Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci. agric ; 73(1): 18-23, Jan.-Feb.2016.
Artículo en Inglés | VETINDEX | ID: biblio-1497541

RESUMEN

In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substances (HS), complex organic materials, beneficial chemical elements, peptides and amino acids, inorganic salts, seaweed extracts, chitin and chitosan derivatives, antitranspirants, amino acids and other N-containing substances. The application of biostimulants to plants leads to higher content of nutrients in their tissue and positive metabolic changes. For these reasons, the development of new biostimulants has become a focus of scientific interest. Among their different functions, biostimulants influence plant growth and nitrogen metabolism, especially because of their content in hormones and other signalling molecules. A significant increase in root hair length and density is often observed in plants treated with biostimulants, suggesting that these substances induce a nutrient acquisition response that favors nutrient uptake in plants via an increase in the absorptive surface area. Furthermore, biostimulants positively influence the activity and gene expression of enzymes functioning in the primary and secondary plant metabolism. This article reviews the current literature on two main classes of biostimulants: humic substances and protein-based biostimulants. The characteristic of these biostimulants and their effects on plants are thoroughly described.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Metabolismo Energético , Proteína Vegetal Hidrolisada , Sustancias Húmicas , Sustancias Húmicas/análisis
2.
Sci. Agric. ; 73(1): 18-23, Jan.-Feb.2016.
Artículo en Inglés | VETINDEX | ID: vti-16162

RESUMEN

In recent years, the use of biostimulants in sustainable agriculture has been growing. Biostimulants can be obtained from different organic materials and include humic substances (HS), complex organic materials, beneficial chemical elements, peptides and amino acids, inorganic salts, seaweed extracts, chitin and chitosan derivatives, antitranspirants, amino acids and other N-containing substances. The application of biostimulants to plants leads to higher content of nutrients in their tissue and positive metabolic changes. For these reasons, the development of new biostimulants has become a focus of scientific interest. Among their different functions, biostimulants influence plant growth and nitrogen metabolism, especially because of their content in hormones and other signalling molecules. A significant increase in root hair length and density is often observed in plants treated with biostimulants, suggesting that these substances induce a nutrient acquisition response that favors nutrient uptake in plants via an increase in the absorptive surface area. Furthermore, biostimulants positively influence the activity and gene expression of enzymes functioning in the primary and secondary plant metabolism. This article reviews the current literature on two main classes of biostimulants: humic substances and protein-based biostimulants. The characteristic of these biostimulants and their effects on plants are thoroughly described.(AU)


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Proteína Vegetal Hidrolisada , Metabolismo Energético , Sustancias Húmicas/análisis , Sustancias Húmicas
3.
Acta Sci. Anim. Sci. ; 36(4): 373-377, out.-dez. 2014. tab
Artículo en Inglés | VETINDEX | ID: vti-694952

RESUMEN

The effects of mannanase-hydrolyzed copra meal (MCM) and MCM + probiotic Bacillus cereus var. toyoi (TY) on growth performance and gut morphometry of broiler chickens were investigated. A total of 1120-one-day-old Cobb chicks were distributed in a completely randomized design with 4 diet treatment groups. Dietary treatments were (1) negative control; (2) positive control (avilamycin 10 ppm); (3) 0.1% MCM for basal diets (4) 0.1% MCM + 0.05% TY. The best feed conversion ratio (FCR), body weight (BW), productivity index (PI) was obtained with 0.1% MCM + 0.05% TY at 42 days of age. With regard to productivity index, every supplementation group had a better rate when compared to that in negative group. Although 0.1% MCM supplemented alone is worse than positive group, it reveals a significantly better value than when it is combined with 0.1% MCM and 0.05% TY. The combination of mannanase-hydrolyzed copra meal with Bacillus cereus var. toyoi improved broiler performance and duodenum and jejunum mucous morphometry, when compared to the negative, positive and 0.1% MCM alone supplementation groups. The combination of MCM and TY probiotics is capable of improving intestinal morphology by behaving like a good growth promoter, with possibility of being an alternative to antibiotics.(AU)


Foram investigados os efeitos da farinha hidrolisada da torta de coco (MCM) e MCM + probiótico Bacillus cereus var. toyoi (TY) sobre o desempenho e morfometria intestinal de frangos de corte . Foram utilizados 1.120 pintos de corte da linhagem Cobb 500, distribuídos em delineamento inteiramente casualizado, com quatro tratamentos e dez repetições de 28 aves cada. Os tratamentos foram: (1) controle negativo, (2) controle positivo (avilamicina 10 ppm), (3) 0,1% MCM na dieta controle negativo, (4) 0,1% MCM + 0,05% TY na dieta controle negativo. A melhor conversão alimentar (CA), o peso corporal (PC) e o índice de produtividade (IP) foram obtidos no tratamento com 0,1% MCM + 0,05% TY aos 42 dias de idade. A combinação da farinha hidrolisada da torta de coco com o Bacillus cereus var. toyoi melhorou o desempenho e a morfometria da mucosa do duodeno e do jejuno, quando comparado com os grupos controle negativo, positivo e 0,1 % MCM isoladamente. A combinação do MCM com o TY tem potencial para melhorar a morfologia intestinal, comportando-se como um bom promotor de crescimento com possibilidade de alternativa aos antibióticos.(AU)


Asunto(s)
Animales , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Harina/efectos adversos , Harina/análisis , Bacillus cereus/metabolismo , Proteína Vegetal Hidrolisada
4.
Acta sci., Anim. sci ; 36(4): 373-377, out.-dez. 2014. tab
Artículo en Inglés | VETINDEX | ID: biblio-1459565

RESUMEN

The effects of mannanase-hydrolyzed copra meal (MCM) and MCM + probiotic Bacillus cereus var. toyoi (TY) on growth performance and gut morphometry of broiler chickens were investigated. A total of 1120-one-day-old Cobb chicks were distributed in a completely randomized design with 4 diet treatment groups. Dietary treatments were (1) negative control; (2) positive control (avilamycin 10 ppm); (3) 0.1% MCM for basal diets (4) 0.1% MCM + 0.05% TY. The best feed conversion ratio (FCR), body weight (BW), productivity index (PI) was obtained with 0.1% MCM + 0.05% TY at 42 days of age. With regard to productivity index, every supplementation group had a better rate when compared to that in negative group. Although 0.1% MCM supplemented alone is worse than positive group, it reveals a significantly better value than when it is combined with 0.1% MCM and 0.05% TY. The combination of mannanase-hydrolyzed copra meal with Bacillus cereus var. toyoi improved broiler performance and duodenum and jejunum mucous morphometry, when compared to the negative, positive and 0.1% MCM alone supplementation groups. The combination of MCM and TY probiotics is capable of improving intestinal morphology by behaving like a good growth promoter, with possibility of being an alternative to antibiotics.


Foram investigados os efeitos da farinha hidrolisada da torta de coco (MCM) e MCM + probiótico Bacillus cereus var. toyoi (TY) sobre o desempenho e morfometria intestinal de frangos de corte . Foram utilizados 1.120 pintos de corte da linhagem Cobb 500, distribuídos em delineamento inteiramente casualizado, com quatro tratamentos e dez repetições de 28 aves cada. Os tratamentos foram: (1) controle negativo, (2) controle positivo (avilamicina 10 ppm), (3) 0,1% MCM na dieta controle negativo, (4) 0,1% MCM + 0,05% TY na dieta controle negativo. A melhor conversão alimentar (CA), o peso corporal (PC) e o índice de produtividade (IP) foram obtidos no tratamento com 0,1% MCM + 0,05% TY aos 42 dias de idade. A combinação da farinha hidrolisada da torta de coco com o Bacillus cereus var. toyoi melhorou o desempenho e a morfometria da mucosa do duodeno e do jejuno, quando comparado com os grupos controle negativo, positivo e 0,1 % MCM isoladamente. A combinação do MCM com o TY tem potencial para melhorar a morfologia intestinal, comportando-se como um bom promotor de crescimento com possibilidade de alternativa aos antibióticos.


Asunto(s)
Animales , Bacillus cereus/metabolismo , Harina/análisis , Harina/efectos adversos , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Proteína Vegetal Hidrolisada
5.
Rev. nutr. (Impr.) ; 22(6): 879-885, nov.-dez. 2009. tab
Artículo en Inglés | LILACS | ID: lil-544480

RESUMEN

OBJECTIVE: The objective of this study was to evaluate the biological properties of a protein hydrolysate obtained by enzymatic hydrolysis of mechanically deboned chicken meat. METHODS: Mechanically deboned chicken meat was hydrolysed using Alcalase 2.4 L FG and then dried in a spray-drier. Three groups (n=6) of male Wistar rats received diets containing casein, mechanically deboned chicken meat protein hydrolysate and a protein-free diet. The rats were randomly assigned to individual cages with controlled temperature (22ºC) for 12 days. RESULTS: The mechanically deboned chicken meat diet resulted in a good net protein utilization (3.74) and high true digestibility (96 percent). The amino acid composition of the hydrolysate was relatively well balanced, but the concentrations of methionine and cystine were low, making them the limiting amino acids. The proximate chemical composition of the hydrolysate showed protein content to be as high as 62 percent. CONCLUSION: The results obtained in this work suggest that mechanically deboned chicken meat hydrolysate can be used as a protein enhancer in food preparations such as enteral formulations, and as an edible protein enhancer in general applications.


OBJETIVO: O objetivo do estudo foi avaliar a qualidade biológica da proteína hidrolisada obtida a partir da carne mecanicamente separada de frango. MÉTODOS: A carne mecanicamente separada de frango foi hidrolisada com a enzima Alcalase 2,4 L FG e o hidrolisado obtido foi submetido a secagem em atomizador. Foram utilizados três grupos (n=6) de ratos machos Wistar os quais receberam dietas contendo caseína, proteína hidrolisada de carne mecanicamente separada de frango ou uma dieta com proteína livre. Os animais foram distribuídos aleatoriamente em gaiolas individuais, com temperatura controlada (22ºC), por um período de 12 dias. RESULTADOS: A dieta utilizando carne mecanicamente separada de frango resultou em elevada utilização líquida de proteína (3,74) e elevada digestibilidade verdadeira (96 por cento). A composição de aminoácidos da proteína hidrolisada apresentou bons resultados, embora metionina e cistina tenham apresentado baixos valores, sendo considerados aminoácidos limitantes. A composição química mostrou altos valores de proteína no hidrolisado obtido (62 por cento). CONCLUSÃO: Os resultados obtidos neste trabalho sugerem que a proteína hidrolisada de carne mecanicamente separada de frango poderá ser utilizada como um suplemento em formulações alimentares, tais como formulações enterais, ou como fonte de complementação protéica na indústria de alimentos em geral.


Asunto(s)
Animales , Masculino , Factores Biológicos/análisis , Proteína Vegetal Hidrolisada , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA