RESUMEN
In this article, we present a flow cytometry assay by which human blood monocyte subpopulations-classical (CD14(++) CD16(-)), intermediate (CD14(++) CD16(+)), and nonclassical (CD14(+) CD16(++)) monocytes-can be determined. Monocytic cells were selected from CD45(+) leukocyte subsets by differential staining of the low-density lipoprotein receptor-related protein 1 (LRP1), which allows reducing the spill-over of natural killer cells and granulocytes into the CD16(+) monocyte gate. Percentages of monocyte subpopulations established by this procedure were significantly comparable with those obtained by a well-standardized flow cytometry assay based on the HLA-DR monocyte-gating strategy. We also demonstrated that LRP1 is differentially expressed at cell surface of monocyte subpopulations, being significantly lower in nonclassical monocytes than in classical and intermediate monocytes. Cell surface expression of LRP1 accounts for only 20% of the total cellular content in each monocyte subpopulation. Finally, we established the within-individual biological variation (bCV%) of circulating monocyte subpopulations in healthy donors, obtaining values of 21%, 20%, and 17% for nonclassical, intermediate, and classical monocytes, respectively. Similar values of bCV% for LRP1 measured in each monocyte subpopulation were also obtained, suggesting that its variability is mainly influenced by the intrinsic biological variation of circulating monocytes. Thus, we conclude that LRP1 can be used as a third pan-monocytic marker together with CD14 and CD16 to properly identify monocyte subpopulations. The combined determination of monocyte subpopulations and LRP1 monocytic expression may be relevant for clinical studies of inflammatory processes, with special interest in atherosclerosis and cardiovascular disease.
Asunto(s)
Citometría de Flujo/métodos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/biosíntesis , Monocitos/clasificación , Monocitos/metabolismo , Adulto , Anticuerpos Monoclonales , Aterosclerosis/diagnóstico , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Femenino , Proteínas Ligadas a GPI/metabolismo , Humanos , Inflamación , Recuento de Leucocitos , Leucocitos/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/citología , Receptores de IgG/metabolismo , Adulto JovenRESUMEN
The aim of this work was to evaluate by immunohistochemistry (IHC) the expression of both LRP-1 and urokinase-type plasminogen activator receptor (uPAR) at different developmental stages of rat prostate disease by using a prostate cancer model previously developed in our laboratory. We found that LRP-1 was weakly expressed in normal prostates and in rats with hyperplastic glands. The expression of this receptor increased and correlated with the degree of premalignant lesions (PIN I, II, and III). The IHC for uPAR in normal prostates and in premalignant lesions showed a score of immunostaining that correlated with the expression of LRP-1. On the other hand, in prostates with adenocarcinomas and undifferentiated carcinomas, LRP-1 was undetectable or weakly detected, whereas uPAR showed a significantly higher level of expression. Based on the IHC results in rat prostates with premalignant and malignant lesions and considering that LRP-1, by mediating the internalization of uPAR, is involved in the regulation of extracellular matrix remodeling and cell migration, we conclude that a decreased expression of LRP-1 could be involved with the increasing activation of plasminogen activators shown in cancers.