RESUMEN
PURPOSE: Uveal melanoma (UM) is the most common intraocular cancer with a high mortality rate that requires new research in the field of prevention and treatment. c-REL is a member of the nuclear factor κB (NF-κB) transcription factor family and an emerging regulator of tumorigenesis. Therefore, the objective of the study is to evaluate the constitutive expression of c-REL in uveal melanoma patients and its prognostic significance. METHODS: Detection of c-REL expression was carried out by immunohistochemistry in all 75 patients, and qRT-PCR performed on 58 fresh cases of uveal melanoma along with IL-6 status. Immunoblot was performed to validate immunohistochemistry results. Expression of c-REL protein correlated with clinicopathological parameters and overall survival of patients. RESULTS: Immunohistochemistry results revealed nuclear expression of the c-REL protein (56%) in our cases. Out of 75 cases, 31 cases showed nuclear expression, and 11 cases had cytoplasmic expression. qRT-PCR showed upregulation of the REL gene in 56.89% cases at the transcriptional level. There was a statistically significant difference in the overall survival of patients with c-REL nuclear immunopositivity (p = 0.0048). On multivariate analysis, scleral invasion and c-REL nuclear expression found to be an independent prognostic factor (p < 0.05) CONCLUSIONS: To the best of our knowledge, this was the first study reporting the expression of the c-REL protein in uveal melanoma. Strong nuclear immunoexpression of c-Rel suggests NFκB pathway activation which might be involved in the progression of the disease. Differential expression of c-REL protein may be used as an attractive target for the development of anticancer strategies.
Asunto(s)
Melanoma/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-rel/genética , Neoplasias de la Úvea/genética , Adulto , Anciano , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Femenino , Humanos , Inmunohistoquímica , Masculino , Melanoma/metabolismo , Melanoma/patología , Persona de Mediana Edad , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-rel/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia , Neoplasias de la Úvea/metabolismo , Neoplasias de la Úvea/patología , Quinasa de Factor Nuclear kappa BRESUMEN
PURPOSE: Despite considerable evidence that supports the NF-kB role in the immune system and lymphomagenesis, it is unclear whether specific NF-kB dimers control a particular set of genes that account for their biological functions. Our previous work showed that Hodgkin Lymphoma (HL) is unique, among germinal center (GC)-derived lymphomas, with respect to its dependency on Rel-B to survive. In contrast, diffuse large B-Cell lymphoma (DLBCL) including both Activated B-Cell-Like and Germinal Center B-Cell-Like, requires cREL and Rel-A to survive and it is not affected by Rel-B depletion. These findings highlighted the activity of specific NF-kB subunits in different GC-derived lymphomas. METHODS: Sequenced chromatin immunoprecipitated DNA fragments (ChIP-Seq) analysis revealed an extensive NF-kB DNA-binding network in DLBCL and HL. The ChIP-Seq data was merged with microarray analysis following the Rel-A, Rel-B or cRel knockdown to determine effectively regulated genes. RESULTS: Downstream target analysis showed enrichment for cell cycle control, among other signatures. Rel-B and cRel controlled different genes within the same signature in HL and DLBCL, respectively. BCL2 was exclusively controlled by Rel-B in HL. Both mRNA and protein levels decreased following Rel-B depletion meanwhile there was no change upon cRel knock-down. BCL2 exogenous expression partially rescued the death induced by decreased Rel-B in HL cells. CONCLUSION: The Rel-B hierarchical network defined HL and the cRel hierarchical network characterized DLBCL. Each Rel member performs specific functions in distinct GC-derived lymphomas. This result should be considered for the development of targeted therapies that are aimed to selectively inhibit individual NF-kB dimers.
Asunto(s)
ADN de Neoplasias/metabolismo , Enfermedad de Hodgkin/metabolismo , Linfoma de Células B Grandes Difuso/metabolismo , FN-kappa B/metabolismo , Apoptosis/genética , Linfocitos B/metabolismo , Linfocitos B/patología , Línea Celular Tumoral , ADN de Neoplasias/genética , Perfilación de la Expresión Génica , Células HEK293 , Enfermedad de Hodgkin/genética , Humanos , Linfoma de Células B Grandes Difuso/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-rel/genética , Proteínas Proto-Oncogénicas c-rel/metabolismo , Transducción de Señal , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIB/genética , Factor de Transcripción ReIB/metabolismo , Transcripción GenéticaRESUMEN
In recent decades, astrocytes have emerged as key pieces in the maintenance of normal functioning of the central nervous system. Any impairment in astroglial function can ultimately lead to generalized disturbance in the brain, thus pharmacological targets associated with prevention of astrocyte death are actually promising. Subtype 3 of metabotropic glutamate receptors (mGluR3) is present in astrocytes, its activation exerting neuroprotective roles. In fact, we have previously demonstrated that mGluR3 selective agonists prevent nitric oxide (NO)-induced astrocyte death. However, mechanisms responsible for that cytoprotective property are still subject to study. Although inhibition of adenylyl cyclase by mGluR3 activation was extensively reported, the involvement of reduced cAMP levels in the effects of mGluR3 agonists and the association between cAMP decrease and the downstream pathways activated by mGluR3 remain neglected. Thus, we studied intracellular signaling mediating anti-apoptotic actions of mGluR3 in cultured rat astrocytes exposed to NO. In the present work, we showed that the cytoprotective effect of mGluR3 agonists (LY379268 and LY404039) requires both the reduction of intracellular cAMP levels and activation of Akt, as assessed by MTT and TUNEL techniques. Moreover, dibutyryl-cAMP impairs Akt phosphorylation induced by LY404039, indicating a relationship between mGluR3-reduced cAMP levels and PI3K/Akt pathway activation. We also demonstrated, by co-immunoprecipitation followed by western-blot, that the mGluR3 agonists not only induce per se survival-linked interaction between members of the NF-κB family p65 and c-Rel, but also impede reduction of levels of p65-c-Rel dimers caused by NO, suggesting a possible anti-apoptotic role for p65-c-Rel. All together, these data suggest that mGluR3 agonists may regulate cAMP/Akt/p65-c-Rel pathway, which would contribute to the protective effect of mGluR3 against NO challenge in astrocytes. Our results widen the knowledge about mechanisms of action of mGluR3, potential targets for the treatment of neurodegenerative disorders where a pathophysiological role for NO has been established.
Asunto(s)
Astrocitos/metabolismo , AMP Cíclico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Factor de Transcripción ReIA/metabolismo , Aminoácidos/farmacología , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Western Blotting , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Óxidos S-Cíclicos/farmacología , Dimerización , Proteína Ácida Fibrilar de la Glía/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Ratas , Receptores de Glutamato Metabotrópico/agonistasRESUMEN
The induction of gene expression has been correlated with long-lasting neuronal plasticity and long-term memory (LTM) formation. The fast activation of constitutive transcription factors by signaling mechanisms is thought to be the link between synaptic events and gene expression. However, only one constitutive transcription factor, CREB, has been shown to play a key role in several memory paradigms, both in vertebrates and invertebrates. Here, we report evidences for Rel/NFkappa-B constitutive transcription factors participation in memory. Using the LTM paradigm in the crab Chasmagnathus, an enhancement of NFkappa-B DNA-binding activity was found after spaced training, which induces LTM, but not after massed training which yields an intermediate-term memory (ITM). Such finding is correlated with the requirement of protein synthesis for LTM consolidation but not for ITM. Furthermore, NFkappa-B activation was observed after 15 or 30 training trials, which are sufficient to induce LTM, but not after 5 or 10 trials, a number of trials insufficient to induce LTM. The kinetics of activation was studied and two waves of DNA-binding activity were found, similar to the time course described in other systems. NFkappa-B activation after training was also found in synaptosomal extracts. The latter result supports the hypothesis of a novel synapse-to-nucleus signaling system, in which the transcription factor is locally activated by synaptic events and then transported to the nucleus.