Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.305
Filtrar
1.
Food Chem ; 462: 140909, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208727

RESUMEN

Probiotics serve a very important role in human health. However, probiotics have poor stability during processing, storage, and gastrointestinal digestion. The gellan gum (GG) is less susceptible to enzymatic degradation and resistant to thermal and acidic environments. This study investigated the effect of casein (CS)-GG emulsions to encapsulate Lactiplantibacillus plantarum CICC 6002 (L. plantarum CICC 6002) on its storage stability, thermal stability, and gastrointestinal digestion. L. plantarum CICC 6002 was suspended in palm oil and emulsions were prepared using CS or CS-GG complexes. We found the CS-GG emulsions improved the viability of L. plantarum CICC 6002 after storage, pasteurization, and digestion compared to the CS emulsions. In addition, we investigated the influence of the gellan gum concentration on emulsion stability, and the optimal stability was observed in the emulsion prepared by CS-0.8% GG complex. This study provided a new strategy for the protection of probiotics based on CS-GG delivery system.


Asunto(s)
Caseínas , Emulsiones , Lactobacillus plantarum , Polisacáridos Bacterianos , Probióticos , Emulsiones/química , Probióticos/química , Polisacáridos Bacterianos/química , Caseínas/química , Humanos , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Pasteurización , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Composición de Medicamentos , Digestión , Almacenamiento de Alimentos
2.
Food Microbiol ; 124: 104616, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244368

RESUMEN

Based on the previous research results that the addition of sucrose in the medium improved the biofilm formation of Tetragenococcus halophilus, the influence of sucrose on biofilm formation was explored. Moreover, the influence of exogenous expression of related genes sacA and galE from T. halophilus on the biofilm formation of L. lactis NZ9000 was investigated. The results showed that the addition of sucrose in the medium improved the biofilm formation, the resistance of biofilm cells to freeze-drying stress, and the contents of exopolysaccharides (EPS) and eDNA in the T. halophilus biofilms. Meanwhile, the addition of sucrose in the medium changed the monosaccharide composition of EPS and increased the proportion of glucose and galactose in the monosaccharide composition. Under 2.5% (m/v) salt stress condition, the expression of gene sacA promoted the biofilm formation and the EPS production of L. lactis NZ9000 with the sucrose addition in the medium and changed the EPS monosaccharide composition. The expression of gene galE up-regulated the proportion of rhamnose, galactose, and arabinose in the monosaccharide composition of EPS, and down-regulated the proportion of glucose and mannose. This study will provide a theoretical basis for regulating the biofilm formation of T. halophilus, and provide a reference for the subsequent research on lactic acid bacteria biofilms.


Asunto(s)
Biopelículas , Sacarosa , Biopelículas/crecimiento & desarrollo , Sacarosa/metabolismo , Polisacáridos Bacterianos/metabolismo , Enterococcaceae/genética , Enterococcaceae/metabolismo , Enterococcaceae/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Monosacáridos/metabolismo , Regulación Bacteriana de la Expresión Génica , Liofilización
3.
Carbohydr Polym ; 345: 122577, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227109

RESUMEN

This study was to investigate the antibacterial effects and metabolites derived from bifidobacterial fermentation of an exopolysaccharide EPS-LM produced by a medicinal fungus Cordyceps sinensis, Cs-HK1. EPS-LM was a partially purified polysaccharide fraction which was mainly composed of Man, Glc and Gal at 7.31:12.95:1.00 mol ratio with a maximum molecular weight of 360 kDa. After fermentation of EPS-LM in two bifidobacterial cultures, B. breve and B. longum, the culture digesta showed significant antibacterial activities, inhibiting the proliferation and biofilm formation of Escherichia coli. Based on untargeted metabolomic profiling of the digesta, the levels of short chain fatty acids, carboxylic acids, benzenoids and their derivatives were all increased significantly (p < 0.01), which probably contributed to the enhanced antibacterial activity by EPS-LM. Since EPS-LM was only slightly consumed for the bifidobacterial growth, it mainly stimulated the biosynthesis of bioactive metabolites in the bifidobacterial cells. The results also suggested that EPS-LM polysaccharide may have a regulatory function on the bifidobacterial metabolism leading to production of antibacterial metabolites, which may be of significance for further exploration.


Asunto(s)
Antibacterianos , Cordyceps , Escherichia coli , Fermentación , Polisacáridos Bacterianos , Antibacterianos/farmacología , Antibacterianos/química , Cordyceps/metabolismo , Cordyceps/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Biopelículas/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Pruebas de Sensibilidad Microbiana
4.
Curr Microbiol ; 81(10): 342, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225770

RESUMEN

Exopolysaccharides (EPS) are natural macromolecular carbohydrates with good functional activity and physiological activities, which can be utilized as an emulsifier, viscosity enhancer, stabilizer, gelling agent, and water retention agent in a wide range of food products. In this study, the whole genome of Bacillus amyloliquefaciens D189, an EPS-producing bacteria, was sequenced. The result showed that D189 contains a single, circular chromosome of 3,963,356 bp with an average GC content of 45.74% and 3996 coding genes. The gene annotation results showed that D189 is a potentially safe strain and confirmed to be safe associated with hemolytic assay, and antibiotic resistance test. Meanwhile, D189 genome possessed 240 genes related to carbohydrate metabolism. More importantly, D189 could transport 9 sugars and contained a complete biosynthetic pathway for 8 nucleotide sugars. Based on the validation experiments, strain D189 could metabolize 8 sugars (glucose, sucrose, trehalose, fructose, cellobiose, maltose, mannitol, and N-acetyl-D-glucosamine) to produce EPS, with the highest yield of 1.212 g/L when sucrose was the carbon source. Therefore, the whole genome sequencing preliminarily elucidated the physiological mechanism of EPS, providing several pathways for engineering D189 to further enhance the yield of EPS.


Asunto(s)
Bacillus amyloliquefaciens , Genoma Bacteriano , Polisacáridos Bacterianos , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Secuenciación Completa del Genoma , Composición de Base , Fenotipo , Metabolismo de los Hidratos de Carbono
5.
Commun Biol ; 7(1): 1158, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39284859

RESUMEN

Diseases caused by S. pneumoniae are the leading cause of child mortality. As antibiotic resistance of S. pneumoniae is rising, vaccination remains the most recommended solution. However, the existing pneumococcal polysaccharides vaccine (Pneumovax® 23) proved only to induce T-independent immunity, and strict cold chain dependence of the protein conjugate vaccine impedes its promotion in developing countries, where infections are most problematic. Affordable and efficient vaccines against pneumococcus are therefore in high demand. Here, we present an intranasal vaccine Lipo+CPS12F&αGC, containing the capsular polysaccharides of S. pneumoniae 12F and the iNKT agonist α-galactosylceramide in cationic liposomes. In BALB/cJRj mice, the vaccine effectively activates iNKT cells and promotes B cells maturation, stimulates affinity-matured IgA and IgG production in both the respiratory tract and systemic blood, and displays sufficient protection both in vivo and in vitro. The designed vaccine is a promising, cost-effective solution against pneumococcus, which can be expanded to cover more serotypes and pathogens.


Asunto(s)
Administración Intranasal , Inmunidad Humoral , Liposomas , Ratones Endogámicos BALB C , Infecciones Neumocócicas , Vacunas Neumococicas , Streptococcus pneumoniae , Animales , Streptococcus pneumoniae/inmunología , Ratones , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/administración & dosificación , Inmunidad Humoral/efectos de los fármacos , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/inmunología , Femenino , Anticuerpos Antibacterianos/sangre , Polisacáridos Bacterianos/inmunología , Polisacáridos Bacterianos/administración & dosificación , Cationes
6.
Food Res Int ; 195: 114988, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277259

RESUMEN

This study investigated the effect of gellan gum (GG) and glucono-δ-lactone (GDL) on the acid-induced gel properties of pea protein isolate (PPI) pretreated with media milling. The inclusion of GG substantially enhanced the gel hardness of PPI gel from 18.69 g to 792.47 g though slightly reduced its water holding capacity (WHC). Rheological analysis showed that GG increased storage modulus (G') and decreased damping factor of gels in the small amplitude oscillatory shear region and transformed its strain thinning behavior into weak strain overshoot behavior in the large amplitude oscillatory shear region. SEM revealed that GG transformed the microstructure of gel from a uniform particle aggregate structure to a chain-like architecture composed of filaments with small protein particles attached. Turbidity and zeta potential analysis showed that GG promoted the transformation of PPI from a soluble polymer system to an insoluble coagulant during acidification. When GG content was relatively high (0.2 %-0.3 %), high GDL content increased the electrostatic interaction between PPI and GG molecules, causing their rapid aggregation into a dense irregular aggregate structure, further enhancing gel strength and WHC. Overall, GG and GDL can offer the opportunity to modulate the microstructure and gel properties of acid-induced PPI gels, presenting potential for diversifying food gel design strategies through PPI-GG hybrid systems.


Asunto(s)
Geles , Gluconatos , Lactonas , Proteínas de Guisantes , Polisacáridos Bacterianos , Reología , Polisacáridos Bacterianos/química , Lactonas/química , Geles/química , Gluconatos/química , Proteínas de Guisantes/química , Concentración de Iones de Hidrógeno
7.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273432

RESUMEN

Dimethyl fumarate (DMF), originally proposed to treat multiple sclerosis, is considered to have a spectrum of anti-inflammatory effects that effectively control periodontitis, mainly when applied with a hydrogel delivery system. Chemokine expression by gingival fibroblasts is a significant driver of periodontitis; thus, hydrogel-based strategies to deliver DMF, which in turn dampen chemokine expression, are of potential clinical relevance. To test this approach, we have established a bioassay where chemokine expression is induced by exposing gingival fibroblast to IL1ß and TNFα, or with saliva. We show herein that DMF effectively reduced the expression of CXCL8, CXCL1, CXCL2, and CCL2-and lowered the phosphorylation of ERK and JNK-without affecting cell viability. This observation was confirmed by immunoassays with CXCL8. Consistently, the forced chemokine expression in HSC2 oral squamous epithelial cells was greatly diminished by DMF. To implement our hydrogel-based delivery system, gingival fibroblasts were cocultured with gellan gum hydrogels enriched for DMF. In support of our strategy, DMF-enriched gellan gum hydrogels significantly reduced the forced chemokine expression in gingival fibroblasts. Our data suggest that DMF exerts its anti-inflammatory activity in periodontal cells when released from gellan gum hydrogels, suggesting a potential clinical relevance to control overshooting chemokine expression under chronic inflammatory conditions.


Asunto(s)
Quimiocinas , Dimetilfumarato , Fibroblastos , Encía , Hidrogeles , Polisacáridos Bacterianos , Humanos , Hidrogeles/química , Dimetilfumarato/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Quimiocinas/metabolismo , Encía/citología , Encía/metabolismo , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Supervivencia Celular/efectos de los fármacos , Línea Celular
8.
Bioanalysis ; 16(13): 641-650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39254501

RESUMEN

Background: Conventional microtiter plates lack the surface strength needed for effective binding of pneumococcal polysaccharide antigens. This study tackles the limitation by altering the surface of polystyrene plates through carbodiimide activation under acidic pH conditions.Method: The microtiter plates were activated with carbodiimide coupling agents, N,N'-Dicyclohexylcarbodiimide (DCC) and N-Hydroxysuccinimide (NHS). They were subsequently coated with 13 pneumococcal antigens at a concentration of 5 µg/ml with a pH of 3.5. The IgG antibody titer was assessed utilizing the World Health Organization (WHO) ELISA protocol for 30 human serum samples. In addition, validation experiments were conducted to evaluate specificity and precision.Results: The modified plates exhibited two-times higher antibody titers compared to conventional plates across all 13 serotypes. Observations revealed elevated antibody levels, with geometric concentrations ranging between 0.96 µg/ml and 4.24 µg/ml.Conclusion: Carbodiimide activation and acidic pH modification of microtiter plates enhance sensitivity and specificity in detecting pneumococcal antibodies, critical for vaccination planning and immunity assessment.


[Box: see text].


Asunto(s)
Carbodiimidas , Ensayo de Inmunoadsorción Enzimática , Inmunoglobulina G , Streptococcus pneumoniae , Streptococcus pneumoniae/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Humanos , Carbodiimidas/química , Polisacáridos Bacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Concentración de Iones de Hidrógeno
9.
Microb Genom ; 10(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254668

RESUMEN

Typhoid fever is endemic in many parts of the world and remains a major public health concern in tropical and sub-tropical developing nations, including Fiji. To address high rates of typhoid fever, the Northern Division of Fiji implemented a mass vaccination with typhoid conjugate vaccine (Vi-polysaccharide conjugated to tetanus toxoid) as a public health control measure in 2023. In this study we define the genomic epidemiology of Salmonella Typhi in the Northern Division prior to island-wide vaccination, sequencing 85% (n=419) of the total cases from the Northern and Central Divisions of Fiji that occurred in the period 2017-2019. We found elevated rates of nucleotide polymorphisms in the tviD and tviE genes (responsible for Vi-polysaccharide synthesis) relative to core genome levels within the Fiji endemic S. Typhi genotype 4.2. Expansion of these findings within a globally representative database of 12 382 S. Typhi (86 genotyphi clusters) showed evidence of convergent evolution of the same tviE mutations across the S. Typhi population, indicating that tvi selection has occurred both independently and globally. The functional impact of tvi mutations on the Vi-capsular structure and other phenotypic characteristics are not fully elucidated, yet commonly occurring tviE polymorphisms localize adjacent to predicted active site residues when overlayed against the predicted TviE protein structure. Given the central role of the Vi-polysaccharide in S. Typhi biology and vaccination, further integrated epidemiological, genomic and phenotypic surveillance is required to determine the spread and functional implications of these mutations.


Asunto(s)
Polisacáridos Bacterianos , Salmonella typhi , Fiebre Tifoidea , Salmonella typhi/genética , Fiji/epidemiología , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/epidemiología , Humanos , Polisacáridos Bacterianos/genética , Heterogeneidad Genética , Vacunas Tifoides-Paratifoides/genética , Genotipo , Mutación , Polimorfismo de Nucleótido Simple , Cápsulas Bacterianas/genética
10.
Arch Microbiol ; 206(10): 397, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249569

RESUMEN

Amongst all Enterococcus spp., E. faecalis and E. faecium are most known notorious pathogen and their biofilm formation has been associated with endocarditis, oral, urinary tract, and wound infections. Biofilm formation involves a pattern of initial adhesion, microcolony formation, and mature biofilms. The initial adhesion and microcolony formation involve numerous surface adhesins e.g. pili Ebp and polysaccharide Epa. The mature biofilms are maintained by eDNA, It's worth noting that phage-mediated dispersal plays a prominent role. Further, the involvement of peptide pheromones in regulating biofilm maintenance sets it apart from other pathogens and facilitating the horizontal transfer of resistance genes. The role of fsr based regulation by regulating gelE expression is also discussed. Thus, we provide a concise overview of the significant determinants at each stage of Enterococcus spp. biofilm formation. These elements could serve as promising targets for antibiofilm strategies.


Asunto(s)
Biopelículas , Enterococcus , Infecciones por Bacterias Grampositivas , Enterococcus/genética , Enterococcus/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/fisiopatología , Adhesión Bacteriana/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Polisacáridos Bacterianos/metabolismo , Transferencia de Gen Horizontal
11.
Int J Biol Macromol ; 278(Pt 4): 135404, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39256124

RESUMEN

Numerous studies have established a strong association between Malassezia and various skin disorders, including atopic dermatitis. Finding appropriate methods or medications to alleviate Malassezia-induced skin damage is of notable public interest. This study aimed to evaluate the therapeutic effect of the exopolysaccharide EPS1, produced by Paenibacillus polymyxa, on Malassezia restricta-induced skin damage. In vitro assays indicated that EPS1 reduced the expression of pro-inflammatory cytokine genes in TNF-α-induced HaCaT cells. In a murine model, EPS1 was found to mitigate clinical symptoms, reduce epidermal thickness and mast cell infiltration, improve skin barrier function, decrease pro-inflammatory cytokine levels associated with type 17 inflammation, enhance Tregs in the spleen, upregulate the transcription of Treg-related genes in skin lesions, and modulate the skin microbiota. This study is the first to report the alleviating effect of Paenibacillus exopolysaccharide on Malassezia-induced skin inflammation and its impact on the skin microbiota. These findings support the potential of Paenibacillus exopolysaccharides as consumer products and therapeutic agents for managing Malassezia-induced skin damage by improving skin barrier function, modulating immune responses, and influencing skin microbiota.


Asunto(s)
Malassezia , Microbiota , Polisacáridos Bacterianos , Piel , Malassezia/efectos de los fármacos , Animales , Ratones , Piel/microbiología , Piel/efectos de los fármacos , Piel/inmunología , Humanos , Polisacáridos Bacterianos/farmacología , Microbiota/efectos de los fármacos , Citocinas/metabolismo , Paenibacillus , Modelos Animales de Enfermedad , Células HaCaT
12.
Carbohydr Polym ; 344: 122518, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218543

RESUMEN

A wide range of articles describe the role of different probiotics in the prevention or treatment of various diseases. However, currently, the focus is shifting from whole microorganisms to their easier-to-define components that can confer similar or stronger benefits on the host. Here, we aimed to describe polysaccharide B.PAT, which is a surface antigen isolated from Bifidobacterium animalis ssp. animalis CCDM 218 and to understand the relationship between its structure and function. For this reason, we determined its glycerol phosphate-substituted structure, which consists of glucose, galactose, and rhamnose residues creating the following repeating unit: To fully understand the role of glycerol phosphate substitution on the B.PAT function, we prepared the dephosphorylated counterpart (B.MAT) and tested their immunomodulatory properties. The results showed that the loss of glycerol phosphate increased the production of IL-6, IL-10, IL-12, and TNF-α in bone marrow dendritic cells alone and after treatment with Lacticaseibacillus rhamnosus GG. Further studies indicated that dephosphorylation can enhance B.PAT properties to suppress IL-1ß-induced inflammatory response in Caco-2 and HT-29 cells. Thus, we suggest that further investigation of B.PAT and B.MAT may reveal distinct functionalities that can be exploited in the treatment of various diseases and may constitute an alternative to probiotics.


Asunto(s)
Bifidobacterium animalis , Humanos , Fosforilación/efectos de los fármacos , Bifidobacterium animalis/química , Animales , Células CACO-2 , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/aislamiento & purificación , Células HT29 , Probióticos/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones , Factores Inmunológicos/farmacología , Factores Inmunológicos/química , Factores Inmunológicos/aislamiento & purificación , Citocinas/metabolismo , Lacticaseibacillus rhamnosus/química
13.
Arch Microbiol ; 206(9): 388, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196410

RESUMEN

Bacterial exopolysaccharides (EPS) are biopolymers of carbohydrates, often released from cells into the extracellular environment. Due to their distinctive physicochemical properties, biocompatibility, biodegradability, and non-toxicity, EPS finds applications in various industrial sectors. However, the need for alternative EPS has grown over the past few decades as lactic acid bacteria's (LAB) low-yield EPS is unable to meet the demand. In this case, rhizosphere bacteria with the diverse communities in soil leading to variations in composition and structure, are recognized as a potential source of EPS applicable in various industries. In addition, media components and cultivation conditions have an impact on EPS production, which ultimately affects the quantity, structure, and biological functions of the EPS. Therefore, scientists are currently working on manipulating bacterial EPS by developing cultures and applying abiotic and biotic stresses, so that better production of exopolysaccharides can be attained. This review highlights the composition, biosynthesis, and effects of environmental factors on EPS production along with the potential applications in different fields of industry. Ultimately, an overview of potential future paths and tactics for improving EPS implementation and commercialization is pointed out.


Asunto(s)
Polisacáridos Bacterianos , Rizosfera , Microbiología del Suelo , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Bacterias/metabolismo
14.
Arch Microbiol ; 206(9): 389, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210205

RESUMEN

Exopolysaccharides produced by lactic acid bacteria have gained attention for their potential health benefits and applications in functional foods. This study explores the isolation and characterization of a novel exopolysaccharide-producing strain from dairy products. The aim was to evaluate its probiotic potential and investigate the properties of the produced exopolysaccharide. A strain identified as Enterococcus faecium PCH.25, isolated from cow butter, demonstrated exopolysaccharide production. The study's novelty lies in the comprehensive characterization of this strain and its exopolysaccharide, revealing unique properties with potential applications in food, cosmetic, and pharmaceutical industries. The E. faecium PCH.25 strain exhibited strong acid tolerance, with a 92.24% viability rate at pH 2 after 2 h of incubation. It also demonstrated notable auto-aggregation (85.27% after 24 h) and co-aggregation abilities, antibiotic sensitivity, and absence of hemolytic activity, suggesting its probiotic potential. The exopolysaccharide produced by this strain showed bactericidal activity (MIC and MBC = 1.8 mg/ml) against Listeria monocytogenes and antioxidant properties (22.8%). Chemical analysis revealed a heteropolysaccharide composed of glucose and fructose monomers, with various functional groups contributing to its bioactivities. Physical characterization of the exopolysaccharide indicated thermal stability up to 270 °C, a negative zeta-potential (-27 mV), and an average particle size of 235 nm. Scanning electron microscopy and energy dispersive X-ray analysis revealed a smooth, nonporous structure primarily composed of carbon and oxygen, with an amorphous nature. These findings suggest that the exopolysaccharide from E. faecium PCH.25 has potential as a natural antibacterial and antioxidant polymer for use in functional foods, cosmetics, and pharmaceuticals.


Asunto(s)
Antibacterianos , Antioxidantes , Mantequilla , Enterococcus faecium , Listeria monocytogenes , Polisacáridos Bacterianos , Probióticos , Enterococcus faecium/metabolismo , Probióticos/aislamiento & purificación , Probióticos/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Antioxidantes/química , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/aislamiento & purificación , Animales , Listeria monocytogenes/efectos de los fármacos , Mantequilla/microbiología , Bovinos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
15.
Carbohydr Res ; 544: 109249, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191198

RESUMEN

An efficient synthetic strategy has been developed to achieve a pyruvic acid acetal containing tetrasaccharide repeating unit corresponding to the K82 capsular polysaccharide of Acinetobacter baumannii LUH5534 strain in very good yield. The synthetic scheme involves the use of suitably functionalized monosaccharide thioglycosides as glycosyl donors and a combination of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) as thiophilic glycosylation activator to furnish satisfactory yield of the products with appropriate stereochemistry at the glycosidic linkages. Incorporation of the (R)-pyruvic acid acetal in the d-galactose moiety was achieved in very good yield by the treatment of the diol derivative with methyl 2,2-bis(p-methylphenylthio)propionate in the presence of a combination of NIS and triflic acid.


Asunto(s)
Acetales , Acinetobacter baumannii , Oligosacáridos , Polisacáridos Bacterianos , Acinetobacter baumannii/química , Acetales/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/síntesis química , Oligosacáridos/química , Oligosacáridos/síntesis química , Ácido Pirúvico/química , Secuencia de Carbohidratos , Cápsulas Bacterianas/química
16.
J Immunol Methods ; 533: 113734, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098593

RESUMEN

Capsular polysaccharides of Streptococcus pneumoniae are used in pneumococcal polysaccharide and protein-conjugate vaccines. Cell-wall polysaccharide (C-Ps) is a critical impurity that must be kept at low levels in purified polysaccharide preparations. Hence, accurate and precise methods for determining C-Ps are needed. Currently available methods include nuclear magnetic resonance (NMR) spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Both these methods suffer from their own limitations; therefore, we developed a simple and efficient enzyme-linked immunosorbent assay (ELISA) for accurate and precise quantification of C-Ps in samples of any serotype of pneumococcal capsular polysaccharide without interference. We quantified C-Ps in preparations of 14 serotype polysaccharides using newly developed ELISA method and compared the results with C-Ps values obtained using two previously reported methods, 1H NMR and HPAEC-PAD. The C-Ps value determined using 1H NMR for serotype 5 was 21.08%, whereas the values obtained using HPAEC-PAD and ELISA were 2.38% and 2.89% respectively, indicating some interference in 1H NMR method. The sensitivity of the ELISA method is higher because the sample is used directly unlike HPAEC-PAD method where sample is subjected to harsh treatment, such as acid digestion and quantify C-Ps based on peak area of ribitol or AAT. Furthermore, 1H NMR and HPAEC-PAD are expensive and laborious methods. Our work, underscores the simple and efficient ELISA that can be used for quantification of C-Ps in pneumococcal polysaccharide preparations.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Polisacáridos Bacterianos , Streptococcus pneumoniae , Streptococcus pneumoniae/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Polisacáridos Bacterianos/inmunología , Polisacáridos Bacterianos/análisis , Cápsulas Bacterianas/inmunología , Cápsulas Bacterianas/química , Espectroscopía de Resonancia Magnética/métodos
17.
Microbiology (Reading) ; 170(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39194382

RESUMEN

Across the tree of life, pleiotropy is thought to constrain adaptation through evolutionary tradeoffs. However, few examples of pleiotropy exist that are well explained at the genetic level, especially for pleiotropy that is mediated by multiple genes. Here, we describe a set of pleiotropic mutations that mediate two key fitness components in bacteria: parasite resistance and motility. We subjected Escherichia coli to strong selection by phage U136B to obtain 27 independent mucoid mutants. Mucoidy is a phenotype that results from excess exopolysaccharide and can act as a barrier against viral infection but can also interfere with other cellular functions. We quantified the mutants' phage resistance using efficiency of plaquing assays and swimming motility using swim agar plates, and we sequenced the complete genomes of all mutants to identify mucoid-causing mutations. Increased phage resistance co-occurred with decreased motility. This relationship was mediated by highly parallel (27/27) mutations to the Rcs phosphorelay pathway, which senses membrane stress to regulate exopolysaccharide production. Together, these results provide an empirical example of a pleiotropic relationship between two traits with intermediate genetic complexity.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Mutación , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiología , Colifagos/genética , Colifagos/fisiología , Transducción de Señal , Polisacáridos Bacterianos/metabolismo
18.
Biomed Mater ; 19(5)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39094620

RESUMEN

In tissue engineering, collaboration among experts from different fields is needed to design appropriate cell scaffolds and the required three-dimensional environment. Osteochondral tissue engineering is particularly challenging due to the need to provide scaffolds that imitate structural and compositional differences between two neighboring tissues, articular cartilage and bone, and the required complex biophysical environments for cultivating such scaffolds. This work focuses on two key objectives: first, to develop bilayered osteochondral scaffolds based on gellan gum and bioactive glass and, second, to create a biomimetic environment for scaffold characterization by designing and utilizing novel dual-medium cultivation bioreactor chambers. Basic chemical engineering principles were utilized to help achieve both aims. First, a simple heat transport model based on one-dimensional conduction was applied as a guideline for bilayer scaffold preparation, leading to the formation of a gelatinous upper part and a macroporous lower part with a thin, well-integrated interfacial zone. Second, a novel cultivation chamber was developed to be used in a dynamic compression bioreactor to provide possibilities for flow of two different media, such as chondrogenic and osteogenic. These chambers were utilized for characterization of the novel scaffolds with regard to bioactivity and stability under dynamic compression and fluid perfusion over 14 d, while flow distribution under different conditions was analyzed by a tracer method and residence time distribution analysis.


Asunto(s)
Reactores Biológicos , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Ingeniería Química/métodos , Cartílago Articular , Condrogénesis , Humanos , Polisacáridos Bacterianos/química , Osteogénesis , Condrocitos/citología , Porosidad , Ensayo de Materiales , Huesos , Materiales Biocompatibles/química , Diseño de Equipo , Animales , Fuerza Compresiva , Células Cultivadas
19.
Immunohorizons ; 8(8): 511-526, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093310

RESUMEN

Glycoconjugate vaccines elicit robust anti-polysaccharide Ab response by recruiting T-cell help. Multiple doses of glycoconjugate vaccine are required to induce long-lasting immunity. The characteristics of anti-polysaccharide Ab response have been reported previously. However, the effect of glycoconjugate booster immunization on anti-polysaccharide and anti-carrier protein Ab repertoire remains poorly understood. In this study, we used clinically relevant pneumococcal capsular polysaccharide type 14 (PCP14) conjugated with cross-reactive material 197 (CRM197) as a model glycoconjugate Ag (PCP14-CRM197). We performed a comprehensive sequence analysis of mouse mAbs generated against PCP14 and CRM197 following immunization with one or three doses of PCP14-CRM197. Analysis of the paired Ig H and L chain transcripts revealed that anti-PCP14 Ab repertoire is extremely restricted. The reoccurrence of five replacement mutations at identical positions in anti-polysaccharide mAbs generated from different mice provided evidence for Ag-driven selection in PCP14-specific B cells. Convergent evolution was observed wherein distinct V(D)J rearrangements resulted in identical or nearly identical CDR3 in anti-PCP14 mAbs. Abs that lacked DH encoded amino acids dominated the anti-PCP14 Ab response. In contrast, anti-CRM197 Ab response was quite diverse, with fewer mutations compared with the anti-PCP14 mAbs, suggesting that conjugation of the polysaccharide to a carrier protein interferes with the development of carrier protein-specific Ab responses. Our findings provide molecular insights into the maturation of Ab responses driven by booster doses of glycoconjugate. This has fundamental implications for the design of glycoconjugate vaccines, especially where the development of Ab response against the carrier protein is also crucial.


Asunto(s)
Anticuerpos Antibacterianos , Linfocitos B , Proteínas Bacterianas , Glicoconjugados , Animales , Ratones , Glicoconjugados/inmunología , Linfocitos B/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Vacunas Conjugadas/inmunología , Vacunas Conjugadas/administración & dosificación , Femenino , Polisacáridos Bacterianos/inmunología , Vacunas Neumococicas/inmunología , Vacunas Neumococicas/administración & dosificación , Streptococcus pneumoniae/inmunología , Ratones Endogámicos BALB C , Antígenos Bacterianos/inmunología , Inmunización/métodos , Inmunización Secundaria
20.
Microbiol Res ; 287: 127859, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098095

RESUMEN

Biofilms are common living states for microorganisms, allowing them to adapt to environmental changes. Numerous Bacillus strains can form complex biofilms that play crucial roles in biocontrol processes. However, our current understanding of the molecular mechanisms of biofilm formation in Bacillus is mainly based on studies of Bacillus subtilis. Knowledge regarding the biofilm formation of other Bacillus species remains limited. In this study, we identified a novel transcriptional regulator, BmfR, belonging to the GntR family, that regulates biofilm formation in marine-derived Bacillus methylotrophicus B-9987. We demonstrated that BmfR induces biofilm formation by activating the extracellular polysaccharide structural genes epsA-O and negatively regulating the matrix gene repressor, SinR; of note it positively affects the expression of the master regulator of sporulation, Spo0A. Furthermore, database mining for BmfR homologs has revealed their widespread distribution among many bacterial species, mainly Firmicutes and Proteobacteria. This study advances our understanding of the biofilm regulatory network of Bacillus strains, and provides a new target for exploiting and manipulating biofilm formation.


Asunto(s)
Bacillus , Proteínas Bacterianas , Biopelículas , Regulación Bacteriana de la Expresión Génica , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus/genética , Bacillus/fisiología , Bacillus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Polisacáridos Bacterianos/metabolismo , Organismos Acuáticos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA