Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(10): 620, 2024 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320493

RESUMEN

Magnetic particle spray mass spectrometry (MPS-MS), an innovative ambient ionization technique proposed by our research group, was employed to determine beta-blockers in human plasma samples. A dispersive solid phase extraction of atenolol, metoprolol, labetalol, propranolol, nadolol, and pindolol was carried out using magnetic molecularly imprinted polymer (M-MIP) particles that were attached to the tip of a metal probe, which was placed in the mass spectrometer inlet. A solvent (1% formic acid in methanol) was dispensed on the particles, and the Taylor cone was formed around them (in high voltage). The analytes were desorbed/ionized and determined by a triple quadrupole mass spectrometer. M-MIP was synthesized with oxprenolol as a pseudo-template, demonstrating good selectivity to beta-blockers compared with no-analog molecules, with an adsorption process occurring in monolayers, according to isotherm studies. Kinetic experiments indicated chemisorption as the predominant M-MIP/analyte interaction. The analytical curves were linear (R2 > 0.98), and the limit of quantification was 3 µg L-1 for all the analytes. Limits of detection ranged from 0.64 to 2.41 µg L-1. Precisions (relative standard deviation) and accuracies (relative error) ranged from 3.95 to 21.20% and -17.05 to 18.93%, respectively. MPS-MS proved to be a simple, sensitive, and advantageous technique compared with conventional approaches. The analyses were fast, requiring no chromatographic separation and without ionic suppression. The method is aligned with green chemistry principles, requiring minimal sample, solvent, and sorbent amounts. MPS-MS successfully integrates sample preparation and ambient ionization mass spectrometry and holds great potential for application with other sorbents, samples, and analytes.


Asunto(s)
Antagonistas Adrenérgicos beta , Antagonistas Adrenérgicos beta/sangre , Antagonistas Adrenérgicos beta/química , Humanos , Límite de Detección , Polímeros Impresos Molecularmente/química , Extracción en Fase Sólida/métodos , Espectrometría de Masas/métodos , Adsorción
2.
J Mol Model ; 30(8): 266, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007951

RESUMEN

CONTEXT: Molecularly imprinted polymers (MIPs) have promising applications as synthetic antibodies for protein and peptide recognition. A critical aspect of MIP design is the selection of functional monomers and their adequate proportions to achieve materials with high recognition capacity toward their targets. To contribute to this goal, we calibrated a molecular dynamics protocol to reproduce the experimental trends in peptide recognition of 13 pre-polymerization mixtures reported in the literature for the peptide toxin melittin. METHODS: Three simulation conditions were tested for each mixture by changing the box size and the number of monomers and cross-linkers surrounding the template in a solvent-explicit environment. Fully atomistic MD simulations of 350 ns were conducted with the AMBER20 software, with ff19SB parameters for the peptide, gaff2 parameters for the monomers and cross-linkers, and the OPC water model. Template-monomer interaction energies under the LIE approach showed significant differences between high-affinity and low-affinity mixtures. Simulation systems containing 100 monomers plus cross-linkers in a cubic box of 90 Å3 successfully ranked the mixtures according to their experimental performance. Systems with higher monomer densities resulted in non-specific intermolecular contacts that could not account for the experimental trends in melittin recognition. The mixture with the best recognition capacity showed preferential binding to the 13-26-α-helix, suggesting a relevant role for this segment in melittin imprinting and recognition. Our findings provide insightful information to assist the computational design of molecularly imprinted materials with a validated protocol that can be easily extended to other templates.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Péptidos/química , Meliteno/química , Polimerizacion , Polímeros Impresos Molecularmente/química , Impresión Molecular/métodos
3.
Mikrochim Acta ; 191(8): 492, 2024 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066907

RESUMEN

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process.


Asunto(s)
Burkholderia , Técnicas Electroquímicas , Electrodos , Grafito , Hidroxibutiratos , Polímeros Impresos Molecularmente , Poliésteres , Grafito/química , Poliésteres/química , Hidroxibutiratos/química , Burkholderia/química , Burkholderia/metabolismo , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Polímeros Impresos Molecularmente/química , Límite de Detección , Oxidación-Reducción , Polihidroxibutiratos
4.
J Chem Inf Model ; 64(13): 5127-5139, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38888100

RESUMEN

Molecularly imprinted polymers (MIPs) have emerged as bespoke materials with versatile molecular applications. In this study, we propose a proof of concept for a methodology employing molecular dynamics (MD) simulations to guide the selection of functional monomers for curcuminoid binding in MIPs. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are phenolic compounds widely employed as spices, pigments, additives, and therapeutic agents, representing the three main curcuminoids of interest. Through MD simulations, we investigated prepolymerization mixtures composed of various functional monomers, including acrylamide (ACA), acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (NVP), with ethylene glycol dimethacrylate (EGDMA) as the cross-linker and acetonitrile as the solvent. Curcumin was selected as the template molecule due to its structural similarity to the other curcuminoids. Notably, the prepolymerization mixture containing NVP as the functional monomer demonstrated superior molecular recognition capabilities toward curcumin. This observation was supported by higher functional monomer molecules surrounding the template, a lower total nonbonded energy between the template and monomer, and a greater number of hydrogen bonds in the aggregate. These findings suggest a stronger affinity between the functional monomer NVP and the template. We synthesized, characterized, and conducted binding tests on the MIPs to validate the MD simulation results. The experimental binding tests confirmed that the MIP-NVP exhibited higher binding capacity. Consequently, based on MD simulations, our computational methodology effectively guided the selection of the functional monomer, leading to MIPs with binding capacity for curcuminoids. The outcomes of this study provide a valuable reference for the rational design of MIPs through MD simulations, facilitating the selection of components for MIPs. This computational approach holds the potential for extension to other templates, establishing a robust methodology for the rational design of MIPs.


Asunto(s)
Curcumina , Simulación de Dinámica Molecular , Polímeros Impresos Molecularmente , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Polímeros Impresos Molecularmente/química , Diseño de Fármacos , Impresión Molecular , Metacrilatos/química , Diarilheptanoides/química , Conformación Molecular
5.
Mikrochim Acta ; 191(7): 374, 2024 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847878

RESUMEN

The combination of silica nanoparticles with fluorescent molecularly imprinted polymers (Si-FMIPs) prepared by a one-pot sol-gel synthesis method to act as chemical sensors for the selective and sensitive determination of captopril is described. Several analytical parameters were optimized, including reagent ratio, solvent, concentration of Si-FMIP solutions, and contact time. Fourier-transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and the ninhydrin assay were used for characterization. The selectivity was evaluated against molecules belonging to other drug classes, such as fluoroquinolones, nonacid nonopioids, benzothiadiazine, alpha amino acids, and nitroimidazoles. Under optimized conditions, the Si-FMIP-based sensor exhibited a working range of 1-15 µM, with a limit of detection (LOD) of 0.7 µM, repeatability of 6.4% (n = 10), and suitable recovery values at three concentration levels (98.5% (1.5 µM), 99.9% (3.5 µM), and 99.2% (7.5 µM)) for wastewater samples. The sensor provided a working range of 0.5-15 µM for synthetic urine samples, with an LOD of 0.4 µM and a repeatability of 7.4% (n = 10) and recovery values of 93.7%, 92.9%, and 98.0% for 1.0 µM, 3.5 µM, and 10 µM, respectively. In conclusion, our single-vessel synthesis approach for Si-FMIPs proved to be highly effective for the selective determination of captopril in wastewater and synthetic urine samples.


Asunto(s)
Captopril , Límite de Detección , Nanopartículas , Aguas Residuales , Captopril/orina , Captopril/análisis , Captopril/química , Aguas Residuales/análisis , Nanopartículas/química , Polímeros Impresos Molecularmente/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/orina , Dióxido de Silicio/química , Impresión Molecular , Humanos
6.
J Chromatogr A ; 1720: 464809, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38490141

RESUMEN

An ultrafast, efficient, and eco-friendly method combining magnetic solid phase extraction and capillary electrophoresis with diode array detection have been developed to determine ractopamine residues in food samples. A restricted access material based on magnetic and mesoporous molecularly imprinted polymer has been properly synthesized and characterized, demonstrating excellent selectivity and high adsorbent capacity. Short-end injection capillary electrophoresis method was optimized: 75 mM triethylamine pH 7 as BGE, -20 kV, 50 mbar by hydrodynamic injection during 8 s, and capillary temperature at 25 °C; reaching ultrafast ractopamine analysis (∼0.6 min) with good peak asymmetry, and free from interfering and/or baseline noise. After sample preparation optimization, the conditions were: 1000 µL of sample at pH 6, 20 mg of adsorbent, stirring time of 120 s, 250 µL of ultrapure water as washing solvent, 1000 µL of methanol: acetic acid (7: 3, v/v) as eluent, and the adsorbent can be reused four times. In these conditions, the analytical method showed recoveries around to 100 %, linearity ranged from 9.74 to 974.0 µg kg-1, correlation coefficient (r) ≥ 0,99 in addition to adequate precision, accuracy, and robustness. After proper validation, the method was successfully applied in the analysis ractopamine residues in bovine milk and bovine and porcine muscle.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Fenetilaminas , Animales , Porcinos , Extracción en Fase Sólida/métodos , Electroforesis Capilar/métodos , Fenómenos Magnéticos , Impresión Molecular/métodos , Cromatografía Líquida de Alta Presión/métodos
7.
J Chromatogr A ; 1720: 464783, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38492290

RESUMEN

This study proposes a new alternative for template removal from molecularly imprinted polymers by heat activated persulfate. It is known that trace amounts of template molecule remains in the polymer network after extraction by current methodologies leading to bleeding and incomplete removal of template which could compromise final determination of target analytes especially in trace analysis. A previously developed molecularly imprinted polymer specially designed for Coenzyme Q10 (CoQ10) extraction was employed as a model to test this template elimination approach. This polymer is based on methacrylic acid and ethylene glycol dimethylacrylate as monomers and Coenzyme Q0 as template. This coenzyme has the same quinone group as the CoQ10. Selectivity was analyzed comparing the recovery of CoQ10 and ubichromenol, a CoQ10 related substance. Chemical degradation using heat-activated persulfate allows the elimination of the template molecule with a high level of efficiency, being a simple and ecological methodology, yielding a polymer that exhibits comparable selectivity and imprinting effect with respect to traditional extraction methods.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Ubiquinona , Calor , Polímeros/química , Impresión Molecular/métodos
8.
Eur J Pharm Biopharm ; 195: 114178, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195049

RESUMEN

The aim of this study was the molecular imprinting polymers (MIPs) assessment as a controlled release system of ciprofloxacin. The MIPs synthesis was performed by three different methods: emulsion, bulk, and co-precipitation. Lactic acid (LA) and methacrylic acid (MA) were used as functional monomers and ethylene glycol dimethacrylate as crosslinker. Also, nonimprinted polymers (NIPs) were synthesized. MIPs and NIPs were characterized by scanning electron microscopy, Fourier Transform Infrared Reflection, specific surface area, pore size, and release kinetics. Their efficiency against Staphylococcus aureus and Escherichia coli, and their cytotoxicity in dermal fibroblast cells were proven. Results show that MIPs are mesoporous materials with a pore size between 10 and 20 nm. A higher adsorption with the co-precipitation MIP with MA as a monomer was found. The release kinetics proved that a non-Fickian process occurred and that the co-precipitation MIP with LA presented the highest release rate (90.51 mg/L) in 8 h. The minimum inhibitory concentration was found between 0.031 and 0.016 mg/L for Staphylococcus aureus and between 0.004 and 0.031 mg/L for the Escherichia coli. No cytotoxicity in cellular cultures was found; also, cellular growth was favored. This study demonstrated that MIPs present promising properties for drug administration and their application in clinical practice.


Asunto(s)
Metacrilatos , Impresión Molecular , Polímeros Impresos Molecularmente , Preparaciones de Acción Retardada , Ciprofloxacina/farmacología , Polímeros , Impresión Molecular/métodos , Escherichia coli , Adsorción
9.
J Mol Model ; 29(11): 346, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37861808

RESUMEN

CONTEXT: Levobunolol is a ß-blocker drug prescribed for the control and prevention of cardiovascular events, such as individuals with cardiac arrhythmia or a history of myocardial infarction. Creating a levobunolol-specific molecularly imprinted polymer (MIP) allows for enhanced selectivity, efficient sample preparation, controlled drug delivery, and improved sensing and detection capabilities. In this sense, the aim of this study was to obtain through DFT calculations the synthesis protocol of a MIP for levobunolol testing different functional monomers (FMs), solvents, and cross-linker agents (CLAs). The analysis of structural and energetic data led to the identification of the optimal MIP synthesis parameters, which involves the use of (trifluoromethyl)-arylic acid (TFMAA) as the functional monomer, toluene and chloroform as the solvents, and pentaerythritol triacrylate (PETRA) as the cross-linking agent. This rational design offers valuable insights for experimentalists seeking to efficiently synthesize a MIP for this important ß-blocker drug. METHODS: DFT calculations were conducted using the B97D functional along with the Pople's split valence 6-31G(d,p) basis set, which includes polarization functions on all atoms (B97D/6-31G(d,p)).


Asunto(s)
Levobunolol , Impresión Molecular , Humanos , Polímeros/química , Solventes/química , Sistemas de Liberación de Medicamentos , Polímeros Impresos Molecularmente , Modelos Teóricos , Impresión Molecular/métodos
10.
J Chem Inf Model ; 63(21): 6740-6755, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37902716

RESUMEN

Molecularly imprinted polymers (MIPs) have significant relevance to analytical sensing due to their functionalized and template-specific structurally complementary cavities, providing increased sensibility and specificity for instrumental analyses, thereby enabling a wide variety of applications, especially for biological processes. Designing and developing MIPs entirely by experimental approaches are time-consuming and costly processes; thus, computational tools are used to assess some of the most critical parameters for imprinting, such as ligand screening. A typical practice is to model functional ligands as monomers; however, this representation fails to predict how ligand-template interactions evolve during polymer growth. In this context, this work aims to evaluate whether additional oligomeric representations affect the formation of noncovalent complexes between typical ligands and the P31 Asian lineage Zika virus epitope, using classical molecular dynamics. The ligands 2-vinylpyridine, 4-vinylaniline, acrylic acid, acrylamide, and 2-hidroxyethyl methacrylate were simulated as monomers, trimers, pentamers, and decamers, and their influence on the epitope structural conservation and ligand-template interactions were evaluated. Analyses of root-mean-square deviation, fluctuation, radius of gyration, pair correlation function, and number of hydrogen bonding-type interactions were conducted, showing the ligand chain size had an influence on the complex formation. However, this influence had no discernible pattern, exhibiting better performance in some cases while noninfluential in others. Of particular significance, in terms of epitope structural conservation, distinct oligomeric chains led to the selection of the distinct most interactive ligands. This observation raises important questions regarding the use of oligomeric chains in MIP simulations, thus prompting the need for further investigations of this subject.


Asunto(s)
Impresión Molecular , Infección por el Virus Zika , Virus Zika , Humanos , Polímeros Impresos Molecularmente , Ligandos , Polímeros/química , Epítopos
11.
Biosensors (Basel) ; 13(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37754111

RESUMEN

This work reports the development and application of a highly selective core@shell-based quantum dot-molecularly imprinted polymer (QD@MIP) sensor for the detection of sulfadiazine (SDZ)-an antibiotic which belongs to the sulfonamide family. The synthesis of the smart material or MIP (molecularly imprinted polymer) was carried out by a precipitation method directly on the quantum dot surface, which played the role of a fluorescent probe in the optical sensor. The synthesized polymer was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Fluorescence experiments were performed in order to evaluate the effects of pH, interaction time of the QD@MIP with the analyte and SDZ concentration in different matrices. Under optimized conditions, a linear concentration range of 10.0-60.0 ppm and a limit of detection of 3.33 ppm were obtained. The repeatability and reproducibility of the proposed QD@MIP were evaluated in terms of the RSD, where RSD values of less than 5% were obtained in both tests. Selectivity studies were carried out in the presence of four possible interfering substances with quenching properties, and the signals obtained for these interferents confirmed the excellent selectivity of the proposed sensor; the imprinting factor value obtained for SDZ was 1.64. Finally, the proposed sensor was applied in real animal-based food samples using a spiked concentration of SDZ, where the recovery values obtained were above 90% (experiments were performed in triplicate).


Asunto(s)
Compuestos de Cadmio , Impresión Molecular , Puntos Cuánticos , Animales , Antibacterianos , Polímeros Impresos Molecularmente , Puntos Cuánticos/química , Compuestos de Cadmio/química , Reproducibilidad de los Resultados , Impresión Molecular/métodos , Telurio/química , Sulfanilamida , Sulfadiazina , Límite de Detección
12.
Artículo en Inglés | MEDLINE | ID: mdl-37535992

RESUMEN

Through density functional theory calculations was studied theoretically the formation process of a magnetic and mesoporous molecularly imprinted polymer for ractopamine (RAC), evaluating the molecular electrostatic potential map, functional monomers, functional monomer / template stoichiometry and crosslink agents. The results revealed that the best conditions for the synthesis were established with acrylic acid as functional monomer in a 1: 4 stoichiometry using acetonitrile as the solvent and ethylene glycol dimethacrylate as crosslink agent. It was observed that nine hydrogen bonds established between the RAC and acrylic acid play a key role on the pre-polymerization complex. In addition, three analytical methods using HPLC, UHPLC and CE instruments were optimized for rapid analysis. The adsorbent was experimentally synthesized considering the best conditions found at the molecular level and characterized by FTIR, DRX, TGA, SEM, TEM, surface analysis, and wettability. After that, the synthesized material was used in magnetic solid phase extraction combined with capillary electrophoresis in a preliminary RAC recovery study from milk samples. Finally, greenness metric with a score of 0.55 have been obtained for the sample preparation procedure using the online AGREEprep metric.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Adsorción , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Fenómenos Magnéticos
13.
Environ Sci Pollut Res Int ; 30(39): 90741-90756, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37462867

RESUMEN

Water pollution is a current global concern caused by emerging pollutants like nonylphenol (NP). This endocrine disruptor cannot be efficiently removed with traditional wastewater treatment plants (WTPs). Therefore, this work aimed to evaluate the adsorption influence of molecularly imprinted polymers (MIPs) on the oxidative degradation (ozone and ultraviolet irradiations) of 4-nonylphenol (4-NP) and its by-products as a coadjuvant in WTPs. MIPs were synthesized and characterized; the effect of the degradation rate under system operating conditions was studied by Box-Behnken response surface design of experiments. The variables evaluated were 4-NP concentration, ozone exposure time, pH, and MIP amount. Results show that the MIPs synthesized by co-precipitation and bulk polymerizations obtained the highest retention rates (> 90%). The maximum adsorption capacities for 4-NP were 201.1 mg L-1 and 500 mg L-1, respectively. The degradation percentages under O3 and UV conditions reached 98-100% at 120 s of exposure at different pHs. The degradation products of 4-NP were compounds with carboxylic and ketonic acids, and the MIP adsorption was between 50 and 60%. Our results present the first application of MIPs in oxidation processes for 4-NP, representing starting points for the use of highly selective materials to identify and remove emerging pollutants and their degradation by-products in environmental matrices.


Asunto(s)
Contaminantes Ambientales , Impresión Molecular , Ozono , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Polímeros/química , Estrés Oxidativo , Adsorción
14.
Biosensors (Basel) ; 13(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37367004

RESUMEN

The present study reports the development and application of a rapid, low-cost in-situ method for the quantification of tartrazine in carbonated beverages using a smartphone-based colorimetric device with molecularly imprinted polymer (MIP). The MIP was synthesized using the free radical precipitation method with acrylamide (AC) as the functional monomer, N,N'-methylenebisacrylamide (NMBA) as the cross linker, and potassium persulfate (KPS) as radical initiator. The smartphone (RadesPhone)-operated rapid analysis device proposed in this study has dimensions of 10 × 10 × 15 cm and is illuminated internally by light emitting diode (LED) lights with intensity of 170 lux. The analytical methodology involved the use of a smartphone camera to capture images of MIP at various tartrazine concentrations, and the subsequent application of the Image-J software to calculate the red, green, blue (RGB) color values and hue, saturation, value (HSV) values from these images. A multivariate calibration analysis of tartrazine in the range of 0 to 30 mg/L was performed, and the optimum working range was determined to be 0 to 20 mg/L using five principal components and a limit of detection (LOD) of 1.2 mg/L was obtained. Repeatability analysis of tartrazine solutions with concentrations of 4, 8, and 15 mg/L (n = 10) showed a coefficient of variation (% RSD) of less than 6%. The proposed technique was applied to the analysis of five Peruvian soda drinks and the results were compared with the UHPLC reference method. The proposed technique showed a relative error between 6% and 16% and % RSD lower than 6.3%. The results of this study demonstrate that the smartphone-based device is a suitable analytical tool that offers an on-site, cost-effective, and rapid alternative for the quantification of tartrazine in soda drinks. This color analysis device can be used in other molecularly imprinted polymer systems and offers a wide range of possibilities for the detection and quantification of compounds in various industrial and environmental matrices that generate a color change in the MIP matrix.


Asunto(s)
Impresión Molecular , Polímeros , Polímeros Impresos Molecularmente , Colorimetría , Tartrazina , Teléfono Inteligente , Impresión Molecular/métodos
15.
Mikrochim Acta ; 190(4): 159, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973457

RESUMEN

A magnetic graphite-epoxy composite (m-GEC) electrochemical sensor is presented based on magnetic imprinted polymer (mag-MIP) to determine homocysteine (Hcy). Mag-MIP was synthesized via precipitation polymerization, using functionalized magnetic nanoparticles (Fe3O4) together with the template molecule (Hcy), the functional monomer 2-hydroxyethyl methacrylate (HEMA), and the structural monomer trimethylolpropane trimethacrylate (TRIM). For mag-NIP (magnetic non-imprinted polymer), the procedure was the same in the absence of Hcy. Morphological and structural properties of the resultant mag-MIP and mag-NIP were examined using TEM, FT-IR, and Vibrating Sample Magnetometer. Under optimized conditions, the m-GEC/mag-MIP sensor showed a linear range of 0.1-2 µmol L-1, with a limit of detection (LOD) of 0.030 µmol L-1. In addition, the proposed sensor responded selectively to Hcy compared to several interferents present in biological samples. The recovery values determined by differential pulse voltammetry (DPV) were close to 100% for natural and synthetic samples, indicating good method accuracy. The developed electrochemical sensor proves to be a suitable device for determining Hcy, with advantages related to magnetic separation and electrochemical analysis.


Asunto(s)
Grafito , Nanopartículas de Magnetita , Impresión Molecular , Polímeros Impresos Molecularmente , Espectroscopía Infrarroja por Transformada de Fourier , Polímeros/química , Grafito/química , Impresión Molecular/métodos
16.
Biosensors (Basel) ; 13(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979582

RESUMEN

The correct detection and quantification of pollutants in water is key to regulating their presence in the environment. Biosensors offer several advantages, such as minimal sample preparation, short measurement times, high specificity and sensibility and low detection limits. The purpose of this review is to explore the different types of optical biosensors, focusing on their biological elements and their principle of operation, as well as recent applications in the detection of pollutants in water. According to our literature review, 33% of the publications used fluorescence-based biosensors, followed by surface plasmon resonance (SPR) with 28%. So far, SPR biosensors have achieved the best results in terms of detection limits. Although less common (22%), interferometers and resonators (4%) are also highly promising due to the low detection limits that can be reached using these techniques. In terms of biological recognition elements, 43% of the published works focused on antibodies due to their high affinity and stability, although they could be replaced with molecularly imprinted polymers. This review offers a unique compilation of the most recent work in the specific area of optical biosensing for water monitoring, focusing on both the biological element and the transducer used, as well as the type of target contaminant. Recent technological advances are discussed.


Asunto(s)
Técnicas Biosensibles , Contaminantes Ambientales , Contaminantes del Agua , Técnicas Biosensibles/métodos , Resonancia por Plasmón de Superficie/métodos , Polímeros Impresos Molecularmente
17.
Molecules ; 27(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36500214

RESUMEN

Fluoroquinolones (FQs) are broad-spectrum antibiotics widely used to treat animal and human infections. The use of FQs in these activities has increased the presence of antibiotics in wastewater and food, triggering antimicrobial resistance, which has severe consequences for human health. The detection of antibiotics residues in water and food samples has attracted much attention. Herein, we report the development of a highly sensitive online solid-phase extraction methodology based on a selective molecularly imprinted polymer (MIP) and fluorescent detection (HPLC-FLD) for the determination of FQs in water at low ng L−1 level concentration. Under the optimal conditions, good linearity was obtained ranging from 0.7 to 666 ng L−1 for 7 FQs, achieving limits of detection (LOD) in the low ng L−1 level and excellent precision. Recoveries ranged between 54 and 118% (RSD < 17%) for all the FQs tested. The method was applied to determining FQs in river water. These results demonstrated that the developed method is highly sensitive and selective.


Asunto(s)
Fluoroquinolonas , Impresión Molecular , Animales , Humanos , Fluoroquinolonas/química , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Polímeros/química , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Antibacterianos/análisis , Agua/química
18.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36433245

RESUMEN

A novel, low-cost, sensitive microwave microfluidic glucose detecting biosensor incorporating molecularly imprinted polymer (MIP) is presented. The sensing device is based on a stub resonator to characterize water glucose solutions. The tip of one of the stubs is coated with MIP to increase the selectivity of the sensor and hence the sensitivity compared to the uncoated or to the coated with non-imprinted polymer (NIP) sensor. The sensor was fabricated on a FR4 substrate for low-cost purposes. In the presence of the MIP, the sensor loaded with a glucose solution ranging from 50 mg/dL to 400 mg/dL is observed to experience an absorption frequency shift of 73 MHz when the solutions flow in a microfluidic channel passing sensing area, while the lower limit of detection (LLD) of the sensor is discovered to be 2.4 ng/dL. The experimental results show a high sensitivity of 1.3 MHz/(mg/dL) in terms of absorption frequency.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Microondas , Límite de Detección , Glucosa
19.
Talanta ; 250: 123723, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868148

RESUMEN

Coffee, a beverage with a complex chemical composition, is appreciated for the sensory experience of its taste and aroma. The compound 5-(hydroxymethyl)-2-furfural (HMF) is essential for sensory characterization of the beverage, and is also used in the traceability of its production. In this work, a procedure combining salting-out assisted liquid-liquid extraction (SALLE) and an electropolymerized molecularly imprinted polymer (e-MIP) was developed for the detection and quantification of HMF in coffee samples. The sample preparation step using SALLE employed a combination of acetonitrile and phosphate-buffered saline, in a proportion of 70:30 (ACN:PBS), with addition of 0.02 g of NaCl. The new sensor (e-MIP) was prepared by electropolymerization of p-aminobenzoic acid onto a glassy carbon electrode (GCE) using cyclic voltammetry (CV). Analytical determinations were performed by differential pulse voltammetry (DPV). The linear regression correlation coefficient (r2) for the response was 0.9986. The limits of detection and quantification were 0.372 mg L-1 and 1.240 mg L-1, respectively. The repeatability and reproducibility values obtained were 6 and 10%, respectively. The recoveries for three concentration levels were between 97 and 101%. Analyses of different coffee samples showed that the HMF concentrations varied from 261.0 ± 41.0 to 770.2 ± 55.9 mg kg-1 in powdered coffee samples, and from 1510 ± 50 to 4445 ± 278 mg kg-1 in instant coffee samples. The advantages of this procedure, compared to other methods described in the literature, are its simplicity, easy operation, good selectivity and sensitivity, low cost, and minimal use of organic solvents.


Asunto(s)
Impresión Molecular , Ácido 4-Aminobenzoico , Acetonitrilos , Carbono/química , Café , Técnicas Electroquímicas/métodos , Electrodos , Furaldehído/análogos & derivados , Límite de Detección , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Fosfatos , Polímeros/química , Reproducibilidad de los Resultados , Cloruro de Sodio , Solventes
20.
Anal Methods ; 14(12): 1208-1213, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35234224

RESUMEN

The purpose of this work was to apply an electrochemical sensor modified with a molecularly imprinted polymer (MIP) and carbon black (CB) for 17ß-estradiol (E2) detection in river water samples. The synthesized MIP was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The modification of the electrode with the MIP and CB contributed to increased sensitivity, an increase of over 173% in relation to that of the bare electrode. The experimental parameters, amount of modifiers, pH and possible interfering species were evaluated. The method showed linearity from 0.10 to 23.0 µmol L-1 and detection and quantification limits of 0.03 and 0.10 µmol L-1, respectively. The application of the developed sensor was considered simple, resulting in a fast, low operating cost method, with recovery values between 103 and 105%.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Técnicas Electroquímicas/métodos , Estradiol , Límite de Detección , Impresión Molecular/métodos , Hollín
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA