify 75 lines carrying T-DNA insertions. Two of them were homozygous for insertions in the At4g14605 gene, which we dubbed MDA1 (MTERF DEFECTIVE IN Arabidopsis1). The mda1 mutants exhibited altered chloroplast morphology and plant growth, and reduced pigmentation of cotyledons, leaves, stems and sepals. The mda1 mutations enhanced salt and osmotic stress tolerance and altered sugar responses during seedling establishment, possibly as a result of reduced ABA sensitivity. Loss of MDA1 function caused up-regulation of the RpoTp/SCA3 nuclear gene encoding a plastid RNA polymerase and modified the steady-state levels of chloroplast gene transcripts. Double mutant analyses indicated that MDA1 and the previously described mTERF genes SOLDAT10 and RUG2 act in different pathways. Our findings reveal a new role for mTERF proteins in the response to abiotic stress, probably through perturbed ABA retrograde signalling resulting from a disruption in chloroplast homeostasis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/fisiología , Cloroplastos/metabolismo , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Genes de Plantas/genética , Genoma de Planta , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Homocigoto , Datos de Secuencia Molecular , Mutación , Oryza/genética , Ósmosis , Pigmentación , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Factores de Transcripción
9.
Plant Cell Environ ; 35(11): 1912-31, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22530593

RESUMEN

The nuclear-encoded chloroplast small heat shock proteins (sHSPs) are present in all plant species from algae to angiosperms. Expression analysis shows that the wheat chloroplastic sHSP (HSP26) is highly inducible by heat stress in almost all the vegetative and generative tissues and is also expressed constitutively in certain developmental growth stages. We characterize wheat chloroplastic sHSP 26 through transgenic approach using Arabidopsis and report cloning of the promoter and its characterization. Transgenic Arabidopsis plants were substantially tolerant under continuous high temperature regimen than wild-type plants, as measured by photosystem II (PSII) activity, accumulation of more photosynthetic pigments, higher biomass and seed yield. Transgenic plants produced bold seeds under high temperature, having higher germination potential than the wild-type plants. Further, antisense Arabidopsis plants showed negligible tolerance even for non-lethal heat shock, impaired in basal thermo-tolerance, and accumulated less biomass and seed yield under normal growth conditions. Promoter analysis revealed the presence of several heat and other abiotic stress responsive cis-acting elements along with developmental stage and tissue-specific elements. Analysis of promoter through GUS reporter system in both transgenic rice and Arabidopsis further confirms the role of chloroplastic sHsp26 in heat and other abiotic stresses as well as during seed maturation and germination. Genome-wide expression analysis of overexpression Arabidopsis plants revealed that the transcriptome remained unchanged in the transgenic plants and the tolerance was due to the overexpression of chloroplastic heat shock protein (HSP) only.


Asunto(s)
Proteínas de Cloroplastos/fisiología , Germinación/genética , Proteínas de Choque Térmico/fisiología , Respuesta al Choque Térmico/genética , Semillas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Arabidopsis/genética , Secuencia de Bases , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Clonación Molecular , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Semillas/genética , Triticum/genética , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA