Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.798
Filtrar
1.
Front Immunol ; 15: 1465365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253072

RESUMEN

C-reactive protein (CRP) plays a crucial role in the diagnosis and monitoring of the non-specific acute phase response in humans. In contrast, rat CRP (rCRP) is an atypical acute-phase protein that possesses unique features, such as a possible incapacity to trigger the complement system and markedly elevated baseline plasma concentrations. To facilitate in vitro studies on these unique characteristics, obtaining high-quality pure rCRP is essential. Here we explored various strategies for rCRP purification, including direct isolation from rat plasma and recombinant expression in both prokaryotic and eukaryotic systems. Our study optimized the recombinant expression system to enhance the secretion and purification efficiency of rCRP. Compared to traditional purification methods, we present a streamlined and effective approach for the expression and purification of rCRP in the Pichia pastoris system. This refined methodology offers significant improvements in the efficiency and effectiveness of rCRP purification, thereby facilitating further structural and functional studies on rCRP.


Asunto(s)
Proteína C-Reactiva , Proteínas Recombinantes , Animales , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Ratas , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/genética , Expresión Génica , Saccharomycetales/genética , Saccharomycetales/metabolismo , Pichia/genética , Pichia/metabolismo
2.
J Biosci Bioeng ; 138(4): 314-323, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098474

RESUMEN

Economically feasible ethanol production requires efficient hydrolysis of lignocellulosic biomass and high-temperature processing to enable simultaneous saccharification and fermentation. During the lignocellulolysic hydrolysate, the yeast must encounter with a multiple of inhibitors such as heat and furfural. To solve this problem, a potential fermentative yeast strain that tolerated simultaneous multistress and enhance ethanol concentration was investigated. Twenty yeast isolates were classified into two major yeast species, namely Pichia kudriavzevii (twelve isolates) and Candida tropicalis (eight isolates). All P. kudriavzevii isolates were able to grow at high temperature (45 °C) and exhibited stress tolerance toward furfural. Among P. kudriavzevii isolates, NUCG-S3 presented the highest specific growth rate under each stress condition of heat and furfural, and multistress. Morphological changes in P. kudriavzevii isolates (NUCG-S2, NUCG-S3, NUKL-P1, NUKL-P3, and NUOR-J1) showed alteration in mean cell length and width compared to the non-stress condition. Ethanol production by glucose was also determined. The yeast strain, NUCG-S3, gave the highest ethanol concentrations at 99.46 ± 0.82, 62.23 ± 0.96, and 65.80 ± 0.62 g/l (P < 0.05) under temperature of 30 °C, 40 °C, and 42 °C, respectively. The tolerant isolated yeast NUCG-S3 achieved ethanol production of 53.58 ± 3.36 and 48.06 ± 3.31 g/l (P < 0.05) in the presence of 15 mM furfural and multistress (42 °C with 15 mM furfural), respectively. Based on the results of the present study, the novel thermos and furfural-tolerant yeast strain P. kudriavzevii NUCG-S3 showed promise as a highly proficient yeast for high-temperature ethanol fermentation.


Asunto(s)
Etanol , Fermentación , Furaldehído , Pichia , Pichia/metabolismo , Pichia/crecimiento & desarrollo , Pichia/fisiología , Etanol/metabolismo , Furaldehído/metabolismo , Furaldehído/análogos & derivados , Estrés Fisiológico , Candida tropicalis/metabolismo , Candida tropicalis/crecimiento & desarrollo , Calor , Glucosa/metabolismo , Hidrólisis , Biomasa , Lignina/metabolismo
3.
PLoS Pathog ; 20(8): e1012487, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39213280

RESUMEN

Protective vaccines are crucial for preventing and controlling coronavirus disease 2019 (COVID-19). Updated vaccines are needed to confront the continuously evolving and circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. These vaccines should be safe, effective, amenable to easily scalable production, and affordable. Previously, we developed receptor binding domain (RBD) dimer-based protein subunit vaccines (ZF2001 and updated vaccines) in mammalian cells. In this study, we explored a strategy for producing RBD-dimer immunogens in Pichia pastoris. We found that wild-type P. pastoris produced hyperglycosylated RBD-dimer protein containing four N-glycosylation sites in P. pastoris. Therefore, we engineered the wild type P. pastoris (GS strain) into GSΔOCH1pAO by deleting the OCH1 gene (encoding α-1,6-mannosyltransferase enzyme) to decrease glycosylation, as well as by overexpressing the HIS4 gene (encoding histidine dehydrogenase) to increase histidine synthesis for better growth. In addition, RBD-dimer protein was truncated to remove the R328/F329 cleavage sites in P. pastoris. Several homogeneous RBD-dimer proteins were produced in the GSΔOCH1pAO strain, demonstrating the feasibility of using the P. pastoris expression system. We further resolved the cryo-EM structure of prototype-Beta RBD-dimer complexed with the neutralizing antibody CB6 to reveal the completely exposed immune epitopes of the RBDs. In a murine model, we demonstrated that the yeast-produced RBD-dimer induces robust and protective antibody responses, which is suitable for boosting immunization. This study developed the yeast system for producing SARS-CoV-2 RBD-dimer immunogens, providing a promising platform and pipeline for the future continuous updating and production of SARS-CoV-2 vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Animales , Ratones , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Glicosilación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Humanos , Anticuerpos Neutralizantes/inmunología , Ratones Endogámicos BALB C , Anticuerpos Antivirales/inmunología , Saccharomycetales/genética , Saccharomycetales/inmunología , Saccharomycetales/metabolismo , Femenino , Pichia/genética , Pichia/metabolismo
4.
ACS Synth Biol ; 13(8): 2567-2576, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39092670

RESUMEN

Collagen II (COL2) is the major component of cartilage tissue and is widely applied in pharmaceuticals, food, and cosmetics. In this study, COL fragments were extracted from human COL2 for secretory expression in Pichia pastoris. Three variants were successfully secreted by shake flask cultivation with a yield of 73.3-100.7 mg/L. The three COL2 variants were shown to self-assemble into triple-helix at 4 °C and capable of forming higher order assembly of nanofiber and hydrogel. The bioactivities of the COL2 variants were validated, showing that sample 205 exhibited the best performance for inducing fibroblast differentiation and cell migration. Meanwhile, sample 205 and 209 exhibited higher capacity for inducing in vitro blood clotting than commercial mouse COL1. To overexpress sample 205, the expression cassettes were constructed with different promoters and signal peptides, and the fermentation condition was optimized, obtaining a yield of 172 mg/L for sample 205. Fed-batch fermentation was carried out using a 5 L bioreactor, and the secretory protease Pep4 was knocked out to avoid sample degradation, finally obtaining a yield of 3.04 g/L. Here, a bioactive COL2 fragment was successfully identified and can be overexpressed in P. pastoris; the variant may become a potential biomaterial for skin care.


Asunto(s)
Colágeno Tipo II , Humanos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Ratones , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Fermentación , Pichia/genética , Pichia/metabolismo , Movimiento Celular/genética , Fibroblastos/metabolismo , Diferenciación Celular , Reactores Biológicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Nanofibras/química
5.
Int J Mol Sci ; 25(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39201806

RESUMEN

A gene encoding a polysaccharide-degrading enzyme was cloned from the genome of the bacterium Nocardiopsis halotolerans. Analysis of the amino acid sequence of the protein showed the presence of the catalytic domain of the endo-1,4-ß-xylanases of the GH11 family. The gene was amplified by PCR and ligated into the pPic9m vector. A recombinant producer based on Pichia pastoria was obtained. The production of the enzyme, which we called NhX1, was carried out in a 10 L fermenter. Enzyme production was 10.4 g/L with an activity of 927 U/mL. Purification of NhX1 was carried out using Ni-NTA affinity chromatography. The purified enzyme catalyzed the hydrolysis of xylan but not other polysaccharides. Endo-1,4-ß-xylanase NhX1 showed maximum activity and stability at pH 6.0-7.0. The enzyme showed high thermal stability, remaining active at 90 °C for 20 min. With beechwood xylan, the enzyme showed Km 2.16 mg/mL and Vmax 96.3 U/mg. The products of xylan hydrolysis under the action of NhX1 were xylobiose, xylotriose, xylopentaose, and xylohexaose. Endo-1,4-ß-xylanase NhX1 effectively saccharified xylan-containing products used for the production of animal feed. The xylanase described herein is a thermostable enzyme with biotechnological potential produced in large quantities by P. pastoria.


Asunto(s)
Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Xilanos , Xilanos/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Hidrólisis , Actinobacteria/enzimología , Actinobacteria/genética , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Clonación Molecular/métodos , Especificidad por Sustrato , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pichia/genética , Pichia/metabolismo , Actinomycetales/enzimología , Actinomycetales/genética , Secuencia de Aminoácidos , Saccharomycetales
6.
Molecules ; 29(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39124965

RESUMEN

The Pichia kluyveri, a proliferation commonly found in Sichuan pickles (SCPs), can accelerate the growth and reproduction of spoilage bacteria, causing off-odor development and decay. Although D-limonene, a common natural preservative, effectively restricts P. kluyveri, its inhibitory mechanism remains unclear. This study aimed to elucidate this molecular mechanism by investigating the impact on basic P. kluyveri metabolism. The findings revealed that D-limonene inhibited P. kluyveri growth and disrupted the transcription of the genes responsible for encoding the enzymes involved in cell wall and membrane synthesis, oxidative phosphorylation, glycolysis, and the tricarboxylic acid (TCA) cycle pathway. The results indicated that these events disrupted crucial metabolism such as cell wall and membrane integrity, adenosine triphosphate (ATP) synthesis, and reactive oxygen species (ROS) balance. These insights provided a comprehensive understanding of the inhibitory effect of D-limonene on the growth and reproduction of P. kluyveri while highlighting its potential application in the SCP industry.


Asunto(s)
Limoneno , Pichia , Limoneno/farmacología , Pichia/metabolismo , Pichia/genética , Especies Reactivas de Oxígeno/metabolismo
7.
Microb Cell Fact ; 23(1): 206, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044288

RESUMEN

BACKGROUND: Pichia pastoris (Komagataella phaffii) is a promising production host, but the usage of methanol limits its application in the medicine and food industries. RESULTS: To improve the constitutive expression of heterologous proteins in P. pastoris, four new potential transcription regulators (Loc1p, Msn2p, Gsm1p, Hot1p) of the glyceraldehyde triphosphate dehydrogenase promoter (pGAP) were revealed in this study by using cellulase E4 as reporter gene. On this basis, a series of P. pastoris strains with knockout or overexpression of transcription factors were constructed and the deletion of transcription factor binding sites on pGAP was confirmed. The results showed that Loc1p and Msn2p can inhibit the activity of pGAP, while Gsm1p and Hot1p can enhance the activity of pGAP; Loc1p, Gsm1p and Hot1p can bind directly to pGAP, while Msn2p must be treated to expose the C-terminal domain to bind to pGAP. Moreover, manipulating a single transcription factor led to a 0.96-fold to 2.43-fold increase in xylanase expression. In another model protein, aflatoxin oxidase, knocking out Loc1 based on AFO-∆Msn2 strain resulted in a 0.63-fold to 1.4-fold increase in expression. It can be demonstrated that the combined use of transcription factors can further improve the expression of exogenous proteins in P. pastoris. CONCLUSION: These findings will contribute to the construction of pGAP-based P. pastoris systems towards high expression of heterologous proteins, hence improving the application potential of yeast.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Pichia/genética , Pichia/metabolismo
8.
Methods Mol Biol ; 2844: 159-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068339

RESUMEN

This chapter reviews the different promoters used to control gene expression in the yeast Pichia pastoris, mainly for recombinant protein production. It covers natural inducible, derepressed, and constitutive promoters, as well as engineered synthetic/hybrid promoters, orthologous promoters from related yeasts, and emerging bidirectional promoters. Key examples, characteristics, and regulatory mechanisms are discussed for each promoter class. Recent efforts in promoter engineering through rational design, mutagenesis, and computational approaches are also highlighted. Looking ahead, we anticipate further developments that will enhance promoter design for Pichia pastoris. Overall, this comprehensive overview underscores the importance of promoter choice and engineering for fully harnessing Pichia pastoris biotechnological potential.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas Recombinantes , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Ingeniería Genética/métodos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Pichia/genética , Pichia/metabolismo
9.
J Agric Food Chem ; 72(29): 16403-16411, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39004912

RESUMEN

As a highly toxic mycotoxin, ochratoxin A (OTA) is widely contaminating agricultural products and has various toxicological effects. Bioenzymes for OTA degradation have shown promising potential for detoxification. Other than the efficient amidohydrolase ADH3 previously, two novel amidohydrolases ADH1 and AMD3 were obtained in this study. During Escherichia coli expression, the expressed protein solubility was very low and will limit future industrial application. Here, high copy number integrations were screened, and the amidohydrolases were efficiently secretory expressed by Pichia pastoris GS115. The protein yields from 1.0 L of fermentation supernatant were 53.5 mg for ADH1, 89.15 mg for ADH3, and 79.5 mg for AMD3. The catalytic efficiency (Kcat/Km) of secretory proteins was 124.95 s-1 mM-1 for ADH3, 123.21 s-1 mM-1 for ADH1, and 371.99 s-1 mM-1 for AMD3. In comparison to E. coli expression, the active protein yields substantially increased 15.78-51.53 times. Meanwhile, two novel amidohydrolases (ADH1 and AMD3) showed much higher activity than ADH3 that produced by secretory expression.


Asunto(s)
Amidohidrolasas , Expresión Génica , Ocratoxinas , Ocratoxinas/metabolismo , Ocratoxinas/química , Hidrólisis , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Amidohidrolasas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Saccharomycetales/genética , Saccharomycetales/enzimología , Saccharomycetales/metabolismo , Cinética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Fermentación , Pichia/genética , Pichia/metabolismo
10.
Int J Biol Macromol ; 275(Pt 1): 133461, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945343

RESUMEN

Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % ß-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.


Asunto(s)
Anticuerpos de Cadena Única , Animales , Ratones , Conejos , Secuencia de Aminoácidos , Animales Ponzoñosos , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/farmacología , Expresión Génica , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/química , Neurotoxinas/genética , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Venenos de Escorpión/antagonistas & inhibidores , Venenos de Escorpión/química , Venenos de Escorpión/genética , Escorpiones , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/aislamiento & purificación , Anticuerpos de Cadena Única/farmacología
11.
Front Biosci (Elite Ed) ; 16(2): 19, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38939917

RESUMEN

Komagataella phaffii (K. phaffii) (Pichia pastoris), also called biotech yeast, is a yeast species with many applications in the biotechnology and pharmaceutical industries. This methylotrophic yeast has garnered significant interest as a platform for the production of recombinant proteins. Numerous benefits include effective secretory expression that facilitates the easy purification of heterologous proteins, high cell density with rapid growth, post-translational changes, and stable gene expression with integration into the genome. In the last thirty years, K. phaffii has also been refined as an adaptable cell factory that can produce hundreds of biomolecules in a laboratory setting and on an industrial scale. Indeed, over 5000 recombinant proteins have been generated so far using the K. phaffii expression method, which makes up 30% of the total cell protein or 80% of the total released protein. K. phaffii has been used to manufacture more than 70 commercial products in addition to over 300 industrial processes that have been granted licenses. Among these are useful enzymes for industrial biotechnology, including xylanase, mannanase, lipase, and phytase. The others are biopharmaceuticals, which include human serum albumin, insulin, hepatitis B surface antigen, and epidermal growth factor. Compared to other expression systems, this yeast is also considered a special host for synthesizing subunit vaccines, which have recently been supplanted by alternative vaccination types, such as inactivated/killed and live attenuated vaccines. Moreover, efficient production of recombinant proteins is achieved through multi-level optimization methods, such as codon bias, gene dosage, promoters, signal peptides, and environmental factors. Therefore, although K. phaffii expression systems are efficient and simple with clearly established process procedures, it is still necessary to determine the ideal conditions since these vary depending on the target protein to ensure the highest recombinant protein generation. This review addresses the K. phaffii expression system, its importance in industrial and biopharmaceutical protein production, and some bioprocessing and genetic modification strategies for efficient protein production. K. phaffii will eventually continue contributing as a potent expression system in research areas and industrial applications.


Asunto(s)
Proteínas Recombinantes , Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Productos Biológicos/metabolismo , Biotecnología/métodos , Pichia/genética , Pichia/metabolismo
12.
Sci Rep ; 14(1): 14233, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902520

RESUMEN

Converting waste into high-value products promotes sustainability by reducing waste and creating new revenue streams. This study investigates the potential of diverse yeasts for microbial oil production by utilizing short-chain fatty acids (SCFAs) that can be produced from organic waste and focuses on identifying strains with the best SCFA utilisation, tolerance and lipid production. A collection of 1434 yeast strains was cultivated with SCFAs as the sole carbon source. Eleven strains emerged as candidates with promising growth rates and high lipid accumulation. Subsequent fermentation experiments in liquid SCFA-rich media, which focused on optimizing lipid accumulation by adjusting the carbon to nitrogen (C/N) ratio, showed an increase in lipid content at a C/N ratio of 200:1, but with a concurrent reduction in biomass. Two strains were characterized by their superior ability to produce lipids compared to the reference strain Yarrowia lipolytica CECT124: Y. lipolytica EXF-17398 and Pichia manshurica EXF-7849. Characterization of these two strains indicated that they exhibit a biotechnologically relevant balance between maximizing lipid yield and maintaining growth at high SCFA concentrations. These results emphasize the potential of using SCFAs as a sustainable feedstock for oleochemical production, offering a dual benefit of waste valorisation and microbial oil production.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Ácidos Grasos Volátiles/metabolismo , Levaduras/metabolismo , Levaduras/crecimiento & desarrollo , Yarrowia/metabolismo , Yarrowia/crecimiento & desarrollo , Ensayos Analíticos de Alto Rendimiento/métodos , Biomasa , Biocombustibles/microbiología , Ácidos Carboxílicos/metabolismo , Pichia/metabolismo , Pichia/crecimiento & desarrollo
13.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38906842

RESUMEN

Yeasts are unicellular eukaryotic microorganisms extensively employed in various applications, notably as an alternative source of protein in feeds, owing to their nutritional benefits. Despite their potential, marine and mangrove yeast species used in the aquaculture industry have received little attention in the Philippines. Pichia kudriavzevii (A2B R1 ISO 3), sourced from bark samples, was selected and mass-produced due to its high protein content and amino acid profile. The dried biomass of P. kudriavzevii was incorporated into the diets of Nile tilapia (Oreochromis niloticus) juveniles at varying inclusion levels (0, 1, 2, and 4 g/kg diet) and its effect on their growth performance, body composition, and liver and intestinal morphology was assessed after 40 days of feeding. The groups that received P. kudriavzevii at a concentration of 2 g/kg diet exhibited higher final body weight, percent weight gain, and specific growth rate in comparison to the other treatment groups. Whole body proximate composition did not vary among the dietary groups. Intestinal and liver histopathology also indicated no abnormalities. These findings suggest the potential of ascomycetous P. kudriavzevii as a beneficial feed additive in Nile tilapia diets, warranting further investigation into its long-term effects and broader applications in fish culture.


Asunto(s)
Alimentación Animal , Acuicultura , Cíclidos , Pichia , Animales , Alimentación Animal/análisis , Cíclidos/crecimiento & desarrollo , Cíclidos/microbiología , Pichia/crecimiento & desarrollo , Pichia/aislamiento & purificación , Pichia/metabolismo , Dieta/veterinaria , Hígado/microbiología , Intestinos/microbiología , Suplementos Dietéticos/análisis , Filipinas
14.
Bioresour Technol ; 406: 131002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889869

RESUMEN

A continuous chemical-free green approach was investigated for the comprehensive reutilization of all components in herbal extraction residues (HERs), taking Glycyrrhiza uralensis residue (GUR) as an example. The GUR structural changes induced by mechanical extrusion which improve the specific surface area and enzyme accessibility of GUR. With 3 % pretreated GUR loading of high-tolerance Penicillium oxalicum G2. The reducing sugar yield of 11.45 g/L was achieved, along with an 81.06 % in situ enzymatic hydrolysis. Finally, 8.23 g/L bioethanol (0.40 g/g total sugar) was produced from GUR hydrolysates after 24 h fermentation of Pichia stipitis G32. The amount of functional medicinal ingredients extracted from GUR after hydrolysis (39.63 mg/g) was 37.69 % greater than that of un-pretreated GUR. In total, 1.49 g flavonoids, 294.36 U cellulase, and 14.13 g ethanol could be produced from 100 g GUR using this process, illustrating that this green and efficient process has the potential for industrial production.


Asunto(s)
Celulasa , Etanol , Flavonoides , Glycyrrhiza uralensis , Celulasa/metabolismo , Etanol/metabolismo , Glycyrrhiza uralensis/química , Hidrólisis , Penicillium/metabolismo , Fermentación , Pichia/metabolismo , Biotecnología/métodos
15.
Food Res Int ; 188: 114501, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823874

RESUMEN

This study investigated the effects of different pickle brines and glycine additions on biogenic amine formation in pickle fermentation. The results showed that the brines with higher biogenic amine content led to the production of more biogenic amines in the simulated pickle fermentation system. This was related to the abundance of biogenic amine-producing microorganisms in the microbial communities of the brines. Metagenome analysis of the brines and metatranscriptome analysis of the fermentation systems showed that putrescine was primarily from Lactobacillus, Oenococcus, and Pichia, while histamine and tyramine were primarily from Lactobacillus and Tetragenococcus. Addition of glycine significantly reduced the accumulation of biogenic amines in the simulated pickle fermentation system by as much as 70 %. The addition of glycine had no inhibitory effect on the amine-producing microorganisms, but it down-regulated the transcription levels of the genes for enzymes related to putrescine synthesis in Pichia, Lactobacillus, and Oenococcus, as well as the histidine decarboxylase genes in Lactobacillus and Tetragenococcus. Catalytic reaction assay using crude solutions of amino acid decarboxylase extracted from Lactobacillus brevis showed that the addition of glycine inhibited 45 %-55 % of ornithine decarboxylase and tyrosine decarboxylase activities. This study may provide a reference for the study and control of the mechanism of biogenic amine formation in pickle fermentation.


Asunto(s)
Aminas Biogénicas , Fermentación , Glicina , Glicina/metabolismo , Aminas Biogénicas/metabolismo , Sales (Química) , Putrescina/metabolismo , Tiramina/metabolismo , Microbiología de Alimentos , Lactobacillus/metabolismo , Lactobacillus/genética , Alimentos Fermentados/microbiología , Pichia/metabolismo , Pichia/genética
16.
Biotechnol Bioeng ; 121(9): 2706-2715, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38698719

RESUMEN

Cultivating cells in shake flasks is a routine operation that is largely unchanged since its inception. A glass or plastic Erlenmeyer vessel with the primary gas exchange taking place across various porous plugs is used with media volumes typically ranging from 100 mL to 2 L. Oxygen limitation and carbon dioxide accumulation in the vessel is a major concern for studies involving shake flask cultures. In this study, we enhance mass transfer in a conventional shake flask by replacing the body wall with a permeable membrane. Naturally occurring concentration gradient across the permeable membrane walls facilitates the movement of oxygen and carbon dioxide between the flask and the external environment. The modified flask called the breathable flask, has shown a 40% improvement in mass transfer coefficient (kLa) determined using the static diffusion method. The prokaryotic cell culture studies performed with Escherichia coli showed an improvement of 28%-66% in biomass and 41%-56% in recombinant product yield. The eukaryotic cell culture study performed with Pichia pastoris expressing proinsulin exhibited a 40% improvement in biomass and 115% improvement in protein yield. The study demonstrates a novel approach to addressing the mass transfer limitations in conventional shake flask cultures. The proposed flask amplifies its value by providing a membrane-diffusion-based sensing platform for the integration of low-cost, noninvasive sensing capabilities for real-time monitoring of critical cell culture parameters like dissolved oxygen and dissolved carbon dioxide.


Asunto(s)
Reactores Biológicos , Escherichia coli , Escherichia coli/metabolismo , Fermentación , Pichia/metabolismo , Pichia/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Oxígeno/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Biomasa
17.
Braz J Microbiol ; 55(3): 2107-2117, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38777992

RESUMEN

PURPOSE: For growth of methylotrophic yeast, glycerol is usually used as a carbon source. Glucose is used in some cases, but not widely consumed due to strong repressive effect on AOX1 promoter. However, glucose is still considered as a carbon source of choice since it has low production cost and guarantees growth rate comparable to glycerol. RESULTS: In flask cultivation of the recombinant yeast, Pichia pastoris GS115(pPIC9K-appA38M), while methanol induction point(OD600) and methanol concentration significantly affected the phytase expression, glucose addition in induction phase could enhance phytase expression. The optimal flask cultivation conditions illustrated by Response Surface Methodology were 10.37 OD600 induction point, 2.02 h before methanol feeding, 1.16% methanol concentration and 40.36µL glucose feeding amount(for 20 mL culture volume) in which the expressed phytase activity was 613.4 ± 10.2U/mL, the highest activity in flask cultivation. In bioreactor fermentation, the intermittent glucose feeding showed several advantageous results such as 68 h longer activity increment, 149.2% higher cell density and 200.1% higher activity compared to the sole methanol feeding method. These results implied that remaining glucose at induction point might exhibit a positive effect on the phytase expression. CONCLUSION: Glucose intermittent feeding could be exploited for economic phytase production and the other recombinant protein expression by P. pastoris GS115.


Asunto(s)
6-Fitasa , Reactores Biológicos , Fermentación , Glucosa , Metanol , Proteínas Recombinantes , 6-Fitasa/genética , 6-Fitasa/metabolismo , Glucosa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Metanol/metabolismo , Reactores Biológicos/microbiología , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/crecimiento & desarrollo , Pichia/genética , Pichia/metabolismo , Pichia/crecimiento & desarrollo , Expresión Génica
18.
Enzyme Microb Technol ; 179: 110456, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38754147

RESUMEN

In this study, the family GH10 xylanase AnXylA10 derived from Aspergillus niger JL15 strain was expressed in Pichia pastoris X33. The recombinant xylanase, reAnXylA10 exhibited optimal activity at 40 ℃ and pH 5.0. The hydrolysates generated from beechwood xylan using reAnXylA10 primarily consisted of xylobiose (X2) to xylohexaose (X6) and demonstrated remarkable antioxidant capacity. Furthermore, the rice xylanase inhibitory protein (riceXIP) was observed to competitively inhibit reAnXylA10, exhibiting an inhibition constant (Ki) of 140.6 nM. Molecular dynamics (MD) simulations of AnXylA10-riceXIP complex revealed that the α-7 helix (Q225-S238) of riceXIP intruded into the catalytic pocket of AnXylA10, thereby obstructing substrate access to the active site. Specifically, residue K226 of riceXIP formed robust interactions with E136 and E242, the two catalytic sites of AnXylA10, predominantly through high-occupied hydrogen bonds. Based on QTAIM, electron densities for the atom pairs K226riceXIP@HZ1-E136AnXylA10@OE2 and K226riceXIP@HZ3-E242AnXylA10@OE1 were determined to be 0.04628 and 0.02914 a.u., respectively. Binding free energy of AnXylA10-riceXIP complex was -59.0±7.6 kcal/mol, significantly driven by electrostatic and van der Waals forces. Gaining insights into the interaction between xylanase and its inhibitors, and mining the inhibition mechanism in depth, will facilitate the design of innovative GH10 family xylanases that are both highly efficient and resistant to inhibitors.


Asunto(s)
Antioxidantes , Aspergillus niger , Endo-1,4-beta Xilanasas , Proteínas Fúngicas , Glucuronatos , Oligosacáridos , Proteínas Recombinantes , Xilanos , Glucuronatos/metabolismo , Glucuronatos/química , Xilanos/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Aspergillus niger/enzimología , Aspergillus niger/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Oligosacáridos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Simulación de Dinámica Molecular , Oryza , Fagus , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Madera , Pichia/genética , Pichia/metabolismo , Hidrólisis , Dominio Catalítico
19.
Sensors (Basel) ; 24(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793872

RESUMEN

This paper proposes a novel soft sensor modeling approach, MIC-TCA-INGO-LSSVM, to address the decline in performance of soft sensor models during the fermentation process of Pichia pastoris, caused by changes in working conditions. Initially, the transfer component analysis (TCA) method is utilized to minimize the differences in data distribution across various working conditions. Subsequently, a least squares support vector machine (LSSVM) model is constructed using the dataset adapted by TCA, and strategies for improving the northern goshawk optimization (INGO) algorithm are proposed to optimize the parameters of the LSSVM model. Finally, to further enhance the model's generalization ability and prediction accuracy, considering the transfer of knowledge from multiple-source working conditions, a sub-model weighted ensemble scheme is proposed based on the maximum information coefficient (MIC) algorithm. The proposed soft sensor model is employed to predict cell and product concentrations during the fermentation process of Pichia pastoris. Simulation results indicate that the RMSE of the INGO-LSSVM model in predicting cell and product concentrations is reduced by 47.3% and 42.1%, respectively, compared to the NGO-LSSVM model. Additionally, TCA significantly enhances the model's adaptability when working conditions change. Moreover, the soft sensor model based on TCA and the MIC-weighted ensemble method achieves a reduction of 41.6% and 31.3% in the RMSE for predicting cell and product concentrations, respectively, compared to the single-source condition transfer model TCA-INGO-LSSVM. These results demonstrate the high reliability and predictive performance of the proposed soft sensor method under varying working conditions.


Asunto(s)
Algoritmos , Fermentación , Máquina de Vectores de Soporte , Análisis de los Mínimos Cuadrados , Pichia/metabolismo , Saccharomycetales
20.
J Agric Food Chem ; 72(22): 12707-12718, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757388

RESUMEN

This study extensively characterized yeast polysaccharides (YPs) from Pichia fermentans (PF) and Pichia kluyveri (PK), with a specific focus on their structural attributes and their interaction with wine fruity esters in a model wine system. By finely tuning enzymatic reactions based on temperature, pH, and enzyme dosage, an optimal YP yield of 77.37% was achieved, with a specific mass ratio of cellulase, pectinase, and protease set at 3:5:2. There were four YP fractions (YPPF-W, YPPF-N, YPPK-W, and YPPK-N) isolated from the two yeasts. YPPF-N and YPPK-N were identified as glucans based on monosaccharide analysis and Fourier-transform infrared spectroscopy analysis. "Specific degradation-methylation-nuclear magnetic" elucidated YPPF-W's backbone structure as 1,3-linked α-l-Man and 1,6-linked α-d-Glc residues, while YPPK-W displayed a backbone structure of 1,3-linked α-Man residues, indicative of a mannoprotein nature. Isothermal titration calorimetry revealed spontaneous interactions between YPPK-W/YPPF-W and fruity esters across temperatures (25-45 °C), with the strongest interaction observed at 30 °C. However, distinct esters exhibited varying interactions with YPPK-W and YPPF-W, attributed to differences in molecular weights and hydrophobic characteristics. While shedding light on these intricate interactions, further experimental data is essential for a comprehensive understanding of yeast polysaccharides' or mannoproteins' impact on fruity esters. This research significantly contributes to advancing our knowledge of yeast polysaccharides' role in shaping the nuanced sensory attributes of wine.


Asunto(s)
Ésteres , Pichia , Polisacáridos , Vino , Vino/análisis , Vino/microbiología , Ésteres/química , Ésteres/metabolismo , Pichia/metabolismo , Pichia/química , Polisacáridos/química , Polisacáridos/metabolismo , Vitis/química , Vitis/microbiología , Fermentación , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA