Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.837
Filtrar
1.
BMC Biol ; 22(1): 188, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218869

RESUMEN

BACKGROUND: The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS: Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS: Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas , Poli(ADP-Ribosa) Polimerasa-1 , Ubiquitinación , Histonas/metabolismo , Histonas/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Estrés Oxidativo , Nucleosomas/metabolismo
2.
Nat Commun ; 15(1): 8047, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277621

RESUMEN

Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.


Asunto(s)
Proteínas 14-3-3 , Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Virulencia , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ADP-Ribosilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Ascomicetos/patogenicidad , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/patogenicidad , Magnaporthe/genética , Magnaporthe/metabolismo , Procesamiento Proteico-Postraduccional
3.
Sci Rep ; 14(1): 21486, 2024 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277626

RESUMEN

Naringin, a flavonoid, exhibits diverse therapeutic properties and has been proven to exert cytotoxic effects on cancer cells. Nevertheless, the precise mechanism of naringin maintaining its cytotoxic effect on glioblastoma (GBM) remains unknown. Thus, the current study aimed to establish a plausible cellular mechanism for Naringin's inhibition of GBM. We employed various system biology techniques to forecast the primary targets, including gene ontology and cluster analysis, KEGG enrichment pathway estimation, molecular docking, MD (molecular dynamic) simulation and MMPBSA analysis. Glioblastoma target sequences were obtained via DisGeNet and Therapeutic Target Prediction, aligned with naringin targets, and analyzed for gene enrichment and ontology. Gene enrichment analysis identified the top ten hub genes. Further, molecular docking was conducted on all identified targets. For molecular dynamics modelling, we selected the two complexes that exhibited the most docking affinity and the two most prominent genes of the hub identified through analysis of the enrichment of genes. The PARP1 and ALB1 signalling pathways were found to be the main regulated routes. Naringin exhibited the highest binding potential of - 12.90 kcal/mol with PARP1 (4ZZZ), followed by ABL1 (2ABL), with naringin showing a - 8.4 kcal/mol binding score, as determined by molecular docking. The molecular dynamic approach and MM-PBSA investigation along with PCA study revealed that the complex of Naringin, with 4ZZZ (PARP1) and, 2ABL (ABL1), are highly stable compared to that of imatinib and talazoparib. Analyses of the signalling pathway suggested that naringin may have anticancer effects against GBM by influencing the protein PARP and ALB1 levels. Cytotoxicity assay was performed on two different glioblastoma cell lines C6 and U87MG cells. Naringin demonstrates a higher cytotoxic potency against U87MG human glioblastoma cells compared to C6 rat glioma cells.


Asunto(s)
Flavanonas , Glioblastoma , Simulación del Acoplamiento Molecular , Flavanonas/farmacología , Flavanonas/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Simulación de Dinámica Molecular , Farmacología en Red , Antineoplásicos/farmacología , Antineoplásicos/química , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Commun Biol ; 7(1): 1148, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278937

RESUMEN

The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase ß (Pol ß) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol ß-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Cationes Bivalentes/metabolismo , Reparación del ADN , ADN Polimerasa beta/metabolismo , Cationes/metabolismo , Daño del ADN
5.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 104-109, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39262256

RESUMEN

This study investigated the role of Poly (ADP-ribose) Polymerase (PARP) in myocardial ischemia-reperfusion injury (MIRI) in elderly mice. It involves 30 elderly male KM mice divided into three groups: Sham, MIRI, and DPQ, where the MIRI and DPQ groups undergo myocardial ischemia-reperfusion with the DPQ group also receiving DPQ for PARP-1 inhibition. Over three weeks, assessments include histological analysis of myocardial lesions, left ventricular ejection fraction (LVEF) measurements, and evaluations of serum cardiac enzymes and inflammatory markers. This approach aims to understand the protective effects of DPQ in MIRI, focusing on its impact on cardiac health and inflammation via the JAK2/STAT3 pathway. The findings suggest that PARP activation exacerbates cardiac dysfunction and inflammation in MIRI by possibly modulating the JAK2/STAT3 signaling pathway. Inhibition of PARP-1 with DPQ mitigates these effects, as indicated by reduced myocardial lesions and inflammatory infiltration, improved LVEF, and altered levels of inflammatory markers and signaling molecules. However, the differences in STAT3 and p-STAT3 protein expression between the DPQ and MIRI groups were not statistically significant, suggesting that while PARP inhibition affects many aspects of MIRI pathology, its impact on the JAK2/STAT3 pathway may not fully explain the observed benefits. This study contributes to our understanding of the complex mechanisms underlying myocardial ischemia-reperfusion injury, particularly in the context of aging. It highlights the potential of PARP inhibition as a therapeutic strategy to attenuate cardiac dysfunction and inflammation in MIRI, though further research is necessary to fully elucidate the underlying molecular pathways and to explore the clinical relevance of these findings in humans.


Asunto(s)
Janus Quinasa 2 , Daño por Reperfusión Miocárdica , Miocardio , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Masculino , Ratones , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Miocardio/patología , Miocardio/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Envejecimiento , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inflamación/patología , Inflamación/metabolismo , Función Ventricular Izquierda/efectos de los fármacos
6.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273083

RESUMEN

DNA repair proteins became the popular targets in research on cancer treatment. In our studies we hypothesized that inhibition of DNA polymerase theta (Polθ) and its combination with Poly (ADP-ribose) polymerase 1 (PARP1) or RAD52 inhibition and the alkylating drug temozolomide (TMZ) has an anticancer effect on glioblastoma cells (GBM21), whereas it has a low impact on normal human astrocytes (NHA). The effect of the compounds was assessed by analysis of cell viability, apoptosis, proliferation, DNA damage and cell cycle distribution, as well as gene expression. The main results show that Polθ inhibition causes a significant decrease in glioblastoma cell viability. It induces apoptosis, which is accompanied by a reduction in cell proliferation and DNA damage. Moreover, the effect was stronger when dual inhibition of Polθ with PARP1 or RAD52 was applied, and it is further enhanced by addition of TMZ. The impact on normal cells is much lower, especially when considering cell viability and DNA damage. In conclusion, we would like to highlight that Polθ inhibition used in combination with PARP1 or RAD52 inhibition has great potential to kill glioblastoma cells, and shows a synthetic lethal effect, while sparing normal astrocytes.


Asunto(s)
Supervivencia Celular , Glioblastoma , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteína Recombinante y Reparadora de ADN Rad52 , Temozolomida , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , Temozolomida/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Supervivencia Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ADN Polimerasa theta , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Mutaciones Letales Sintéticas/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo
7.
Biochemistry (Mosc) ; 89(7): 1202-1210, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39218019

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) plays a major role in the DNA damage repair and transcriptional regulation, and is targeted by a number of clinical inhibitors. Despite this, catalytic mechanism of PARP1 remains largely underexplored because of the complex substrate/product structure. Using molecular modeling and metadynamics simulations we have described in detail elongation of poly(ADP-ribose) chain in the PARP1 active site. It was shown that elongation reaction proceeds via the SN1-like mechanism involving formation of the intermediate furanosyl oxocarbenium ion. Intriguingly, nucleophilic 2'A-OH group of the acceptor substrate can be activated by the general base Glu988 not directly but through the proton relay system including the adjacent 3'A-OH group.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/química , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Dominio Catalítico , Poli Adenosina Difosfato Ribosa/metabolismo , Poli Adenosina Difosfato Ribosa/química
8.
J Nutr Sci Vitaminol (Tokyo) ; 70(4): 295-304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39218690

