Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 106(7): 1832-1836, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35072493

RESUMEN

For years, the presence of clubroot disease and its causal agent, Plasmodiophora brassicae, in Mexico has been stated as a fact. However, an intensive search of the scientific literature in English and Spanish, as well as gray literature including theses and government reports, did not reveal any information about the actual detection of the pathogen, affected hosts, or areas with clubroot presence, or any information about clubroot (hernia de la col in Mexico). We followed a multistep process to confirm whether P. brassicae was indeed in Mexico. First, we identified agricultural communities with a history of cruciferous crop cultivation. Second, we asked growers if they had seen clubroot on their crops, using pictures of the characteristic root galls. Third, we collected soil from the locations where clubroot was reported and looked for clubroot/P. brassicae in the soil using several cruciferous bait plants. For the first time we confirm the presence of the clubroot pathogen P. brassicae in Mexico, through a bioassay, the presence of resting spores, and a P. brassicae-specific PCR assay. The identification of P. brassicae in Mexico will contribute to our understanding of the genetic diversity of this elusive and devastating plant pathogen in future studies.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Plasmodiophorida , México , Enfermedades de las Plantas , Plasmodiophorida/genética , Suelo , Esporas Protozoarias
2.
Phytopathology ; 109(11): 1957-1965, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31237188

RESUMEN

Spongospora subterranea f. sp. subterranea, causal agent of powdery scab and root galls of potatoes, occurs worldwide and is responsible for quality and yield losses in potato production in South Africa. Despite being one of the most important potato pathogens in South Africa, little information is available on the genetic structure and diversity of S. subterranea f. sp. subterranea, which could provide insight into the factors shaping its evolution and the role of inoculum sources in disease development. A total of 172 samples were collected from four potato growing regions in South Africa. An additional 27 samples obtained from Colombia were included for comparative purposes. The samples were screened against six informative microsatellite (simple-sequence repeat) markers. Of the 172 samples obtained from potato growing regions in South Africa, there were 75 multilocus genotypes (MLGs), only 16 of which were shared between potato growing regions, indicating substantial gene flow and countrywide dispersal of the pathogen. The presence of common MLGs among the root- and tuber-derived samples indicated a lack of specialization of S. subterranea f. sp. subterranea to either tuber or root infection. Nei's unbiased estimates of gene diversity for the clone-corrected data were low and ranged from 0.24 to 0.38. Analysis of molecular variance and discriminant analysis of principal components showed no population differentiation between different potato growing regions in South Africa and between root- and tuber-derived genotypes. The presence of MLGs, high considerable genotypic diversity, and failure to reject the null hypothesis of random mating in most populations are indicative of some kind of recombination, either sexual or asexual, in these S. subterranea f. sp. subterranea populations. Information from this study provides new insights into the genetic structure and diversity of S. subterranea f. sp. subterranea in South Africa. Continuous monitoring of the pathogen population dynamics will be helpful in implementing effective region-specific management strategies for the pathogen, especially in the development of resistant potato cultivars.


Asunto(s)
Variación Genética , Tumores de Planta , Plasmodiophorida , Solanum tuberosum , Colombia , Enfermedades de las Plantas/parasitología , Tumores de Planta/parasitología , Plasmodiophorida/genética , Solanum tuberosum/parasitología , Sudáfrica
3.
Artículo en Inglés | MEDLINE | ID: mdl-24438302

RESUMEN

Spongospora subterranea is a soil-borne obligate parasite responsible for potato powdery scab disease. S. subterranea is a member of the order Plasmodiophorida, a protist taxa that is related to Cercozoa and Foraminifera but the fine details of these relationships remain unresolved. Currently there is only one available complete mtDNA sequence of a cercozoan, Bigelowiella natans. In this work, the mitochondrial sequence of a S. subterranea isolate infecting an Andean variety of S. tuberosum ssp. andigena (Diacol-Capiro) is presented. The mtDNA codes for 16 proteins of the respiratory chain, 11 ribosomal proteins, 3 ribosomal RNAs, 24 tRNAs, a RNA processing RNaseP, a RNA-directed polymerase, and two proteins of unknown function. This is the first report of a mtDNA genome sequence from a plasmodiophorid and will be useful in clarifying the phylogenetic relationship of this group to other members in the supergroup Rhizaria once more mtDNA sequences are available.


Asunto(s)
Genoma Mitocondrial , Genoma de Protozoos , Plasmodiophorida/genética , Solanum tuberosum/parasitología , Composición de Base/genética , Emparejamiento Base/genética , Secuencia de Bases , ADN Circular/genética , ADN Mitocondrial/genética , Sistemas de Lectura Abierta/genética , Enfermedades de las Plantas/parasitología , ARN de Transferencia/genética
4.
PLoS One ; 8(6): e67944, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23840791

RESUMEN

Spongospora subterranea f. sp. subterranea (Sss) causes two diseases on potato (Solanum tuberosum), lesions on tubers and galls on roots, which are economically important worldwide. Knowledge of global genetic diversity and population structure of pathogens is essential for disease management including resistance breeding. A combination of microsatellite and DNA sequence data was used to investigate the structure and invasion history of Sss. South American populations (four countries, 132 samples) were consistently more diverse than those from all other regions (15 countries, 566 samples), in agreement with the hypothesis that Sss originated in South America where potato was domesticated. A substantial genetic differentiation was found between root and tuber-derived samples from South America. Estimates of past and recent gene flow suggested that Sss was probably introduced from South America into Europe. Subsequently, Europe is likely to have been the recent source of migrants of the pathogen, acting as a "bridgehead" for further global dissemination. Quarantine measures must continue to be focussed on maintaining low global genetic diversity and avoiding exchange of genetic material between the native and introduced regions. Nevertheless, the current low global genetic diversity of Sss allows potato breeders to select for resistance, which is likely to be durable.


Asunto(s)
Variación Genética/genética , Enfermedades de las Plantas/parasitología , Plasmodiophorida/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitología , Cruzamiento/métodos , Europa (Continente) , Filogenia , Raíces de Plantas/parasitología , Infecciones por Protozoos/parasitología , Medición de Riesgo , América del Sur
5.
PLoS One ; 7(9): e45358, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028958

RESUMEN

Durvillaea antarctica (Fucales, Phaeophyceae) is a large kelp of high ecological and economic significance in the Southern Hemisphere. In natural beds along the central coast of Chile (Pacific Ocean), abnormal growth characterized by evident gall development and discolorations of the fronds/thallus was observed. Analysing these galls by light microscopy and scanning electron microscopy revealed the presence of endophytic eukaryotes showing typical characteristics for phytomyxean parasites. The parasite developed within enlarged cells of the subcortical tissue of the host. Multinucleate plasmodia developed into many, single resting spores. The affiliation of this parasite to the Phytomyxea (Rhizaria) was supported by 18S rDNA data, placing it within the Phagomyxida. Similar microorganisms were already reported once 23 years ago, indicating that these parasites are persistent and widespread in D. antarctica beds for long times. The symptoms caused by this parasite are discussed along with the ecological and economic consequences. Phytomyxean parasites may play an important role in the marine ecosystem, but they remain understudied in this environment. Our results demonstrate for the first time the presence of resting spores in Phagomyxida, an order in which resting spores were thought to be absent making this the first record of a phagomyxean parasite with a complete life cycle so far, challenging the existing taxonomic concepts within the Phytomyxea. The importance of the here described resting spores for the survival and ecology of the phagomyxid parasite will be discussed together with the impact this parasite may have on 'the strongest seaweed of the world', which is an important habitat forming and economic resource from the Southern Hemisphere.


Asunto(s)
Kelp/parasitología , Phaeophyceae/parasitología , Plasmodiophorida/patogenicidad , Chile , ADN Ribosómico/genética , Ecología , Kelp/ultraestructura , Microscopía de Fuerza Atómica , Phaeophyceae/ultraestructura , Filogenia , Plasmodiophorida/clasificación , Plasmodiophorida/genética , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA