RESUMEN
The present study aimed to investigate the impact of adding two doses of a commercial probiotic on productive performance, ruminal and fecal microbiome in growing lambs. Forty-two Texel or Ile de France crossbred lambs aged 86.9 ± 8.0 days (body weight: 27.4 ± 3.7 kg) were distributed into three groups: basal diet without probiotic supplementation (CG); basal diet + 1 g/animal/day of probiotic (GP1) and basal diet + 5 g/animal/day of probiotic (GP5). The experimental period was 84 days. The weight was evaluated weekly and dry matter intake (DMI) and leftovers were measured daily. At the end of the experiment, lambs were slaughtered. Feces and rumen fluid were collected for microbiome analysis and rumen fragments for histological evaluation. The use of probiotics did not affect weight gain, but GP1 showed a higher silage and DMI intake than CG (p < 0.001). The CG had a greater thickness of keratinized epithelium and stratum corneum (< 0.001) than GP1 and GP5, and greater total papilla width (p = 0.039) than GP1. There was no difference in the general abundance in the rumen and fecal microbiomes. GP5 had a higher proportion of Azoarcus and Dialister taxa in the rumen fluid (p = 0.012 and p = 0.017, respectively) and higher proportion of Treponema and Fibrobacter taxa in the fecal microbiome (p = 0.015 and p = 0.026, respectively), whereas CG had a higher proportion of Anaeroplasma than the other groups (p = 0.032). These results demonstrated the benefits of probiotics for ruminal epithelium protection and microbial diversity. However, there was no effect on performance parameters.
Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Heces , Microbioma Gastrointestinal , Probióticos , Rumen , Oveja Doméstica , Animales , Rumen/microbiología , Probióticos/administración & dosificación , Probióticos/farmacología , Heces/microbiología , Alimentación Animal/análisis , Dieta/veterinaria , Microbioma Gastrointestinal/efectos de los fármacos , Oveja Doméstica/microbiología , Suplementos Dietéticos/análisis , Masculino , Fenómenos Fisiológicos Nutricionales de los Animales , OvinosRESUMEN
We evaluated the effects of supplementing direct-fed microbials (DFM), containing Bacillus licheniformis and Bacillus subtilis, on performance, rumen morphometrics, intestinal gene expression, and blood and fecal parameters in finishing bulls. Nelloreâ ×â Angus bulls (nâ =â 144; initial BWâ =â 401â ±â 45.5 kg) were distributed at random in 36 pens (4 bulls/pen and 18 pens/treatment), following a completely randomized design. A ground corn-based finishing diet was offered for ad libitum intake twice a day for 84 d, containing the following treatments: 1) control (without DFM); 2) DFM (B. licheniformis and B. subtilis) at 6.4â ×â 109 CFU (2 g) per animal. The data were analyzed using the MIXED procedure of SAS, with a pen representing an experimental unit, the fixed effect of the treatment, and the random effect of pen nested within the treatment. For fecal parameters (two collections made), the collection effect and its interaction with the treatment were included in the model. Bulls that received the DFM had a decreased dry matter intake (Pâ ≤â 0.01), did not differ in average daily gain (2.05 kg; Pâ =â 0.39), and had a 6% improvement in gain:feed (Pâ =â 0.05). The other performance variables, final BW, hot carcass weight, and hot carcass yield, did not differ (Pâ >â 0.10). Plasma urea-N concentration decreased by 6.2% (Pâ =â 0.02) in the bulls that received DFM. Glucose, haptoglobin, and lipopolysaccharides were not different between treatments (Pâ >â 0.10). Ruminal morphometrics were not affected by the treatment (Pâ >â 0.10). The use of DFM tended to reduce fecal starch (Pâ =â 0.10). At slaughter, bulls fed DFM had an increased duodenal gene expression of tryptophan hydroxylase-1 (Pâ =â 0.02) and of superoxide dismutase-1 (Pâ =â 0.03). Overall, supplementation with DFM based on B. licheniformis and B. subtilis to Nelloreâ ×â Angus bulls in the finishing phase decreased dry matter intake, did not influence ADG, improved gain:feed, and increased the expression of genes important for duodenal function.
One of the main alternatives of additives to modulate the microbial population in the gastrointestinal tract (GIT), especially in the intestine, is the use of direct-fed microbials (DFM). This class of additives comprises all the feed products that contain a live or naturally occurring source of microorganism. The inclusion of DFM in diets of ruminants in the finishing phase may improve gain:feed by modifying the composition of the microbial community in the GIT to bring about a better symbiotic relationship with the host. These effects may be achieved with the use of Bacillus spp. bacteria, such as Bacillus licheniformis and Bacillus subtilis. Mixtures of these bacteria are able to foster positive effects in the finishing phase of beef cattle fed high-energy diets, which reinforces the need for studies that examine the effects and mechanisms of these species. In this study, feedlot Nelloreâ ×â Angus bulls that received a DFM composed of B. licheniformis and B. subtilis had decreased dry matter intake, no influence on average daily gain, improved gain:feed, and an increase in expression of genes important for duodenal function.
Asunto(s)
Alimentación Animal , Dieta , Heces , Probióticos , Rumen , Animales , Bovinos , Masculino , Rumen/microbiología , Alimentación Animal/análisis , Probióticos/farmacología , Probióticos/administración & dosificación , Dieta/veterinaria , Heces/microbiología , Heces/química , Bacillus licheniformis , Bacillus subtilis , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Expresión Génica , Distribución Aleatoria , Fenómenos Fisiológicos Nutricionales de los AnimalesRESUMEN
INTRODUCTION: Probiotics provide therapeutic benefits not only in the gut but also other mucosal organs, including the lungs. OBJECTIVE AND DESIGN: To evaluate the effects of the probiotic strain L. delbrueckii UFV-H2b20 oral administration in an experimental murine model of A. fumigatus pulmonary infection. BALB/c mice were associated with L. delbrueckii and infected with Aspergillus fumigatus and compared with non-associated group. METHODS: We investigated survival, respiratory mechanics, histopathology, colony forming units, cytokines in bronchoalveolar lavage, IgA in feces, efferocytosis, production of reactive oxygen species and the cell population in the mesenteric lymph nodes. RESULTS: L. delbrueckii induces tolerogenic dendritic cells, IL-10+macrophages and FoxP3+regulatory T cells in mesenteric lymph nodes and increased IgA levels in feces; after infection with A. fumigatus, increased survival and decreased fungal burden. There was decreased lung vascular permeability without changes in the leukocyte profile. There was enhanced neutrophilic response and increased macrophage efferocytosis. L. delbrueckii-treated mice displayed more of FoxP3+Treg cells, TGF-ß and IL-10 levels in lungs, and concomitant decreased IL-1ß, IL-17 A, and CXCL1 production. CONCLUSION: Uur results indicate that L. delbrueckii UFV H2b20 ingestion improves immune responses, controlling pulmonary A. fumigatus infection. L. delbrueckii seems to play a role in pathogenesis control by promoting immune regulation.
Asunto(s)
Aspergillus fumigatus , Citocinas , Lactobacillus delbrueckii , Pulmón , Ratones Endogámicos BALB C , Probióticos , Animales , Probióticos/administración & dosificación , Aspergillus fumigatus/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/microbiología , Administración Oral , Lactobacillus delbrueckii/inmunología , Citocinas/inmunología , Citocinas/metabolismo , Ratones , Aspergilosis/inmunología , Aspergilosis/prevención & control , Linfocitos T Reguladores/inmunología , Inmunoglobulina A/inmunología , Femenino , Líquido del Lavado Bronquioalveolar/inmunología , Aspergilosis Pulmonar/inmunología , Heces/microbiología , MasculinoRESUMEN
BACKGROUND: In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology. RESULTS: The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host. CONCLUSIONS: This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.
Asunto(s)
Microbioma Gastrointestinal , Hemolinfa , Monofenol Monooxigenasa , Probióticos , Animales , Abejas/citología , Abejas/efectos de los fármacos , Abejas/enzimología , Abejas/microbiología , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Hemocitos , Hemolinfa/citología , Inmunidad Innata , Italia , Monofenol Monooxigenasa/metabolismo , Probióticos/administración & dosificaciónRESUMEN
This study investigates Cystobasidium benthicum (Cb) probiotic yeast and Cyrtocarpa edulis (Ce) fruit dietary effects, single (0.5 %) or combined (Cb:Ce, 0.25:0.25 %), on growth performance, humoral immunity in serum and skin mucus, and intestinal morphology of Nile tilapia (Oreochromis niloticus) after 14 and 28 days. The Cb group presented the highest (P < 0.05) specific growth rate, weight gain, and absolute growth rate with respect to the control group. Immunological assays indicated that Cb, Ce and Cb:Ce groups increased serum nitric oxide concentration compared to the control group (P < 0.05). Cb and Cb:Ce groups showed the highest serum myeloperoxidase enzyme activity at day 14 and 28, respectively (P < 0.05); whereas, Cb:Ce group had the highest (P < 0.05) myeloperoxidase activity in skin mucus. The superoxide dismutase enzyme activity was unaffected. On day 28, Cb, Ce, and Cb:Ce groups showed higher and lower (P < 0.05) catalase enzyme activity in serum and skin mucus, respectively, compared with the control group. Only the Cb group had higher (P < 0.05) total protein concentration in serum (day 14) and skin mucus (day 14 and 28) with respect to the control group. The lysozyme activity in serum (day 28) and skin mucus (day 14) was higher (P < 0.05) in the Cb group compared to the control group. Only the skin mucus of Ce group showed bactericidal activity against Aeromonas dhakensis (P < 0.05). Histological studies indicated that Cb and Cb:Ce groups increased microvilli height, and Cb, Ce and Cb:Ce augmented goblet cell area at day 14 compared to the control group (P < 0.05). At day 28, microvilli height was higher in all groups and the number of intraepithelial leukocytes increased in Cb and Ce groups with respect to the control group (P < 0.05). The ex vivo assay revealed that A. dhakensis in leukocytes decreased cell viability similar to the control group (P < 0.05). A principal component analysis (PCA) confirmed the results. In conclusion, C. benthicum in the diet was the best supplement to improve the growth and immunity of Nile tilapia.
Asunto(s)
Alimentación Animal , Cíclidos , Dieta , Frutas , Probióticos , Animales , Probióticos/administración & dosificación , Cíclidos/crecimiento & desarrollo , Cíclidos/inmunología , Dieta/veterinaria , Peroxidasa/metabolismo , Óxido Nítrico/metabolismo , Intestinos/microbiología , Intestinos/inmunología , Piel , Inmunidad Humoral , Moco/metabolismo , Superóxido Dismutasa/metabolismo , Catalasa/metabolismoRESUMEN
Background: There is no evidence of peptides-probiotics symbiosis as supplements in aquafeeds. Aim: To evaluate the effect of peptides and probiotics supplementation via diet on blood parameters and growth performance of juvenile Piaractus brachypomus, an Amazonian fish, during the growth-out phase. Methods: 120 juvenile P. brachypomus (242.77 g) were placed into twelve 200-l tanks (10 fish/tank), housed in an indoor open system with constant water renovation (flow rate:1.50 l/minute). The experiment used a completely randomized design with a 4 × 5 factorial arrangement [4 doses of supplementation (CD: commercial diet; PepD: CD+1.50% of peptides per CD weight; ProD: CD+40.00 ml of activated probiotics per kg of diet (Lactobacillus spp., Rhodopseudomonas spp., Saccharomycetes spp.); PepProD: CD+Pep+Pro); 5 sampling times (zero, second, fourth, sixth, and eighth week); n = 3]. Fish were fed twice a day at a feeding rate of 1% of body weight. At each sampling time, blood was collected and fish were measured for growth performance analysis. Data were analyzed by using two-way ANOVA and Tukey's test (p < 0.05). Results: The values of hematocrit (18.31%), leukocytes (1,216.67 mm3), neutrophils (81.27%), lymphocytes (18.73%), albumin (1.08 g/dl), relative growth rate (1.002%/day), and the Fulton allometric condition factor (2.03) remained constant throughout the experiment (p > 0.05). Plasma glucose decreased for all fish in the second week (59.56 mg/dl); then, that level increased in fish fed with the CD (89.00 mg/dl), while fish fed with PepD, ProD, and PepProD showed constant values (57.22 mg/dl). The plasma protein levels were constant in fish fed with the PepD and PepProD, (p > 0.05), while fish fed with the CD and ProD showed non-constant and higher values. At the end of the trial, fish fed with the PepProD showed the highest weight gain and the lowest feed conversion rate (39.66 g; 0.97). Conclusion: It is possible to maintain the stability of plasma glucose and plasma protein by supplementing diets with peptides, but the peptides-probiotics symbiosis administrated via diet contributes to maintaining the stability of plasma glucose and plasma protein and to improve the growth performance of juvenile P. brachypomus during the growth-out phase.
Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Péptidos , Probióticos , Animales , Probióticos/administración & dosificación , Probióticos/farmacología , Alimentación Animal/análisis , Dieta/veterinaria , Péptidos/administración & dosificación , Distribución AleatoriaRESUMEN
The present study evaluated the capacity of three Bacillus species to improve health status and growth performance of Nile Tilapia fed with high levels of soybean meal and challenged with Aeromonas hydrophila. In vitro experiments showed that ß-hemolysin and metalloprotease enzymes were produced by A. hydrophila throughout the exponential growth phase. In vivo experiments showed that 107 colony-forming units (CFUs)/ml of this pathogen killed 50% of control group fishes in 13 days. To evaluate the influence of Bacillus strains on health status and growth performance in Nile Tilapia, 180 fishes (33.44 + 0.05 g) were distributed in 12 tanks of 200 L each, and animals were fed twice per day until satiety. 1) Control group without Bacillus, 2) Bacillus sp1, 3) Bacillus sp2, and 4) Bacillus sp3 groups were formulated containing 106 CFU/g. After 40 days of feeding, the fishes were intraperitoneally injected with 1 ml of A. hydrophila at 2 × 107 CFU/ml, and mortality was recorded. The results showed that cumulative mortality rate was significantly (p< 0.05) lower in the Bacillus sp1 (25%), sp2 (5%), and sp3 (15%) groups, than the control group (50%). Weight gain was also significantly better (p< 0.05) in the Bacillus sp1 (36%), sp2 (67%), and sp3 (55%) groups with respect to the control group (30%). In conclusion, functional diet formulated with high levels of soybean meal and supplemented with Bacillus sp2 could be an alternative to protect Nile tilapia cultures from A. hydrophila infections and improve fish growth performance.
Asunto(s)
Aeromonas hydrophila , Bacillus , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Cíclidos/crecimiento & desarrollo , Cíclidos/microbiología , Aeromonas hydrophila/patogenicidad , Aeromonas hydrophila/crecimiento & desarrollo , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Alimentación Animal , Probióticos/administración & dosificación , Glycine max/microbiología , AcuiculturaRESUMEN
In a previous study, we reported the in vitro potential probiotic and gamma-aminobutyric acid (GABA) production, of several strains from a collection of Lactiplantibacillus (Lpb) strains within the community of natural whey starters from the artisanal cheese industry. GABA is a non-protein amino acid widely distributed in nature and produced in animals, plants, and microorganisms. However, the best known role of GABA is its function as the major inhibitory neurotransmitter of the central nervous system. Preclinical and clinical evidence suggests that the GABAergic system has a relevant role in mental health disorders, such as anxiety and major depression. The modulation of the GABAergic system has been suggested as a potential strategy for treatment, one such mechanism of modulation is the influence of the microbiota-gut-brain axis through probiotic treatments. The present study was designed to investigate the in vivo probiotic potential of LPB145, a Lactiplantibacillus strain previously characterised as a GABA-producing potentially probiotic strain. Therefore, we evaluated the behavioural effects of chronic oral administration of LPB145 on rats' anxiety- and depression-like behaviours, using the elevated plus maze, open field, and the forced swimming test. The impact of LPB145 strain treatment on the gut microbiota structure and diversity was assessed to discern a possible mechanism of action of the LPB145 treatment through the microbiota-gut-brain axis. Our results showed that LPB145 administration induced an antidepressive-like behaviour without changes in locomotor activity. In contrast, the treatment did not modify the experimental anxiety. The structure and diversity of the intestinal microbiota remained unaffected by the treatment when compared to the control. However, specific clades that could be implicated in the behavioural changes did show differences in their relative abundance. These findings provide evidence regarding the potential of probiotic strains isolated from alimentary sources, to modulate the microbiota-gut-brain axis and positively impact mental health.
Asunto(s)
Ansiedad , Queso , Depresión , Microbioma Gastrointestinal , Probióticos , Ácido gamma-Aminobutírico , Animales , Probióticos/administración & dosificación , Probióticos/farmacología , Ansiedad/microbiología , Ratas , Ácido gamma-Aminobutírico/metabolismo , Queso/microbiología , Depresión/microbiología , Depresión/terapia , Masculino , Ratas Wistar , Conducta Animal/efectos de los fármacos , Modelos Animales de EnfermedadRESUMEN
OBJECTIVE: This study aimed to evaluate the effect of antimicrobial photodynamic therapy (aPDT) and the use of probiotics on the treatment of halitosis. METHODS: Fifty-two participants, aged from 18 to 25 years, exhaling sulfhydride (H2S) ≥ 112 ppb were selected. They were allocated into 4 groups (n = 13): Group 1: tongue scraper; Group 2: treated once with aPDT; Group 3: probiotic capsule containing Lactobacillus salivarius WB21 (6.7 x 108 CFU) and xylitol (280mg), 3 times a day after meals, for 14 days; Group 4: treated once with aPDT and with the probiotic capsule for 14 days. Halimetry with gas chromatography (clinical evaluation) and microbiological samples were collected from the dorsum of the tongue before and after aPDT, as well as after 7, 14, and 30 days. The clinical data failed to follow a normal distribution; therefore, comparisons were made using the Kruskal-Wallis test (independent measures) and Friedman ANOVA (dependent measures) followed by appropriate posthoc tests, when necessary. For the microbiological data, seeing as the data failed to follow a normal distribution, the Kruskal-Wallis rank sum test was performed with Dunn's post-test. The significance level was α = 0.05. RESULTS: Clinical results (halimetry) showed an immediate significant reduction in halitosis with aPDT (p = 0.0008) and/or tongue scraper (p = 0.0006). Probiotics showed no difference in relation to the initial levels (p = 0.7530). No significant differences were found in the control appointments. The amount of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola were not altered throughout the analysis (p = 0.1616, p = 0.2829 and p = 0.2882, respectively). CONCLUSION: There was an immediate clinical reduction of halitosis with aPDT and tongue scraping, but there was no reduction in the number of bacteria throughout the study, or differences in the control times, both in the clinical and microbiological results. New clinical trials are necessary to better assess the tested therapies. TRIAL REGISTRATION: Clinical Trials NCT03996044.
Asunto(s)
Halitosis , Ligilactobacillus salivarius , Fotoquimioterapia , Probióticos , Humanos , Halitosis/microbiología , Halitosis/tratamiento farmacológico , Halitosis/terapia , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Adulto , Fotoquimioterapia/métodos , Masculino , Femenino , Adolescente , Adulto Joven , Lengua/microbiología , Antiinfecciosos/uso terapéuticoRESUMEN
PURPOSE OF REVIEW: The gut microbiome regulates several health and disease-related processes. However, the potential bidirectional relationship between the gut microbiome and physical exercise remains uncertain. Here, we review the evidence related to the gut microbiome in athletes. RECENT FINDINGS: The effect of physical exercise on the intestinal microbiome and intestinal epithelial cells depends on the type, volume, and intensity of the activity. Strenuous exercise negatively impacts the intestinal microbiome, but adequate training and dietary planning could mitigate these effects. An increase in short-chain fatty acids (SCFAs) concentrations can modulate signaling pathways in skeletal muscle, contributing to greater metabolic efficiency, preserving muscle glycogen, and consequently optimizing physical performance and recovery. Furthermore, higher SCFAs concentrations appear to lower inflammatory response, consequently preventing an exacerbated immune response and reducing the risk of infections among athletes. Regarding dietary interventions, the optimal diet composition for targeting the athlete's microbiome is not yet known. Likewise, the benefits or harms of using probiotics, synbiotics, and postbiotics are not well established, whereas prebiotics appear to optimize SCFAs production. SUMMARY: The intestinal microbiome plays an important role in modulating health, performance, and recovery in athletes. SCFAs appear to be the main intestinal metabolite related to these effects. Nutritional strategies focusing on the intestinal microbiome need to be developed and tested in well controlled clinical trials.
Asunto(s)
Atletas , Ejercicio Físico , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Ejercicio Físico/fisiología , Ácidos Grasos Volátiles/metabolismo , Probióticos/administración & dosificación , Prebióticos , Dieta/métodos , Músculo Esquelético/metabolismoRESUMEN
Postpartum reproductive infections in cows generate significant economic losses. The use of lactic acid bacteria in animal health is an alternative tool to avoid antibiotic therapy in the prevention/treatment of bovine reproductive infections. In previous studies, 6 lactic bacteria from bovine mammary glands and vagina with beneficial, safe and technological characteristics were selected, and included in probiotic/phytobiotic formulas (combined with Malva and Lapacho extracts). In this work, probiotic and phytobiotic formulations were designed and their long-term viability determined. They were administered intravaginally to 30 females pregnant bovine pre and postpartum. The modification of the native microbiota and permanence/colonization of cultivable bacteria was evaluated, and also the safety of the designed products through the application of nutritional, clinical, hematological and biochemical parameters. The microorganisms maintained their viability up to 9 months at refrigeration temperature. The number of cultivable bacteria showed different pattern: total aerobic mesophylls increased slightly in all experimental groups, while Enterobacteriaceae increased after delivery, except in beneficial acid lactic bacteria + vegetable extract cows. Control and vegetable extract females showed the highest numbers of Enterobacteriaceae at the end of the trial (30 days postpartum). The number of lactic acid bacteria increased significantly in all the groups between 15 days pre and postpartum. The different parameters evaluated demonstrate the safety and harmlessness of the designed formulas, without producing local and systemic adverse effects in the cows.
Asunto(s)
Probióticos , Animales , Femenino , Bovinos , Probióticos/farmacología , Probióticos/administración & dosificación , Administración Intravaginal , Embarazo , Vagina/microbiología , Vagina/efectos de los fármacosRESUMEN
Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.
Asunto(s)
Países en Desarrollo , Microbioma Gastrointestinal , Helmintiasis , Probióticos , Probióticos/uso terapéutico , Probióticos/administración & dosificación , Helmintiasis/inmunología , Helmintiasis/prevención & control , Humanos , Animales , Microbioma Gastrointestinal/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Epigénesis Genética/efectos de los fármacosRESUMEN
BACKGROUND: Chronic kidney disease increases uremic toxins concentrations, which have been associated with intestinal dysbiosis. Sorghum bicolor L. Moench has dietary fiber and bioactive compounds, while Bifidobacterium longum can promote beneficial health effects. METHODS: It is a controlled, randomized, and single-blind clinical trial. Thirty-nine subjects were randomly separated into two groups: symbiotic group (SG), which received 100 mL of unfermented probiotic milk with Bifidobacterium longum strain and 40 g of extruded sorghum flakes; and the control group (CG), which received 100 mL of pasteurized milk and 40 g of extruded corn flakes for seven weeks. RESULTS: The uremic toxins decreased, and gastrointestinal symptoms improved intragroup in the SG group. The acetic, propionic, and butyric acid production increased intragroup in the SG group. Regarding α-diversity, the Chao1 index was enhanced in the SG intragroup. The KEGG analysis revealed that symbiotic meal increased the intragroup energy and amino sugar metabolism, in addition to enabling essential amino acid production and metabolism, sucrose degradation, and the biosynthesis of ribonucleotide metabolic pathways. CONCLUSIONS: The consumption of symbiotic meal reduced BMI, improved short-chain fatty acid (SCFA) synthesis and gastrointestinal symptoms, increased diversity according to the Chao1 index, and reduced uremic toxins in chronic kidney disease patients.
Asunto(s)
Bifidobacterium longum , Microbioma Gastrointestinal , Probióticos , Insuficiencia Renal Crónica , Sorghum , Humanos , Insuficiencia Renal Crónica/terapia , Probióticos/administración & dosificación , Masculino , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Persona de Mediana Edad , Método Simple Ciego , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Biomarcadores/sangre , Anciano , Disbiosis , Adulto , Intestinos/microbiologíaRESUMEN
Probiotic microorganisms can stimulate an immune response and increase the efficiency of vaccines. For example, Bacillus toyonensis is a nonpathogenic, Gram-positive bacterium that has been used as a probiotic in animal supplementation. It induces immunomodulatory effects and increases the vaccine response in several species. This study aimed to evaluate the effect of B. toyonensis supplementation on the modulation of the immune response in horses vaccinated with recombinant Clostridium tetani toxin. Twenty horses were vaccinated twice, with an interval of 21 days between doses, and equally divided into two groups: the first group was supplemented orally for 42 days with feed containing viable spores of B. toyonensis (1 × 108) mixed with molasses (40 ml), starting 7 days before the first vaccination; the second (control) group received only feed mixed with molasses, starting 7 days before the first vaccination. Serum samples were collected to evaluate the humoral immune response using an in-house indirect enzyme-linked immunosorbent assay (ELISA), and peripheral blood mononuclear cells (PBMCs) were collected to evaluate cytokine transcription (qPCR). For the specific IgG-anti-rTENT titer, the supplemented group had ELISA values that were four times higher than those of the control group (p < 0.05). The supplemented group also showed higher ELISA values for the IgGa and IgGT sub-isotypes compared to the control group. In PBMCs stimulated with B. toyonensis, relative cytokine transcription of the supplemented group showed 15-, 8-, 7-, and 6-fold increases for IL1, TNFα, IL10 and IL4, respectively. When stimulated with a vaccine antigen, the supplemented group showed 1.6-, 1.8-, and 0.5-fold increases in IL1, TNFα, and IL4, respectively, compared to the control group. Horses supplemented with B. toyonensis had a significantly improved vaccine immune response compared to those in the control group, which suggests a promising approach for improving vaccine efficacy with probiotics.
Asunto(s)
Bacillus , Enfermedades de los Caballos , Probióticos , Animales , Caballos/inmunología , Bacillus/inmunología , Probióticos/administración & dosificación , Probióticos/farmacología , Enfermedades de los Caballos/prevención & control , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/microbiología , Tétanos/prevención & control , Tétanos/inmunología , Toxoide Tetánico/inmunología , Toxoide Tetánico/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Masculino , Alimentación Animal , Femenino , Dieta/veterinaria , Citocinas/metabolismoRESUMEN
Dietary factors can modify the function of the intestinal barrier, causing permeability changes. This systematic review analyzed evidence on the link between diet or dietary interventions and changes in intestinal barrier permeability (IBP) in healthy individuals. A systematic search for primary studies was conducted using the virtual databases EMBASE, PubMed, Web of Science, CINAHL, and Scopus. This review adhered to PRISMA 2020 guidelines, assessing the methodological quality using the Newcastle-Ottawa scale for observational studies and ROB 2.0 for randomized clinical trials. Out of 3725 studies recovered, 12 were eligible for review. Chicory inulin and probiotics reduced IBP in adults with a moderate GRADE level of evidence. The opposite result was obtained with fructose, which increased IBP in adults, with a very low GRADE level of evidence. Only intervention studies with different dietary components were found, and few studies evaluated the effect of specific diets on the IBP. Thus, there was no strong evidence that diet or dietary interventions increase or decrease IBP in healthy individuals. Studies on this topic are necessary, with a low risk of bias and good quality of evidence generated, as there is still little knowledge on healthy populations.
Asunto(s)
Dieta , Mucosa Intestinal , Permeabilidad , Humanos , Dieta/métodos , Mucosa Intestinal/metabolismo , Probióticos/administración & dosificación , Adulto , Inulina/administración & dosificación , Inulina/farmacología , Voluntarios Sanos , Fructosa/administración & dosificación , Intestinos/fisiología , Femenino , Masculino , Cichorium intybus/química , Funcion de la Barrera IntestinalRESUMEN
Marathon runners, subjected to intense training regimens and prolonged, exhaustive exercises, often experience a compromised immune response. Probiotic supplementation has emerged as a potential remedy to mitigate the impact of prolonged exercise on athletes. Consequently, this study sought to assess the influence of probiotic supplementation on monocyte functionality both before and after the official marathon race. Twenty-seven runners were randomly and double-blindly assigned to two groups: placebo (n 13) and probiotic (PRO) (n 14). Over 30 d, both groups received supplements - placebo sachets containing maltodextrin (5 g/d) and PRO sachets containing 1 × 1010 colony-forming unit Lactobacillus acidophilus and 1 × 1010 colony-forming unit Bifidobacterium bifidum subsp. lactis. Blood samples were collected, and immunological assays, including phagocytosis, hydrogen peroxide production, cytokine levels and monocyte immunophenotyping, were conducted at four different intervals: baseline (start of supplementation/30 d pre-marathon), 24 h-before (1 d pre-marathon), 1 h-after (1 h post-marathon) and 5 d-after (5 d post-marathon). Monocyte populations remained consistent throughout the study. A notable increase in phagocytosis was observed in the PRO group after 30 d of supplementation. Upon lipopolysaccharide stimulation, both PRO and placebo groups exhibited decreased IL-8 production. However, after the marathon race, IL-15 stimulation demonstrated increased levels of 5 d-after, while IL-1-ß, IL-8, IL-10, IL-15 and TNF-α varied across different intervals, specifically within the PRO group. Probiotic supplementation notably enhanced the phagocytic capacity of monocytes. However, these effects were not sustained post-marathon.
Asunto(s)
Suplementos Dietéticos , Carrera de Maratón , Monocitos , Fagocitosis , Probióticos , Humanos , Fagocitosis/efectos de los fármacos , Probióticos/administración & dosificación , Probióticos/farmacología , Monocitos/metabolismo , Monocitos/inmunología , Método Doble Ciego , Masculino , Adulto , Carrera de Maratón/fisiología , Citocinas/metabolismo , Citocinas/sangre , Femenino , Lactobacillus acidophilus , Bifidobacterium bifidum/fisiología , Persona de Mediana Edad , Carrera/fisiología , AtletasRESUMEN
This study aims to investigate the anti-obesity properties of lactic acid bacteria (LAB) isolated from fermented dairy products such as "Airag" and "Khoormog" in Mongolia. These traditional dairy products are widely used in Mongolia and believe in having potential probiotic, anti-diabetes, anti-cancer, and anti-tuberculosis properties and are made from unheated two-humped camel milk and mare milk, respectively. We chose three LAB strains based on their probiotic characteristics, including tolerance of gastric and bile acids. Then we checked the anti-obesity activity of probiotic strains in vivo. An animal model was evaluated in twenty male C57BL/6J mice by inducing obesity with a high-fat diet (HFD), which was divided into five groups: regular diet group (Negative control), HFD group (Positive control), HFD with Lacticaseibacillus paracasei X-1 (X-1), Lacticaseibacillus paracasei X-17 (X-17), and Limosilactobacillus fermentum BM-325 (BM-325). For six weeks, 5 × 109 colony-forming units (CFU) of bacteria were given orally to the LAB-fed groups. Fasting blood glucose (FBG), lipid profiles, organ index, and organ morphology were all measured. The probiotic strains suppressed growth in adipose cell volume, stabilized FBG, reduced liver cell degeneration, and slowed HFD-induced body weight gain. The results suggest that some strains increase general metabolism while lowering body weight.
Asunto(s)
Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Probióticos , Animales , Probióticos/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Obesidad/microbiología , Masculino , Ratones , Mongolia , Fármacos Antiobesidad/farmacología , Modelos Animales de Enfermedad , Lactobacillus/aislamiento & purificación , Productos Lácteos Cultivados/microbiología , CamelusRESUMEN
Osteoporosis is an important health problem that occurs due to an imbalance between bone formation and resorption. Hormonal deficiency post-menopause is a significant risk factor. The probiotic Limosilactobacillus reuteri has been reported to prevent ovariectomy (Ovx)-induced bone loss in mice and reduce bone loss in postmenopausal women. Despite the numerous health benefits of probiotics, as they are live bacteria, the administration is not risk-free for certain groups (e.g., neonates and immunosuppressed patients). We evaluated the effects of L. reuteri (ATCC PTA 6475) and its heat-killed (postbiotic) form on Ovx-induced bone loss. Adult female mice (BALB/c) were randomly divided into four groups: group C-control (sham); group OVX-C-Ovx; group OVX-POS-Ovx + heat-killed probiotic; group OVX-PRO-Ovx + probiotic. L. reuteri or the postbiotic was administered to the groups (1.3x109 CFU/day) by gavage. Bacterial morphology after heat treatment was accessed by scanning electron microscopy (SEM). The treatment started one week after Ovx and lasted 28 days (4 weeks). The animals were euthanized at the end of the treatment period. Bone microarchitecture and ileum Occludin and pro-inflammatory cytokines gene expression were evaluated by computed microtomography and qPCR techniques, respectively. The Ovx groups had lower percentage of bone volume (BV/TV) and number of bone trabeculae as well as greater total porosity compared to the control group. Treatment with live and heat-killed L. reuteri resulted in higher BV/TV and trabecular thickness than the Ovx group. The heat treatment caused some cell surface disruptions, but its structure resembled that of the live probiotic in SEM analysis. There were no statistical differences in Occludin, Il-6 and Tnf-α gene expression. Both viable and heat-killed L. reuteri prevented bone loss on ovariectomized mice, independently of gut Occludin and intestinal Il-6 and Tnf-α gene expression.
Asunto(s)
Limosilactobacillus reuteri , Osteoporosis , Ovariectomía , Probióticos , Animales , Femenino , Limosilactobacillus reuteri/fisiología , Probióticos/administración & dosificación , Probióticos/farmacología , Ratones , Osteoporosis/prevención & control , Ratones Endogámicos BALB C , CalorRESUMEN
Mycotoxins, produced by fungi, can contaminate fish food and harm their health. Probiotics enhance immune balance and primarily function in the animal intestine. This study aimed to assess aflatoxin's impact on Piaractus mesopotamicus and explore probiotic-based additive (PBA) benefits in mitigating these effects, focusing on antioxidant activity, biochemical indices, and hepatic histopathology. Two experiments were conducted using P. mesopotamicus fry. The first experimental assay tested various levels of aflatoxin B1 (0.0, 25.0, 50.0, 100.0, 200.0, and 400.0 µg kg-1) over a 10-day period. The second experimental assay examined the efficacy of the probiotic (supplemented at 0.20%) in diets with different levels of aflatoxin B1 (0.0, 25.0, and 400.0 µg kg-1) for 15 days. At the end of each assay, the fish underwent a 24-hour fasting period, and the survival rate was recorded. Six liver specimens from each treatment group were randomly selected for metabolic indicator assays, including superoxide dismutase, catalase, alanine aminotransferase, aspartate aminotransferase, and albumin. Additionally, histopathological analysis was performed on six specimens. The initial study discovered that inclusion rates above 25.0 µg kg-1 resulted in decreased activity of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALB (albumin), CAT (catalase), and SOD (superoxide dismutase), accompanied by liver histopathological lesions. In the second study, the inclusion of PBA in diets contaminated with AFB1 improved the activity of AST and ALT up to 25.0 µg kg-1 of AFB1, with no histopathological lesions observed. The study demonstrated the hepatoprotective effects of PBA in diets contaminated with AFB1. The enzyme activity and hepatic histopathology were maintained, indicating a reduction in damage caused by high concentrations of AFB1 (400.0 µg kg-1 of AFB1). The adverse effects of AFB1 on biochemical and histopathological parameters were observed from 25.0 µg kg-1 onwards. Notably, PBA supplementation enhanced enzymatic activity at a concentration of 25 µg kg-1 of AFB1 and mitigated the effects at 400.0 µg kg-1 of AFB1. The use of PBAs in pacu diets is highly recommended as they effectively neutralize the toxic effects of AFB1 when added to diets containing 25.0 µg kg-1 AFB1. Dietary inclusion of aflatoxin B1 at a concentration of 25.0 µg kg-1 adversely affects the liver of Piaractus mesopotamicus (Pacu). However, the addition of a probiotic-based additive (PBA) to the diets containing this concentration of aflatoxin neutralized its toxic effects. Therefore, the study recommends the use of PBAs in Pacu diets to mitigate the adverse effects of aflatoxin contamination.
Asunto(s)
Aflatoxina B1 , Alimentación Animal , Enfermedades de los Peces , Hígado , Probióticos , Animales , Probióticos/farmacología , Probióticos/administración & dosificación , Hígado/efectos de los fármacos , Hígado/patología , Alimentación Animal/análisis , Enfermedades de los Peces/inducido químicamente , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/patología , Aflatoxina B1/toxicidad , Dieta/veterinaria , Suplementos Dietéticos/análisis , Aflatoxinas/toxicidadRESUMEN
The study evaluated dietary supplementation with a feed additive composed of multi-strain Bacillus for Nile tilapia Oreochromis niloticus. In vitro and in vivo assays employing culture-based microbiological methods and metagenomics were performed. Additionally, the study assessed the haemato-immunology, intestinal microbiome, and growth performance of the animals. For this, 30 juvenile Nile tilapia were used in the in vitro assay and 180 (60 + 120) in the in vivo assays. In the in vitro assay, we found evidence of adhesion of the probiotic bacteria to the intestinal mucus of fish, corroborated in the 15-day in vivo assay, in which the count of B. licheniformis was significantly higher in fish fed with probiotic when compared to fish of the control group. Furthermore, in the 50-day in vivo trial, a metagenomic analysis provided evidence for the modulation of the intestine microbiome of Nile tilapia by dietary supplementation of the probiotic. In addition, there was an increase in species richness, higher abundance of potentially probiotic autochthonous species and a lower abundance of Aeromonas sp. when the animals were fed the supplemented diet. Finally, no significant differences were observed in growth performance and haemato-immunological analyses, suggesting no harm to fish health when the product was supplemented for 15 and 50 days. The in vitro results indicate that the multi-strain probiotics were able to adhere to the intestinal mucus of Nile tilapia. Additionally, a modulation of the intestinal microbiome was evidenced in the in vivo assay.