RESUMEN

Cellular NAD+ is continuously degraded and synthesized under resting conditions. In mammals, NAD+ synthesis is primarily initiated from nicotinamide (Nam) by Nam phosphoribosyltransferase, whereas poly(ADP-ribose) polymerase 1 (PARP1) and 2 (PARP2), sirtuin1 (SIRT1), CD38, and sterile alpha and TIR motif containing 1 (SARM1) are involved in NAD+ breakdown. Using flux analysis with 2H-labeled Nam, we found that when mammalian cells were cultured in the absence of Nam, cellular NAD+ levels were maintained and NAD+ breakdown was completely suppressed. In the presence of Nam, the rate of NAD+ breakdown (RB) did not significantly change upon PARP1, PARP2, SIRT1, or SARM1 deletion, whereas stable expression of CD38 did not increase RB. However, RB in PARP1-deleted cells was much higher compared with that in wild-type cells, in which PARP1 activity was blocked with a selective inhibitor. In contrast, RB in CD38-overexpressing cells in the presence of a specific CD38 inhibitor was much lower compared with that in control cells. The results indicate that PARP1 deletion upregulates the activity of other NADases, whereas CD38 expression downregulates the activity of endogenous NADases, including PARP1 and PARP2. The rate of cellular NAD+ breakdown and the resulting NAD+ concentration may be maintained at a constant level, despite changes in the NAD+-degrading enzyme expression, through the compensatory regulation of NADase activity.


Asunto(s)
ADP-Ribosil Ciclasa 1 , NAD , Poli(ADP-Ribosa) Polimerasa-1 , Sirtuina 1 , NAD/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosil Ciclasa 1/genética , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Niacinamida/farmacología , Niacinamida/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Eliminación de Gen
9.
CNS Neurosci Ther ; 30(9): e70012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39215404

RESUMEN

AIMS: Poly (ADP-ribose) polymerase (PARP) has been extensively investigated in human cancers. Recent studies verified that current available PARP inhibitors (Olaparib or Veliparib) provided clinical palliation of clinical patients suffering from paclitaxel-induced neuropathic pain (PINP). However, the underlying mechanism of PARP overactivation in the development of PINP remains to be investigated. METHODS AND RESULTS: We reported induction of DNA oxidative damage, PARP-1 overactivation, and subsequent nicotinamide adenine dinucleotide (NAD+) depletion as crucial events in the pathogenesis of PINP. Therefore, we developed an Olaparib PROTAC to achieve the efficient degradation of PARP. Continuous intrathecal injection of Olaparib PROTAC protected against PINP by inhibiting the activity of PARP-1 in rats. PARP-1, but not PARP-2, was shown to be a crucial enzyme in the development of PINP. Specific inhibition of PARP-1 enhanced mitochondrial redox metabolism partly by upregulating the expression and deacetylase activity of sirtuin-3 (SIRT3) in the dorsal root ganglions and spinal cord in the PINP rats. Moreover, an increase in the NAD+ level was found to be a crucial mechanism by which PARP-1 inhibition enhanced SIRT3 activity. CONCLUSION: The findings provide a novel insight into the mechanism of DNA oxidative damage in the development of PINP and implicate PARP-1 as a possible therapeutic target for clinical PINP treatment.


Asunto(s)
Daño del ADN , Mitocondrias , Neuralgia , Paclitaxel , Poli(ADP-Ribosa) Polimerasa-1 , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Daño del ADN/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , NAD/metabolismo , Neuralgia/inducido químicamente , Neuralgia/metabolismo , Neuralgia/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Paclitaxel/toxicidad , Ftalazinas/farmacología , Piperazinas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
10.
Cell Rep ; 43(8): 114626, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39167487

RESUMEN

The majority of severe early-onset and juvenile cases of amyotrophic lateral sclerosis (ALS) are caused by mutations in the FUS gene, resulting in rapid disease progression. Mutant FUS accumulates within stress granules (SGs), thereby affecting the dynamics of these ribonucleoprotein complexes. Here, we define the interactome of the severe mutant FUSP525L variant in human induced pluripotent stem cell (iPSC)-derived motor neurons. We find increased interaction of FUSP525L with the PARP1 enzyme, promoting poly-ADP-ribosylation (PARylation) and binding of FUS to histone H1.2. Inhibiting PARylation or reducing H1.2 levels alleviates mutant FUS aggregation, SG alterations, and apoptosis in human motor neurons. Conversely, elevated H1.2 levels exacerbate FUS-ALS phenotypes, driven by the internally disordered terminal domains of H1.2. In C. elegans models, knockdown of H1.2 and PARP1 orthologs also decreases FUSP525L aggregation and neurodegeneration, whereas H1.2 overexpression worsens ALS-related changes. Our findings indicate a link between PARylation, H1.2, and FUS with potential therapeutic implications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Caenorhabditis elegans , Histonas , Mutación , Poli(ADP-Ribosa) Polimerasa-1 , Proteína FUS de Unión a ARN , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Humanos , Histonas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Animales , Mutación/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Poli ADP Ribosilación , Células Madre Pluripotentes Inducidas/metabolismo , Unión Proteica
11.
Cells ; 13(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39195238

RESUMEN

Uveal melanoma (UM) is the most common primary intraocular tumor in adults, with no standardized treatment for advanced disease. Based on preliminary bioinformatical analyses DTYMK and PARP1 were selected as potential therapeutic targets. High levels of both proteins were detected in uveal melanoma cells and correlated with increased tumor growth and poor prognosis. In vitro tests on MP41 (BAP1 positive) and MP46 (BAP1 negative) cancer cell lines using inhibitors pamiparib (PARP1) and Ymu1 (DTYMK) demonstrated significant cytotoxic effects. Combined treatment had synergistic effects in MP41 and additive in MP46 cell lines, reducing cell proliferation and inhibiting the mTOR signaling pathway. Furthermore, the applied inhibitors in combination decreased cell motility and migration speed, especially for BAP1-negative cell lines. Our hypothesis of the double hit into tumoral DNA metabolism as a possible therapeutic option in uveal melanoma was confirmed since combined targeting of DTYMK and PARP1 affected all tested cytophysiological parameters with the highest efficiency. Our in vitro findings provide insights into novel therapeutic avenues for managing uveal melanoma, warranting further exploration in preclinical and clinical settings.


Asunto(s)
Proliferación Celular , Melanoma , Poli(ADP-Ribosa) Polimerasa-1 , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología , Neoplasias de la Úvea/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/metabolismo , Línea Celular Tumoral , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
12.
Genome Med ; 16(1): 107, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187844

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors (PARPi) are targeted therapies approved for homologous recombination repair (HRR)-deficient breast, ovarian, pancreatic, and prostate cancers. Since inhibition of PARP1 is sufficient to cause synthetic lethality in tumors with homologous recombination deficiency (HRD), PARP1 selective inhibitors such as saruparib (AZD5305) are being developed. It is expected that selective PARP1 inhibition leads to a safer profile that facilitates its combination with other DNA damage repair inhibitors. Here, we aimed to characterize the antitumor activity of AZD5305 in patient-derived preclinical models compared to the first-generation PARP1/2 inhibitor olaparib and to identify mechanisms of resistance. METHODS: Thirteen previously characterized patient-derived tumor xenograft (PDX) models from breast, ovarian, and pancreatic cancer patients harboring germline pathogenic alterations in BRCA1, BRCA2, or PALB2 were used to evaluate the efficacy of AZD5305 alone or in combination with carboplatin or an ataxia telangiectasia and Rad3 related (ATR) inhibitor (ceralasertib) and compared it to the first-generation PARPi olaparib. We performed DNA and RNA sequencing as well as protein-based assays to identify mechanisms of acquired resistance to either PARPi. RESULTS: AZD5305 showed superior antitumor activity than the first-generation PARPi in terms of preclinical complete response rate (75% vs. 37%). The median preclinical progression-free survival was significantly longer in the AZD5305-treated group compared to the olaparib-treated group (> 386 days vs. 90 days). Mechanistically, AZD5305 induced more replication stress and genomic instability than the PARP1/2 inhibitor olaparib in PARPi-sensitive tumors. All tumors at progression with either PARPi (39/39) showed increase of HRR functionality by RAD51 foci formation. The most prevalent resistance mechanisms identified were the acquisition of reversion mutations in BRCA1/BRCA2 and the accumulation of hypomorphic BRCA1. AZD5305 did not sensitize PDXs with acquired resistance to olaparib but elicited profound and durable responses when combined with carboplatin or ceralasertib in 3/6 and 5/5 models, respectively. CONCLUSIONS: Collectively, these results show that the novel PARP1 selective inhibitor AZD5305 yields a potent antitumor response in PDX models with HRD and delays PARPi resistance alone or in combination with carboplatin or ceralasertib, which supports its use in the clinic as a new therapeutic option.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratones , Proteína BRCA1/genética , Proteína BRCA2/genética , Femenino , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Piperazinas/farmacología , Piperazinas/uso terapéutico , Indoles/uso terapéutico , Indoles/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carboplatino/farmacología , Carboplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética
13.
Epigenetics Chromatin ; 17(1): 26, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118189

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Transcripción Genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Neoplasias/genética , Neoplasias/metabolismo , Regulación de la Expresión Génica , Metilación de ADN , Cromatina/metabolismo
14.
Immunohorizons ; 8(8): 586-597, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39186692

RESUMEN

Neutrophil extracellular traps (NETs) function to control infectious agents as well as to propagate inflammatory response in a variety of disease conditions. DNA damage associated with chromatin decondensation and NACHT domain-leucine-rich repeat-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation have emerged as crucial events in NET formation, but the link between the two processes is unknown. In this study, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, regulates NET formation triggered by NLRP3 inflammasome activation in neutrophils. Activation of mouse neutrophils with canonical NLRP3 stimulants LPS and nigericin induced NET formation, which was significantly abrogated by pharmacological inhibition of PARP-1. We found that PARP-1 is required for NLRP3 inflammasome assembly by regulating post-transcriptional levels of NLRP3 and ASC dimerization. Importantly, this PARP-1-regulated NLRP3 activation for NET formation was independent of inflammasome-mediated pyroptosis, because caspase-1 and gasdermin D processing as well as IL-1ß transcription and secretion remained intact upon PARP-1 inhibition in neutrophils. Accordingly, pharmacological inhibition or genetic ablation of caspase-1 and gasdermin D had no effect on NLRP3-mediated NET formation. Mechanistically, PARP-1 inhibition increased p38 MAPK activity, which was required for downmodulation of NLRP3 and NETs, because concomitant inhibition of p38 MAPK with PARP-1 restored NLRP3 activation and NET formation. Finally, mice undergoing bacterial peritonitis exhibited increased survival upon treatment with PARP-1 inhibitor, which correlated with increased leukocyte influx and improved intracellular bacterial clearance. Our findings reveal a noncanonical pyroptosis-independent role of NLRP3 in NET formation regulated by PARP-1 via p38 MAPK, which can be targeted to control NETosis in inflammatory diseases.


Asunto(s)
Trampas Extracelulares , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos , Poli(ADP-Ribosa) Polimerasa-1 , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trampas Extracelulares/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inflamasomas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones Endogámicos C57BL , Nigericina/farmacología , Ratones Noqueados , Peritonitis/metabolismo , Peritonitis/inmunología , Lipopolisacáridos/farmacología , Caspasa 1/metabolismo
15.
Cell Death Dis ; 15(8): 610, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174499

RESUMEN

PARP1 is crucial in DNA damage repair, chromatin remodeling, and transcriptional regulation. The principle of synthetic lethality has effectively guided the application of PARP inhibitors in treating tumors carrying BRCA1/2 mutations. Meanwhile, PARP inhibitors have exhibited efficacy in BRCA-proficient patients, further highlighting the necessity for a deeper understanding of PARP1 function and its inhibition in cancer therapy. Here, we unveil PIN2/TRF1-interacting telomerase inhibitor 1 (PINX1) as an uncharacterized PARP1-interacting protein that synergizes with PARP inhibitors upon its depletion across various cancer cell lines. Loss of PINX1 compromises DNA damage repair capacity upon etoposide treatment. The vulnerability of PINX1-deficient cells to etoposide and PARP inhibitors could be effectively restored by introducing either a full-length or a mutant form of PINX1 lacking telomerase inhibitory activity. Mechanistically, PINX1 is recruited to DNA lesions through binding to the ZnF3-BRCT domain of PARP1, facilitating the downstream recruitment of the DNA repair factor XRCC1. In the absence of DNA damage, PINX1 constitutively binds to PARP1, promoting PARP1-chromatin association and transcription of specific DNA damage repair proteins, including XRCC1, and transcriptional regulators, including GLIS3. Collectively, our findings identify PINX1 as a multifaceted partner of PARP1, crucial for safeguarding cells against genotoxic stress and emerging as a potential candidate for targeted tumor therapy.


Asunto(s)
Proteínas de Ciclo Celular , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Daño del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Reparación del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Etopósido/farmacología , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
16.
Nat Commun ; 15(1): 6641, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103378

RESUMEN

DNA-protein crosslinks (DPCs) are toxic lesions that inhibit DNA related processes. Post-translational modifications (PTMs), including SUMOylation and ubiquitylation, play a central role in DPC resolution, but whether other PTMs are also involved remains elusive. Here, we identify a DPC repair pathway orchestrated by poly-ADP-ribosylation (PARylation). Using Xenopus egg extracts, we show that DPCs on single-stranded DNA gaps can be targeted for degradation via a replication-independent mechanism. During this process, DPCs are initially PARylated by PARP1 and subsequently ubiquitylated and degraded by the proteasome. Notably, PARP1-mediated DPC resolution is required for resolving topoisomerase 1-DNA cleavage complexes (TOP1ccs) induced by camptothecin. Using the Flp-nick system, we further reveal that in the absence of PARP1 activity, the TOP1cc-like lesion persists and induces replisome disassembly when encountered by a DNA replication fork. In summary, our work uncovers a PARP1-mediated DPC repair pathway that may underlie the synergistic toxicity between TOP1 poisons and PARP inhibitors.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN-Topoisomerasas de Tipo I , Poli(ADP-Ribosa) Polimerasa-1 , Poli ADP Ribosilación , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Xenopus laevis , Ubiquitinación , Humanos , ADN/metabolismo , Daño del ADN , Camptotecina/farmacología , Procesamiento Proteico-Postraduccional , ADN de Cadena Simple/metabolismo , Proteínas de Xenopus/metabolismo
17.
Eur J Med Chem ; 277: 116726, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116535

RESUMEN

Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 µM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.


Asunto(s)
Antineoplásicos , Proliferación Celular , Cumarinas , Ensayos de Selección de Medicamentos Antitumorales , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Cumarinas/farmacología , Cumarinas/química , Cumarinas/síntesis química , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química
18.
Int J Mol Sci ; 25(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39201718

RESUMEN

Poly (ADP-Ribose) Polymerase (PARP) inhibitors have changed the outcomes and therapeutic strategy for several cancer types. As a targeted therapeutic mainly for patients with BRCA1/2 mutations, PARP inhibitors have commonly been exploited for their capacity to prevent DNA repair. In this review, we discuss the multifaceted roles of PARP-1 and PARP-2 beyond DNA repair, including the impact of PARP-1 on chemokine signalling, immune modulation, and transcriptional regulation of gene expression, particularly in the contexts of angiogenesis and epithelial-to-mesenchymal transition (EMT). We evaluate the pre-clinical role of PARP inhibitors, either as single-agent or combination therapies, to block the metastatic process. Efficacy of PARP inhibitors was demonstrated via DNA repair-dependent and independent mechanisms, including DNA damage, cell migration, invasion, initial colonization at the metastatic site, osteoclastogenesis, and micrometastasis formation. Finally, we summarize the recent clinical advancements of PARP inhibitors in the prevention and progression of distant metastases, with a particular focus on specific metastatic sites and PARP-1 selective inhibitors. Overall, PARP inhibitors have demonstrated great potential in inhibiting the metastatic process, pointing the way for greater use in early cancer settings.


Asunto(s)
Metástasis de la Neoplasia , Neoplasias , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Reparación del ADN/efectos de los fármacos
19.
Biochem J ; 481(17): 1097-1123, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178157

RESUMEN

ADP-ribosylation is a prominent and versatile post-translational modification, which regulates a diverse set of cellular processes. Poly-ADP-ribose (PAR) is synthesised by the poly-ADP-ribosyltransferases PARP1, PARP2, tankyrase (TNKS), and tankyrase 2 (TNKS2), all of which are linked to human disease. PARP1/2 inhibitors have entered the clinic to target cancers with deficiencies in DNA damage repair. Conversely, tankyrase inhibitors have continued to face obstacles on their way to clinical use, largely owing to our limited knowledge of their molecular impacts on tankyrase and effector pathways, and linked concerns around their tolerability. Whilst detailed structure-function studies have revealed a comprehensive picture of PARP1/2 regulation, our mechanistic understanding of the tankyrases lags behind, and thereby our appreciation of the molecular consequences of tankyrase inhibition. Despite large differences in their architecture and cellular contexts, recent structure-function work has revealed striking parallels in the regulatory principles that govern these enzymes. This includes low basal activity, activation by intra- or inter-molecular assembly, negative feedback regulation by auto-PARylation, and allosteric communication. Here we compare these poly-ADP-ribosyltransferases and point towards emerging parallels and open questions, whose pursuit will inform future drug development efforts.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Tanquirasas , Tanquirasas/metabolismo , Tanquirasas/antagonistas & inhibidores , Tanquirasas/genética , Tanquirasas/química , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/genética , Animales , Procesamiento Proteico-Postraduccional , Reparación del ADN , ADP-Ribosilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli ADP Ribosilación/genética
20.
Physiol Rep ; 12(15): e16181, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138135

RESUMEN

This study aimed to evaluate the influence of combined intermittent fasting (IF) and high-intensity interval training (HIIT) on morphology, caspase-independent apoptosis signaling pathway, and myostatin expression in soleus and gastrocnemius (white portion) muscles from healthy rats. Sixty-day-old male Wistar rats (n = 60) were divided into four groups: control (C), IF, high-intensity-interval training (T), and high-intensity-interval training and intermittent fasting (T-IF). The C and T groups received ad libitum chow daily; IF and T-IF received the same standard chow every other day. Animals from T and T-IF underwent a HIIT protocol five times a week for 12 weeks. IF reduced gastrocnemius mass and increased pro-apoptotic proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in soleus and cleaved-to-non-cleaved PARP-1 ratio and myostatin expression in gastrocnemius white portion. HIIT increased AIF and apoptosis repressor with caspase recruitment domain expression in soleus and cleaved-to-total PARP-1 ratio in gastrocnemius muscle white portion. The combination of IF and HIIT reduced fiber cross-sectional area in both muscles, increased EndoG and AIF expression, and decreased cleaved-to-non-cleaved PARP-1 ratio in gastrocnemius muscle white portion. Muscle responses to IF and HIIT are directly impacted by the muscle fiber type composition and are modulated, at least in part, by myostatin and caspase-independent apoptosis signaling.


Asunto(s)
Factor Inductor de la Apoptosis , Apoptosis , Ayuno , Entrenamiento de Intervalos de Alta Intensidad , Fibras Musculares de Contracción Lenta , Atrofia Muscular , Miostatina , Ratas Wistar , Transducción de Señal , Animales , Masculino , Apoptosis/fisiología , Ayuno/metabolismo , Ayuno/fisiología , Miostatina/metabolismo , Entrenamiento de Intervalos de Alta Intensidad/métodos , Ratas , Transducción de Señal/fisiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Factor Inductor de la Apoptosis/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Endodesoxirribonucleasas/metabolismo , Condicionamiento Físico Animal/métodos , Condicionamiento Físico Animal/fisiología , Músculo Esquelético/metabolismo , Ayuno Intermitente , Poli(ADP-Ribosa) Polimerasa-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA