Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.565
Filtrar
1.
FASEB J ; 38(16): e23890, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39143722

RESUMEN

Thromboinflammation is a complex pathology associated with inflammation and coagulation. In cases of cardiovascular disease, in particular ischemia-reperfusion injury, thromboinflammation is a common complication. Increased understanding of thromboinflammation depends on an improved concept of the mechanisms of cells and proteins at the axis of coagulation and inflammation. Among these elements are activated protein C and platelets. This review summarizes the complex interactions of activated protein C and platelets regulating thromboinflammation in cardiovascular disease. By unraveling the pathways of platelets and APC in the inflammatory and coagulation cascades, this review summarizes the role of these vital mediators in the development and perpetuation of heart disease and the thromboinflammation-driven complications of cardiovascular disease. Furthermore, this review emphasizes the significance of the counteracting effects of platelets and APC and their combined role in disease states.


Asunto(s)
Coagulación Sanguínea , Plaquetas , Inflamación , Daño por Reperfusión Miocárdica , Proteína C , Humanos , Plaquetas/metabolismo , Plaquetas/patología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Inflamación/metabolismo , Inflamación/patología , Coagulación Sanguínea/fisiología , Proteína C/metabolismo , Animales
4.
Viruses ; 16(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39066212

RESUMEN

SARS-CoV-2 can induce vascular dysfunction and thrombotic events in patients with severe COVID-19; however, the cellular and molecular mechanisms behind these effects remain largely unknown. In this study, we used a combination of experimental and in silico approaches to investigate the role of PC in vascular and thrombotic events in COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the publicly available Gene Expression Omnibus (GEO) repository. In addition, HUVECs were treated with inactive protein C before exposure to SARS-CoV-2 infection or a severe COVID-19 serum. An RT-qPCR array containing 84 related genes was used, and the candidate genes obtained were evaluated. Activated protein C levels were measured using an ELISA kit. We identified at the single-cell level the expression of several pro-inflammatory and pro-coagulation genes in endothelial cells from the patients with COVID-19. Furthermore, we demonstrated that exposure to SARS-CoV-2 promoted transcriptional changes in HUVECs that were partly reversed by the activated protein C pretreatment. We also observed that the serum of severe COVID-19 had a significant amount of activated protein C that could protect endothelial cells from serum-induced activation. In conclusion, activated protein C protects endothelial cells from pro-inflammatory and pro-coagulant effects during exposure to the SARS-CoV-2 virus.


Asunto(s)
COVID-19 , Células Endoteliales , Proteína C , SARS-CoV-2 , Humanos , COVID-19/virología , Células Endoteliales/metabolismo , Células Endoteliales/virología , Células Endoteliales de la Vena Umbilical Humana , Proteína C/metabolismo , Proteína C/genética , SARS-CoV-2/fisiología , Trombosis
6.
Sci Rep ; 14(1): 13855, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879576

RESUMEN

Data on the pathophysiological mechanisms of hemostatic alterations in the thrombotic events that occur during Ramadan intermittent fasting (RIF), particularly in the natural coagulation inhibitors, are very limited. Thus, our objective was to evaluate the effect of RIF on the natural anticoagulants level, antithrombin, protein C, and total and free protein S (PS) in healthy participants. Participants were divided into two groups. Group I consisted of 29 healthy fasting participants whose blood samples were taken after 20 days of fasting. Group II included 40 healthy non-fasting participants whose blood samples were taken 2-4 weeks before the month of Ramadan. Coagulation screening tests including prothrombin time (PT), activated partial thromboplastin time (APTT) and plasma fibrinogen level, natural anticoagulants; antithrombin, protein C, free and total PS and C4 binding protein (C4BP) levels were evaluated in the two groups. High levels of total and free PS without change in antithrombin, protein C, and C4BP levels were noted in the fasting group as compared with non-fasting ones (p < 0.05). PT and APTT showed no difference between the two groups. However, the fibrinogen level was higher in the fasting group. In conclusion, RIF was found to be associated with improved anticoagulant activity in healthy participants, which may provide temporal physiological protection against the development of thrombosis in healthy fasting people.


Asunto(s)
Anticoagulantes , Coagulación Sanguínea , Ayuno , Islamismo , Humanos , Ayuno/sangre , Masculino , Adulto , Femenino , Estudios de Casos y Controles , Coagulación Sanguínea/efectos de los fármacos , Anticoagulantes/administración & dosificación , Proteína C/metabolismo , Proteína S/metabolismo , Proteína S/análisis , Pruebas de Coagulación Sanguínea , Voluntarios Sanos , Fibrinógeno/metabolismo , Persona de Mediana Edad , Adulto Joven , Tiempo de Protrombina , Antitrombinas , Tiempo de Tromboplastina Parcial , Ayuno Intermitente
7.
Thromb Res ; 240: 109044, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824799

RESUMEN

Protein C (PC), a vitamin K-dependent serine protease zymogen in plasma, can be activated by thrombin-thrombomodulin(TM) complex, resulting in the formation of activated protein C (APC). APC functions to downregulate thrombin generation by inactivating active coagulation factors V(FVa) and VIII(FVIIIa). Deficiency in PC increases the risk of venous thromboembolism (VTE). We have identified two unrelated VTE patients with the same heterozygous mutation (c.1384 T > C, p.Ter462GlnextTer17) in PROC. To comprehend the role of this mutation in VTE development, we expressed recombinant PC-Ter462GlnextTer17 in mammalian cells and evaluated its characteristics using established coagulation assay systems. Functional studies revealed a significant impairment in the activation of the mutant by thrombin or thrombin-TM complex. Furthermore, APC-Ter462GlnextTer17 demonstrated diminished hydrolytic activity towards the chromogenic substrate S2366. APTT and FVa degradation assays showed that both the anticoagulant activity of the mutant protein was markedly impaired, regardless of whether protein S was present or absent. These results were further supported by a thrombin generation assay conducted using purified and plasma-based systems. In conclusion, the Ter462GlnextTer17 mutation introduces a novel tail at the C-terminus of PC, leading to impaired activity in both PC zymogen activation and APC's anticoagulant function. This impairment contributes to thrombosis in individuals carrying this heterozygous mutation and represents a genetic risk factor for VTE.


Asunto(s)
Mutación , Proteína C , Trombosis de la Vena , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteína C/metabolismo , Proteína C/genética , Trombosis de la Vena/genética
8.
J Thromb Thrombolysis ; 57(6): 1018-1030, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38722521

RESUMEN

COVID-19 has been associated with alterations in coagulation. Recent reports have shown that protein C and S activities are altered in COVID-19. This may affect the complications and outcome of the disease. However, their exact role in COVID-19 remains uncertain. The aim of the current study was therefore to analyze all papers in the literature on protein C and S activities in COVID-19. We searched three medical electronic databases. Of the 2442 papers, 28 studies were selected for the present meta-analysis. For the meta-analysis, means ± standard deviations with 95% confidence intervals (CI) for protein C and S activities were extracted. Pooled p values were calculated using STATA software. Protein C and S activities were significantly lower in COVID-19 patients than in healthy controls (pooled p values: 0.04 and 0.02, respectively). Similarly, protein C activities were considerably lower in nonsurviving patients (pooled p value = 0.00). There was no association between proteins C or S and thrombosis risk or ICU admission in COVID-19 patients (p value > 0.05). COVID-19 patients may exhibit lower activities of the C and S proteins, which might affect disease outcome; however, additional attention should be given when considering therapeutic strategies for these patients.


Asunto(s)
COVID-19 , Proteína C , Proteína S , COVID-19/sangre , Humanos , Proteína C/metabolismo , Proteína S/metabolismo , Proteína S/análisis , SARS-CoV-2 , Trombosis/sangre , Trombosis/etiología , Coagulación Sanguínea
9.
J Thromb Haemost ; 22(8): 2270-2280, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38788977

RESUMEN

BACKGROUND: Protein C (PC) pathway serves as a major defense mechanism against thrombosis by the activation of PC through the thrombin-thrombomodulin complex and subsequent inactivation of the activated factor (F)V (FVa) and FVIII (FVIIIa) with the assistance of protein S, thereby contributing to hemostatic balance. We identified 2 unrelated patients who suffered from recurrent thrombosis and carried the same heterozygous mutation c.1153A>G, p.Met343Val (M343V), in PROC gene. This mutation had not been previously reported. OBJECTIVES: To explore the molecular basis underlying the anticoagulant defect in patients carrying the M343V mutation in PROC. METHODS: We expressed PC-M343V variant in mammalian cells and characterized its properties through coagulation assays. RESULTS: Our findings demonstrated that while activation of mutant zymogen by thrombin-thrombomodulin complex was slightly affected, cleavage of chromogenic substrate by APC-M343V was significantly impaired. However, Ca2+ increased the cleavage efficiency by approximately 50%. Additionally, there was a severe reduction in affinity between APC-M343V and Na+. Furthermore, the inhibitory ability of APC-M343V toward FVa was markedly impaired. Structural and simulation analyses suggested that Val343 might disrupt the potential hydrogen bonds with Trp380 and cause Trp380 to orient closer to His211, potentially interfering with substrate binding and destabilizing the catalytic triad of APC. CONCLUSION: The M343V mutation in patients adversely affects the reactivity and/or folding of the active site as well as the binding of the physiological substrate to the protease, resulting in impaired protein C anticoagulant activity and ultimately leading to thrombosis.


Asunto(s)
Coagulación Sanguínea , Mutación , Proteína C , Trombosis , Humanos , Proteína C/metabolismo , Proteína C/genética , Trombosis/genética , Trombosis/sangre , Masculino , Femenino , Conformación Proteica , Predisposición Genética a la Enfermedad , Trombina/metabolismo , Trombina/química , Células HEK293 , Relación Estructura-Actividad , Heterocigoto , Adulto , Calcio/metabolismo , Unión Proteica
10.
PeerJ ; 12: e17261, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680896

RESUMEN

Objectives: Protein C (PC) is an anticoagulant that is encoded by the PROC gene. Validation for the function of PC was carried out in mouse models. Methods: In this study, autosomal recessive PC deficiency (PCD) was selected as the target, and the specific mutation site was chromosome 2 2q13-q14, PROC c.1198G>A (p.Gly400Ser) which targets G399S (GGT to AGC) in mouse models. To investigate the role of hereditary PC in mice models, we used CRISPR/Cas9 gene editing technology to create a mouse model with a genetic PCD mutation. Results: The two F0 generation positive mice produced using the CRISPR/Cas9 gene editing technique were chimeras, and the mice in F1 and F2 generations were heterozygous. There was no phenotype of spontaneous bleeding or thrombosis in the heterozygous mice, but some of them were blind. Blood routine results showed no significant difference between the heterozygous mice and wild-type mice (P > 0.05). Prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT) were prolonged in the heterozygous mice, while the level of fibrinogen content (FIB) decreased, suggesting secondary consumptive coagulation disease. The protein C activity of heterozygous mice was significantly lower than that of wild-type mice (P < 0.001), but there was no significant difference in protein C antigen levels (P > 0.05). H&E staining showed steatosis and hydrodegeneration in the liver of heterozygous mice. Necrosis and exfoliated epithelial cells could be observed in renal tubule lumen, forming cell or granular tubules. Hemosiderin deposition was found in the spleen along with splenic hemorrhage. Immunohistochemistry demonstrated significant fibrin deposition in the liver, spleen, and kidney of heterozygous mice. Conclusion: In this study, heterozygotes of the mouse model with a PC mutation were obtained. The function of PC was then validated in a mouse model through genotype, phenotype, and PC function analysis.


Asunto(s)
Modelos Animales de Enfermedad , Proteína C , Animales , Proteína C/metabolismo , Proteína C/genética , Ratones , Deficiencia de Proteína C/genética , Mutación , Masculino , Femenino , Coagulación Sanguínea/genética , Heterocigoto , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Tiempo de Tromboplastina Parcial
11.
J Thromb Haemost ; 22(7): 2039-2051, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670314

RESUMEN

BACKGROUND: Activated protein C (APC) has anticoagulant and cytoprotective cell-signaling activities, which often require protease-activated receptor (PAR) 1 and PAR3 and PAR cleavages at noncanonical sites (R46-N47 and R41-G42, respectively). Some PAR1-derived (P1) peptides and PAR3-derived (P3) peptides, eg, P1-47-66 and P3-42-65, mimic APC's cell signaling. In anti-inflammatory assays, these 2 peptides at low concentrations synergistically attenuate cellular inflammation. OBJECTIVES: To determine whether a P1 peptide covalently linked to a P3 peptide mimics APC's anti-inflammatory and endothelial barrier stabilization activities. METHODS: Anti-inflammatory assays employed stimulated THP-1 cells and caspase-1 measurements. Cultured human EA.hy926 or murine aortic endothelial cells (ECs) exposed to thrombin were monitored for transendothelial electrical resistance. Bivalent covalently linked P1:P3 peptides were studied for APC-like activities. RESULTS: In anti-inflammatory assays, P1-47-55 was as active as P1-47-66 and some P3 peptides (eg, P3-44-54 and P3-51-65) were as active as P3-42-65. The bivalent P1:P3 peptide comprising P1-47-55-(Gly[10 residues])-P3-51-65 (designated "G10 peptide") was more potently anti-inflammatory than the P1 or P3 peptide alone. In transendothelial electrical resistance studies of thrombin-challenged ECs, P1-47-55 and the G10 peptide mimicked APC's protective actions. In dose-response studies, the G10 peptide was more potent than the P1-47-55 peptide. In murine EC studies, the murine PAR-sequence-derived G10 peptide mimicked murine APC's activity. Anti-PAR1 and anti-PAR3 antibodies, but not anti-endothelial protein C receptor antibodies, abated G10's cytoprotection, showing that G10's actions involve PAR1:PAR3. G10 significantly increased survival in murine endotoxemia. CONCLUSION: The PAR-sequence-derived G10 peptide is a bivalent agonist that mimics APC's cytoprotective, anti-inflammatory, and endothelial barrier-stabilizing actions and APC's protection against endotoxemic mortality.


Asunto(s)
Células Endoteliales , Proteína C , Receptor PAR-1 , Proteína C/metabolismo , Proteína C/química , Humanos , Animales , Receptor PAR-1/agonistas , Receptor PAR-1/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ratones Endogámicos C57BL , Células THP-1 , Trombina/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Receptores de Trombina/agonistas , Receptores de Trombina/metabolismo , Transducción de Señal , Receptores Proteinasa-Activados/agonistas , Receptores Proteinasa-Activados/metabolismo , Péptidos/farmacología , Péptidos/química , Endotoxemia/tratamiento farmacológico , Endotoxemia/metabolismo , Fragmentos de Péptidos/farmacología , Masculino , Modelos Animales de Enfermedad
12.
Blood Adv ; 8(12): 3272-3283, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38640339

RESUMEN

ABSTRACT: Sickle cell disease (SCD) is a hereditary hemoglobinopathy marked by hemolytic anemia and vaso-occlusive events (VOEs). Chronic endothelial activation, inflammation, and coagulation activation contribute to vascular congestion, VOEs, and end-organ damage. Coagulation proteases such as thrombin and activated protein C (APC) modulate inflammation and endothelial dysfunction by activating protease-activated receptor 1 (PAR1), a G-protein-coupled receptor. Thrombin cleaves PAR1 at Arg41, while APC cleaves PAR1 at Arg46, initiating either proinflammatory or cytoprotective signaling, respectively, a signaling conundrum known as biased agonism. Our prior research established the role of thrombin and PAR1 in vascular stasis in an SCD mouse model. However, the role of APC and APC-biased PAR1 signaling in thrombin generation, inflammation, and endothelial activation in SCD remains unexplored. Inhibition of APC in SCD mice increased thrombin generation, inflammation, and endothelial activation during both steady state and tumor necrosis factor α challenge. To dissect the individual contributions of thrombin-PAR1 and APC-PAR1 signaling, we used transgenic mice with point mutations at 2 PAR1 cleavage sites, ArgR41Gln (R41Q) imparting insensitivity to thrombin and Arg46Gln (R46Q) imparting insensitivity to APC. Sickle bone marrow chimeras expressing PAR1-R41Q exhibited reduced thrombo-inflammatory responses compared with wild type PAR1 or PAR1-R46Q mice. These findings highlight the potential benefit of reducing thrombin-dependent PAR1 activation while preserving APC-PAR1 signaling in SCD thromboinflammation. These results also suggest that pharmacological strategies promoting biased PAR1 signaling could effectively mitigate vascular complications associated with SCD.


Asunto(s)
Anemia de Células Falciformes , Modelos Animales de Enfermedad , Inflamación , Proteína C , Receptor PAR-1 , Trombina , Animales , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/complicaciones , Receptor PAR-1/metabolismo , Ratones , Proteína C/metabolismo , Inflamación/metabolismo , Trombina/metabolismo , Transducción de Señal , Ratones Transgénicos , Trombosis/metabolismo , Trombosis/etiología , Humanos
13.
Endocrine ; 85(2): 558-565, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38483687

RESUMEN

Proteins C and S are vitamin K-dependent anticoagulative factors that also exert a significant influence on bone quality. Clinical studies have linked the deficiency of proteins C and S to lower bone mineral density and the onset of femoral head osteonecrosis in children. Rare foundational studies analyzing this topic have demonstrated that activated protein C, upon binding to the endothelial protein C receptor expressed on the surface of osteoblasts, promotes osteoblast proliferation. It is also established that proteins C and S play crucial roles in proper collagen synthesis and in maintaining the number of osteoclasts and blood vessels. However, the association between protein C and/or S deficiency and the gradual onset of osteoporosis remains largely uninvestigated. Calculations based on data from peer-reviewed journals suggest that approximately one in every 10 individuals may develop osteoporosis due to congenital protein C or S deficiency. Moreover, when secondary causes of protein C and S deficiency are also considered, the proportion likely further increases. In this paper, we discuss the pathophysiological background of the potential relationship between protein C and S deficiency and the genesis of osteoporosis.


Asunto(s)
Osteoporosis , Deficiencia de Proteína C , Deficiencia de Proteína S , Humanos , Osteoporosis/etiología , Deficiencia de Proteína C/complicaciones , Deficiencia de Proteína S/complicaciones , Proteína C/metabolismo , Densidad Ósea , Animales , Proteína S/metabolismo
14.
Int J Biol Macromol ; 266(Pt 2): 131065, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521329

RESUMEN

Protein C inhibitor (PCI) maintains hemostasis by inhibiting both procoagulant and anticoagulant serine proteases, and plays important roles in coagulation, fibrinolysis, reproduction, and anti-angiogenesis. The reactive site loop of PCI traps and irreversibly inhibits the proteases like APC (activating protein C), thrombin (FIIa) and factor Xa (FXa). Previous studies on antithrombin (ATIII) had identified Tyr253 and Glu255 as functional exosites that interact and aid in the inhibition of factor IXa and FXa. Presence of exosite in PCI is not known, however a sequence comparison with the PCI from different vertebrate species and ATIII identified Glu239 to be absolutely conserved. PCI residues analogous to ATIII exosite residues were mutated to R238A and E239A. Purified variant PCI in the presence of heparin (10 µg/ml) showed a 2-4 fold decrease in the rate of inhibition of the proteases. However, the stoichiometry of inhibition of FIIa, APC, and FXa by native PCI, R238A and E239A variants were found to be close to 1.0, which also indicated the formation of stable complexes based on SDS-PAGE and western blot analysis with thrombin and APC. Our findings revealed the possible presence of an exosite in PCI that influences the protease inhibition rates.


Asunto(s)
Heparina , Inhibidor de Proteína C , Serina Proteasas , Inhibidor de Proteína C/química , Inhibidor de Proteína C/metabolismo , Heparina/química , Heparina/farmacología , Humanos , Serina Proteasas/metabolismo , Serina Proteasas/química , Trombina/metabolismo , Proteína C/metabolismo , Proteína C/química , Factor Xa/metabolismo , Factor Xa/química , Secuencia de Aminoácidos , Activación Enzimática/efectos de los fármacos
16.
Blood ; 143(16): 1670-1675, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38427750

RESUMEN

ABSTRACT: Activated protein C (APC) was shown to release extracellular vesicles (EVs). APC bound to the EVs was thought to be responsible for cytoprotection. Our study demonstrates that the cytoprotective effects of APC-released EVs are independent of APC. APC-released EVs carry anti-inflammatory microRNAs in their cargo.


Asunto(s)
Citoprotección , Vesículas Extracelulares , Proteína C , Comunicación Celular , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/metabolismo , Proteína C/metabolismo , Humanos
17.
Biochemistry (Mosc) ; 89(1): 116-129, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467549

RESUMEN

Cardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied. We examined effect of the N-terminal C0-C1-m-C2 (C0-C2) fragment of cMyBP-C on actin-myosin interaction using ventricular and atrial myosin in an in vitro motility assay. The C0-C2 fragment of cMyBP-C significantly reduced the maximum sliding velocity of thin filaments on both myosin isoforms and increased the calcium sensitivity of the actin-myosin interaction. The C0-C2 fragment had different effects on the kinetics of ATP and ADP exchange, increasing the affinity of ventricular myosin for ADP and decreasing the affinity of atrial myosin. The effect of the C0-C2 fragment on the activation of the thin filament depended on the myosin isoforms. Atrial myosin activates the thin filament less than ventricular myosin, and the C0-C2 fragment makes these differences in the myosin isoforms more pronounced.


Asunto(s)
Actinas , Proteína C , Actinas/metabolismo , Proteína C/metabolismo , Proteínas Portadoras/metabolismo , Calcio/metabolismo , Miosinas Atriales , Miosinas Ventriculares/metabolismo , Miosinas/metabolismo , Miocardio/metabolismo , Adenosina Trifosfato/metabolismo , Isoformas de Proteínas/metabolismo , Unión Proteica
18.
Aging (Albany NY) ; 16(4): 3137-3159, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38385967

RESUMEN

Single-Cell RNA sequencing reveals changes in cell population in Alzheimer's disease (AD) model 5xFAD (5x Familial AD mutation) versus wild type (WT) mice. The returned sequencing data was processed through the 10x Genomics CellRanger platform to perform alignment and form corresponding matrix to perform bioinformatic analysis. Alterations in glial cells occurred in 5xFAD versus WT, especially increases in microglia proliferation were profound in 5xFAD. Differential expression testing of glial cells in 5xFAD versus WT revealed gene regulation. Globally, the critical genes implicated in AD progression are upregulated such as Apoe, Ctsb, Trem2, and Tyrobp. Using this differential expression data, GO term enrichment was completed to observe possible biological processes impacted by AD progression. Utilizing anti-inflammatory and cyto-protective recombinant Activated Protein C (APC), we uncover inflammatory processes to be downregulated by APC treatment in addition to recuperation of nervous system processes. Moreover, animal studies demonstrated that administration of recombinant APC significantly attenuated Aß burden and improved cognitive function of 5xFAD mice. The downregulation of highly expressed AD biomarkers in 5xFAD could provide insight into the mechanisms by which APC administration benefits AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Proteína C/genética , Proteína C/metabolismo , Análisis de Expresión Génica de una Sola Célula , Regulación de la Expresión Génica , Cognición , Microglía/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética
19.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279255

RESUMEN

Endothelial protein C receptor (EPCR) is a receptor for the natural anti-coagulant activated protein C (aPC). It mediates the anti-inflammatory and barrier-protective functions of aPC through the cleavage of protease-activated receptor (PAR)1/2. Allergic contact dermatitis is a common skin disease characterized by inflammation and defective skin barrier. This study investigated the effect of EPCR and 3K3A-aPC on allergic contact dermatitis using a contact hypersensitivity (CHS) model. CHS was induced using 1-Fluoro-2,4-dinitrobenzene in EPCR-deficient (KO) and matched wild-type mice and mice treated with 3K3A-aPC, a mutant form of aPC with diminished anti-coagulant activity. Changes in clinical and histological features, cytokines, and immune cells were examined. EPCRKO mice displayed more severe CHS, with increased immune cell infiltration in the skin and higher levels of inflammatory cytokines and IgE than wild-type mice. EPCR, aPC, and PAR1/2 were expressed by the skin epidermis, with EPCR presenting almost exclusively in the basal layer. EPCRKO increased the epidermal expression of aPC and PAR1, whereas in CHS, their expression was reduced compared to wild-type mice. 3K3A-aPC reduced CHS severity in wild-type and EPCRKO mice by suppressing immune cell infiltration/activation and inflammatory cytokines. In summary, EPCRKO exacerbated CHS, whereas 3K3A-aPC could reduce the severity of CHS in both EPCRKO and wild-type mice.


Asunto(s)
Dermatitis Alérgica por Contacto , Proteína C , Proteínas Recombinantes , Animales , Ratones , Proteína C/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Receptor PAR-1/metabolismo , Transducción de Señal , Citocinas/farmacología , Dermatitis Alérgica por Contacto/tratamiento farmacológico
20.
Sci Rep ; 14(1): 2591, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297105

RESUMEN

The endothelial protein C receptor (EPCR) is a fundamental component of the vascular system in mammals due to its contribution in maintaining blood in a non-prothrombotic state, which is crucial for overall life development. It accomplishes this by enhancing the conversion of protein C (PC) into the anticoagulant activated protein C (APC), with this property being dependent on a known EPCR conformation that enables direct interaction with PC/APC. In this study, we report a previously unidentified conformation of EPCR whereby Tyr154, critical for PC/APC binding, shows a striking non-canonical configuration. This unconventional form is incompatible with PC/APC binding, and reveals, for the first time, a region of structural vulnerability and potential modulation in EPCR. The identification of this malleability enhances our understanding of this receptor, prompting inquiries into the interplay between its plasticity and function, as well as its significance within the broader framework of EPCR's biology, which extends to immune conditions.


Asunto(s)
Proteína C , Receptores de Superficie Celular , Animales , Receptor de Proteína C Endotelial/metabolismo , Proteína C/metabolismo , Receptores de Superficie Celular/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA