Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(6)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235701

RESUMEN

The nucleotide excision repair (NER) pathway is activated in response to a broad spectrum of DNA lesions, including bulky lesions induced by platinum-based chemotherapeutic agents. Expression levels of NER factors and resistance to chemotherapy has been examined with some suggestion that NER plays a role in tumour resistance; however, there is a great degree of variability in these studies. Nevertheless, recent clinical studies have suggested Xeroderma Pigmentosum group A (XPA) protein, a key regulator of the NER pathway that is essential for the repair of DNA damage induced by platinum-based chemotherapeutics, as a potential prognostic and predictive biomarker for response to treatment. XPA functions in damage verification step in NER, as well as a molecular scaffold to assemble other NER core factors around the DNA damage site, mediated by protein-protein interactions. In this review, we focus on the interacting partners and mechanisms of regulation of the XPA protein. We summarize clinical oncology data related to this DNA repair factor, particularly its relationship with treatment outcome, and examine the potential of XPA as a target for small molecule inhibitors.


Asunto(s)
Reparación del ADN , Mapas de Interacción de Proteínas , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , Animales , Reparación del ADN/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Activación Transcripcional/efectos de los fármacos , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
2.
Methods Mol Biol ; 1999: 217-221, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31127579

RESUMEN

With the recent interest in targeting the DNA damage response (DDR) and DNA repair, new screening methodologies are needed to broaden the scope of targetable proteins beyond kinases and traditional enzymes. Many of the proteins involved in the DDR and repair impart their activity by making specific contacts with DNA. These protein-nucleic acid interactions represent a tractable target for perturbation with small molecules. We describe a high throughput, solution-based equilibrium binding fluorescence polarization assay that can be applied to a wide array of protein-nucleic acid interactions. The assay is sensitive, stable, and able to identify small molecules capable of blocking DNA-protein interactions.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteína de Replicación A/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , ADN/genética , ADN/metabolismo , Daño del ADN , Polarización de Fluorescencia/métodos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
3.
J Med Chem ; 60(19): 8055-8070, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28933851

RESUMEN

XPA is a unique and essential protein required for the nucleotide excision DNA repair pathway and represents a therapeutic target in oncology. Herein, we are the first to develop novel inhibitors of the XPA-DNA interaction through structure-guided drug design efforts. Ester derivatives of the compounds 1 (X80), 22, and 24 displayed excellent inhibitory activity (IC50 of 0.82 ± 0.18 µM and 1.3 ± 0.22 µM, respectively) but poor solubility. We have synthesized novel amide derivatives that retain potency and have much improved solubility. Furthermore, compound 1 analogs exhibited good specificity for XPA over RPA (replication protein A), another DNA-binding protein that participates in the nucleotide excision repair (NER) pathway. Importantly, there were no significant interactions observed by the X80 class of compounds directly with DNA. Molecular docking studies revealed a mechanistic model for the interaction, and these studies could serve as the basis for continued analysis of structure-activity relationships and drug development efforts of this novel target.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , ADN/efectos de los fármacos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/farmacología , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Antineoplásicos/química , Simulación por Computador , Reparación del ADN/efectos de los fármacos , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Sustancias Intercalantes/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Solubilidad , Relación Estructura-Actividad
4.
J Mol Graph Model ; 65: 71-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26939044

RESUMEN

Many cancer chemotherapy agents act by targeting the DNA of cancer cells, causing substantial damage within their genome and causing them to undergo apoptosis. An effective DNA repair pathway in cancer cells can act in a reverse way by removing these drug-induced DNA lesions, allowing cancer cells to survive, grow and proliferate. In this context, DNA repair inhibitors opened a new avenue in cancer treatment, by blocking the DNA repair mechanisms from removing the chemotherapy-mediated DNA damage. In particular, the nucleotide excision repair (NER) involves more than thirty protein-protein interactions and removes DNA adducts caused by platinum-based chemotherapy. The excision repair cross-complementation group 1 (ERCC1)-xeroderma pigmentosum, complementation group A (XPA) protein (XPA-ERCC1) complex seems to be one of the most promising targets in this pathway. ERCC1 is over expressed in cancer cells and the only known cellular function so far for XPA is to recruit ERCC1 to the damaged point. Here, we build upon our recent advances in identifying inhibitors for this interaction and continue our efforts to rationally design more effective and potent regulators for the NER pathway. We employed in silico drug design techniques to: (1) identify compounds similar to the recently discovered inhibitors, but more effective at inhibiting the XPA-ERCC1 interactions, and (2) identify different scaffolds to develop novel lead compounds. Two known inhibitor structures have been used as starting points for two ligand/structure-hybrid virtual screening approaches. The findings described here form a milestone in discovering novel inhibitors for the NER pathway aiming at improving the efficacy of current platinum-based therapy, by modulating the XPA-ERCC1 interaction.


Asunto(s)
Antineoplásicos/química , Reparación del ADN/efectos de los fármacos , ADN de Neoplasias/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Diseño de Fármacos , Endonucleasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica , Sitios de Unión , Cisplatino/química , Cisplatino/farmacología , Daño del ADN , ADN de Neoplasias/química , ADN de Neoplasias/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Descubrimiento de Drogas , Endonucleasas/química , Endonucleasas/genética , Expresión Génica , Humanos , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Bibliotecas de Moléculas Pequeñas/farmacología , Electricidad Estática , Termodinámica , Proteína de la Xerodermia Pigmentosa del Grupo A/química , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
5.
PLoS One ; 7(12): e51329, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272099

RESUMEN

BACKGROUND: Nucleotide excision repair (NER) removes many types of DNA lesions including those induced by UV radiation and platinum-based therapy. Resistance to platinum-based therapy correlates with high expression of ERCC1, a major element of the NER machinery. The interaction between ERCC1 and XPA is essential for a successful NER function. Therefore, one way to regulate NER is by inhibiting the activity of ERCC1 and XPA. METHODOLOGY/PRINCIPAL FINDINGS: Here we continued our earlier efforts aimed at the identification and characterization of novel inhibitors of the ERCC1-XPA interaction. We used a refined virtual screening approach combined with a biochemical and biological evaluation of the compounds for their ability to interact with ERCC1 and to sensitize cells to UV radiation. Our findings reveal a new validated ERCC1-XPA inhibitor that significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction. CONCLUSIONS: NER is a major factor in acquiring resistance to platinum-based therapy. Regulating the NER pathway has the potential of improving the efficacy of platinum treatments. One approach that we followed is to inhibit the essential interaction between the two NER elements, ERCC1 and XPA. Here, we performed virtual screening against the ERCC1-XPA interaction and identified novel inhibitors that block the XPA-ERCC1 binding. The identified inhibitors significantly sensitized colon cancer cells to UV radiation indicating a strong inhibition of the ERCC1-XPA interaction.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Endonucleasas/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Línea Celular Tumoral , Medios de Cultivo , ADN/metabolismo , Humanos , Concentración 50 Inhibidora , Cinética , Ligandos , Modelos Químicos , Modelos Moleculares , Modelos Estadísticos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Solubilidad , Electricidad Estática , Rayos Ultravioleta
6.
Exp Dermatol ; 20(10): 795-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21707758

RESUMEN

Cyclosporin A (CsA) inhibits nucleotide excision repair (NER) in human cells, a process that contributes to the skin cancer proneness in organ transplant patients. We investigated the mechanisms of CsA-induced NER reduction by assessing all xeroderma pigmentosum (XP) genes (XPA-XPG). Western blot analyses revealed that XPA and XPG protein expression was reduced in normal human GM00637 fibroblasts exposed to 0.1 and 0.5 µm CsA. Interestingly, the CsA treatment reduced XPG, but not XPA, mRNA expression. Calcineurin knockdown in GM00637 fibroblasts using RNAi led to similar results suggesting that calcineurin-dependent signalling is involved in XPA and XPG protein regulation. CsA-induced reduction in NER could be complemented by the overexpression of either XPA or XPG protein. Likewise, XPA-deficient fibroblasts with stable overexpression of XPA (XP2OS-pCAH19WS) did not show the inhibitory effect of CsA on NER. In contrast, XPC-deficient fibroblasts overexpressing XPC showed CsA-reduced NER. Our data indicate that the CsA-induced inhibition of NER is a result of downregulation of XPA and XPG protein in a calcineurin-dependent manner.


Asunto(s)
Ciclosporina/efectos adversos , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Endonucleasas/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Calcineurina/genética , Inhibidores de la Calcineurina , Línea Celular , Reparación del ADN/genética , Reparación del ADN/fisiología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Endonucleasas/deficiencia , Endonucleasas/genética , Endonucleasas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inmunosupresores/efectos adversos , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias Cutáneas/etiología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trasplantes/efectos adversos , Xerodermia Pigmentosa/complicaciones , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
7.
ACS Chem Biol ; 5(10): 953-65, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20662484

RESUMEN

The nucleotide excision repair pathway catalyzes the removal of bulky adduct damage from DNA and requires the activity of more than 30 individual proteins and complexes. A diverse array of damage can be recognized and removed by the NER pathway including UV-induced adducts and intrastrand adducts induced by the chemotherapeutic compound cisplatin. The recognition of DNA damage is complex and involves a series of proteins including the xeroderma pigmentosum group A and C proteins and the UV-damage DNA binding protein. The xeroderma pigmentosum group A protein is unique in the sense that it is required for both transcription coupled and global genomic nucleotide excision repair. In addition, xeroderma pigmentosum group A protein is required for the removal of all types of DNA lesions repaired by nucleotide excision repair. Considering its importance in the damage recognition process, the minimal information available on the mechanism of DNA binding, and the potential that inhibition of xeroderma pigmentosum group A protein could enhance the therapeutic efficacy of platinum based anticancer drugs, we sought to identify and characterize small molecule inhibitors of the DNA binding activity of the xeroderma pigmentosum group A protein. In silico screening of a virtual small molecule library resulted in the identification of a class of molecules confirmed to inhibit the xeroderma pigmentosum group A protein-DNA interaction. Biochemical analysis of inhibition with varying DNA substrates revealed a common mechanism of xeroderma pigmentosum group A protein DNA binding to single-stranded DNA and cisplatin-damaged DNA.


Asunto(s)
Diseño de Fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo , ADN/metabolismo , Reparación del ADN/efectos de los fármacos , Polarización de Fluorescencia , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Proteína de la Xerodermia Pigmentosa del Grupo A/química
8.
Chem Res Toxicol ; 23(7): 1175-83, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20509621

RESUMEN

Trivalent antimony is a known genotoxic agent classified as a possible human carcinogen by the International Agency for Research on Cancer (IARC) and as an animal carcinogen by the German MAK Commission. Nevertheless, the underlying mechanism for its genotoxicity remains elusive. Because of the similarities between antimony and arsenic, the inhibition of DNA repair has been a promising hypothesis. Investigations on the removal of DNA lesions now revealed a damage specific impairment of nucleotide excision repair (NER). After irradiation of A549 human lung carcinoma cells with UVC, a higher number of cyclobutane pyrimidine dimers (CPD) remained in the presence of SbCl(3), whereas processing of the 6-4 photoproducts (6-4PP) and benzo[a]pyrene diol epoxide (BPDE)-induced DNA adducts was not impaired. Nevertheless, cell viability was reduced in a more than additive mode after combined treatment of SbCl(3) with UVC as well as with BPDE. In search of the molecular targets, a decrease in gene expression and protein level of XPE was found, which is known to be indispensable for the recognition of CPD. Moreover, trivalent antimony was shown to interact with the zinc finger domain of XPA, another NER protein, since SbCl(3) mediated a concentration dependent release of zinc from a peptide consistent with this domain. In the cellular system, association of XPA to and dissociation from damaged DNA was diminished in the presence of SbCl(3). These results show for the first time that trivalent antimony interferes with proteins involved in nucleotide excision repair and partly impairs this pathway, pointing to an indirect mechanism in the genotoxicity of trivalent antimony.


Asunto(s)
Antimonio/toxicidad , Carcinógenos/toxicidad , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Benzopirenos/toxicidad , Línea Celular Tumoral , Aductos de ADN/metabolismo , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
9.
DNA Cell Biol ; 28(6): 285-94, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19317621

RESUMEN

Many anticancer drugs target the genomic DNA of cancer cells by generating DNA damage and inducing apoptosis. DNA repair protects cells against DNA damage-induced apoptosis. Although the mechanisms of DNA repair and apoptosis have been extensively studied, the mechanism by which DNA repair prevents DNA damage-induced apoptosis is not fully understood. We studied the role of the antiapoptotic Bcl-x(L) protein in nucleotide excision repair (NER)-facilitated cell protection against cisplatin-induced apoptosis. Using both normal human fibroblasts (NF) and NER-defective xeroderma pigmentosum group A (XPA) and group G (XPG) fibroblasts, we demonstrated that a functional NER is required for cisplatin-induced transcription of the bcl-x(l) gene. The results obtained from our Western blots revealed that the cisplatin treatment led to an increase in the level of Bcl-x(L) protein in NF cells, but a decrease in the level of Bcl-x(L) protein in both XPA and XPG cells. The results of our immunofluorescence staining indicated that a functional NER pathway was required for cisplatin-induced translocation of NF-kappaB p65 from cytoplasm into nucleus, indicative of NF-kappaB activation. Given the important function of NF-kappaB in regulating transcription of the bcl-x(l) gene and the Bcl-x(L) protein in preventing apoptosis, these results suggest that NER may protect cells against cisplatin-induced apoptosis by activating NF-kappaB, which further induces transcription of the bcl-x(l) gene, resulting in an accumulation of Bcl-x(L) protein and activation of the cell survival pathway that leads to increased cell survival under cisplatin treatment.


Asunto(s)
Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Reparación del ADN/fisiología , Fibroblastos/efectos de los fármacos , Xerodermia Pigmentosa/patología , Proteína bcl-X/fisiología , Transporte Activo de Núcleo Celular , Línea Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Endonucleasas/antagonistas & inhibidores , Endonucleasas/genética , Humanos , FN-kappa B/fisiología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , ARN Interferente Pequeño/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Xerodermia Pigmentosa/genética , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Proteína de la Xerodermia Pigmentosa del Grupo A/genética , Proteína bcl-X/biosíntesis , Proteína bcl-X/genética
10.
Biochem Biophys Res Commun ; 370(2): 301-5, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18367095

RESUMEN

To improve the efficiency of stable knockdown with short hairpin RNA (shRNA), we inserted multiple shRNA expression sequences into a single plasmid vector. In this study, the DNA repair factor XPA was selected as a target gene since it is not essential for cell viability and it is easy to check the functional knockdown of this gene. The efficiency of knockdown was compared among single and triple expression vectors. The single shRNA-expressing vector caused limited knockdown of the target protein in stable transfectants, however, the multiple expression vectors apparently increased the frequency of knockdown transfectants. There were correlations between the knockdown level and marker expression in multiple-expressing transfectants, whereas poorer correlations were observed in single vector transfectants. Multiple-transfectants exhibited reduced efficiency of repair of UV-induced DNA damage and an increased sensitivity to ultraviolet light-irradiation. We propose that multiple shRNA expression vectors might be a useful strategy for establishing knockdown cells.


Asunto(s)
Vectores Genéticos/genética , Plásmidos/genética , Interferencia de ARN , ARN Interferente Pequeño/biosíntesis , Proteína de la Xerodermia Pigmentosa del Grupo A/antagonistas & inhibidores , Supervivencia Celular , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Células HeLa , Humanos , ARN Interferente Pequeño/genética , Transfección , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA