Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Chem Ecol ; 40(3): 276-84, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24557607

RESUMEN

The invasive thistle Carduus nutans has been reported to be allelopathic, yet no allelochemicals have been identified from the species. In a search for allelochemicals from C. nutans and the closely related invasive species C. acanthoides, bioassay-guided fractionation of roots and leaves of each species were conducted. Only dichloromethane extracts of the roots of both species contained a phytotoxin (aplotaxene, (Z,Z,Z)-heptadeca-1,8,11,14-tetraene) with sufficient total activity to potentially act as an allelochemical. Aplotaxene made up 0.44 % of the weight of greenhouse-grown C. acanthoides roots (ca. 20 mM in the plant) and was not found in leaves of either species. It inhibited growth of lettuce 50 % (I 50) in soil at a concentration of ca. 0.5 mg g(-1) of dry soil (ca. 6.5 mM in soil moisture). These values gave a total activity in soil value (molar concentration in the plant divided by the molarity required for 50 % growth inhibition in soil = 3.08) similar to those of some established allelochemicals. The aplotaxene I 50 for duckweed (Lemna paucicostata) in nutrient solution was less than 0.333 mM, and the compound caused cellular leakage of cucumber cotyledon discs in darkness and light at similar concentrations. Soil in which C. acanthoides had grown contained aplotaxene at a lower concentration than necessary for biological activity in our short-term soil bioassays, but these levels might have activity over longer periods of time and might be an underestimate of concentrations in undisturbed and/or rhizosphere soil.


Asunto(s)
Carduus/química , Feromonas/metabolismo , Polienos/metabolismo , Carduus/metabolismo , Cotiledón/citología , Cotiledón/efectos de los fármacos , Cucumis sativus/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Especies Introducidas , Feromonas/análisis , Feromonas/toxicidad , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Polienos/análisis , Polienos/toxicidad
2.
Biochim Biophys Acta ; 1760(6): 973-9, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16563634

RESUMEN

The toxicity of the antifungal polyene antibiotic amphotericin B (AMB) has been related to its low solubility, more specifically to a self-associated form termed toxic aggregate. In addition, AMB in aqueous medium gives rise to concentration, ionic strength, and time-dependent polydisperse systems. For this reason different approaches, including the use of several lipid aggregates, have been used in attempts to improve the drug's solubility and increase its therapeutic index. In this context, understanding AMB's self-association properties should help in the preparation of less toxic formulations. Ions from the Hofmeister series alter water properties: while kosmotropes (water structure makers-sulfate, citrate, phosphate) decrease solute solubility, chaotropes (water structure breakers-perchlorate, thiocyanate, trichloroacetate, and the neutral molecule urea) have opposite effects. This work reports a study of the effect of Hofmeister ions and urea on the self-aggregation of AMB and some of its derivatives. Optical absorption and circular dichroism spectra were used to monitor monomeric and aggregated antibiotic. While kosmotropes increased aggregation in a concentration-dependent manner, the opposite was observed for chaotropes. It is shown, for the first time, that thiocyanate and trichloroacetate can induce complete AMB monomerization. The understanding of these processes at the physicochemical and molecular levels and the possibility of modulating the aggregation state of AMB and its derivatives should contribute to elucidate the mechanisms of action and toxicity of this widely used antibiotic and to develop more efficient and less toxic preparations.


Asunto(s)
Antifúngicos/química , Polienos/química , Anfotericina B/química , Antifúngicos/toxicidad , Dicroismo Circular , Ácido Cítrico , Iones/química , Concentración Osmolar , Percloratos , Fosfatos , Polienos/toxicidad , Solubilidad , Análisis Espectral , Sulfatos , Tiocianatos , Ácido Tricloroacético , Urea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA