RESUMEN
Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.
Asunto(s)
Proteínas Bacterianas/fisiología , Stenotrophomonas maltophilia/fisiología , Stenotrophomonas maltophilia/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Secuencia de Aminoácidos , Antibiosis/genética , Antibiosis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/fisiología , Modelos Moleculares , Infecciones Oportunistas/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Stenotrophomonas maltophilia/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crecimiento & desarrolloRESUMEN
Translational control is a common regulatory mechanism for the expression of iron-related proteins. For example, three enzymes involved in erythrocyte development are regulated by three different control mechanisms: globin synthesis is modulated by heme-regulated translational inhibitor, erythroid 5-aminolevulinate synthase translation is inhibited by binding of the iron regulatory protein to the iron response element in the 5'-untranslated region (UTR); and 15-lipoxygenase is regulated by specific proteins binding to the 3'-UTR. Ceruloplasmin (Cp) is a multi-functional, copper protein made primarily by the liver and by activated macrophages. Cp has important roles in iron homeostasis and in inflammation. Its role in iron metabolism was originally proposed because of its ferroxidase activity and because of its ability to stimulate iron loading into apo-transferrin and iron efflux from liver. We have shown that Cp mRNA is induced by interferon (IFN)-gamma in U937 monocytic cells, but synthesis of Cp protein is halted by translational silencing. The silencing mechanism requires binding of a cytosolic inhibitor complex, IFN-Gamma-Activated Inhibitor of Translation (GAIT), to a specific GAIT element in the Cp 3'-UTR. Here, we describe our studies that define and characterize the GAIT element and elucidate the specific trans-acting proteins that bind the GAIT element. Our experiments describe a new mechanism of translational control of an iron-related protein and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.
Asunto(s)
Regiones no Traducidas 3'/fisiología , Ceruloplasmina/fisiología , Proteínas Reguladoras del Hierro/fisiología , Hierro/metabolismo , Biosíntesis de Proteínas/fisiología , Regiones no Traducidas 3'/genética , Animales , Ceruloplasmina/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Homeostasis/genética , Homeostasis/fisiología , Humanos , Inflamación/metabolismo , Interferón gamma/metabolismo , Proteínas Reguladoras del Hierro/genética , Biosíntesis de Proteínas/genética , ARN MensajeroRESUMEN
Translational control is a common regulatory mechanism for the expression of iron-related proteins. For example, three enzymes involved in erythrocyte development are regulated by three different control mechanisms: globin synthesis is modulated by heme-regulated translational inhibitor; erythroid 5-aminolevulinate synthase translation is inhibited by binding of the iron regulatory protein to the iron response element in the 5'-untranslated region (UTR); and 15-lipoxygenase is regulated by specific proteins binding to the 3'-UTR. Ceruloplasmin (Cp) is a multi-functional, copper protein made primarily by the liver and by activated macrophages. Cp has important roles in iron homeostasis and in inflammation. Its role in iron metabolism was originally proposed because of its ferroxidase activity and because of its ability to stimulate iron loading into apo-transferrin and iron efflux from liver. We have shown that Cp mRNA is induced by interferon (IFN)-ã in U937 monocytic cells, but synthesis of Cp protein is halted by translational silencing. The silencing mechanism requires binding of a cytosolic inhibitor complex, IFN-Gamma-Activated Inhibitor of Translation (GAIT), to a specific GAIT element in the Cp 3'-UTR. Here, we describe our studies that define and characterize the GAIT element and elucidate the specific trans-acting proteins that bind the GAIT element. Our experiments describe a new mechanism of translational control of an iron-related protein and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.