RESUMEN
INTRODUCTION AND OBJECTIVES: Endurance exercise (EXE) has emerged as a potent inducer of autophagy essential in maintaining cellular homeostasis in various tissues; however, the functional significance and molecular mechanisms of EXE-induced autophagy in the liver remain unclear. Thus, the aim of this study is to examine the signaling nexus of hepatic autophagy pathways occurring during acute EXE and a potential crosstalk between autophagy and apoptosis. MATERIALS AND METHODS: C57BL/6 male mice were randomly assigned to sedentary control group (CON, n=9) and endurance exercise (EXE, n=9). Mice assigned to EXE were gradually acclimated to treadmill running and ran for 60min per day for five consecutive days. RESULTS: Our data showed that EXE promoted hepatic autophagy via activation of canonical autophagy signaling pathways via mediating microtubule-associated protein B-light chain 3 II (LC3-II), autophagy protein 7 (ATG7), phosphorylated adenosine mono phosphate-activated protein kinase (p-AMPK), CATHEPSIN L, lysosome-associated membrane protein 2 (LAMP2), and a reduction in p62. Interestingly, this autophagy promotion concurred with enhanced anabolic activation via AKT-mammalian target of rapamycin (mTOR)-p70S6K signaling cascade and enhanced antioxidant capacity such as copper zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPX), and peroxiredoxin 3 (PRX3), known to be as antagonists of autophagy. Moreover, exercise-induced autophagy was inversely related to apoptosis in the liver. CONCLUSIONS: Our findings indicate that improved autophagy and antioxidant capacity, and potentiated anabolic signaling may be a potent non-pharmacological therapeutic strategy against diverse liver diseases.
Asunto(s)
Apoptosis/fisiología , Autofagia/fisiología , Hígado/metabolismo , Condicionamiento Físico Animal/fisiología , Resistencia Física , Adenilato Quinasa/metabolismo , Animales , Antioxidantes/metabolismo , Proteína 7 Relacionada con la Autofagia/metabolismo , Catepsina L/metabolismo , Glutatión Peroxidasa/metabolismo , Hígado/patología , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Peroxiredoxina III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Distribución Aleatoria , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Conducta Sedentaria , Transducción de Señal , Superóxido Dismutasa-1/metabolismo , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Mitochondria are main sites of peroxynitrite formation. While at low concentrations mitochondrial peroxynitrite has been associated with redox signaling actions, increased levels can disrupt mitochondrial homeostasis and lead to pathology. Peroxiredoxin 3 is exclusively located in mitochondria, where it has been previously shown to play a major role in hydrogen peroxide reduction. In turn, reduction of peroxynitrite by peroxiredoxin 3 has been inferred from its protective actions against tyrosine nitration and neurotoxicity in animal models, but was not experimentally addressed so far. Herein, we demonstrate the human peroxiredoxin 3 reduces peroxynitrite with a rate constant of 1â¯×â¯107 M-1 s-1 at pH 7.8 and 25⯰C. Reaction with hydroperoxides caused biphasic changes in the intrinsic fluorescence of peroxiredoxin 3: the first phase corresponded to the peroxidatic cysteine oxidation to sulfenic acid. Peroxynitrite in excess led to peroxiredoxin 3 hyperoxidation and tyrosine nitration, oxidative post-translational modifications that had been previously identified in vivo. A significant fraction of the oxidant is expected to react with CO2 and generate secondary radicals, which participate in further oxidation and nitration reactions, particularly under metabolic conditions of active oxidative decarboxylations or increased hydroperoxide formation. Our results indicate that both peroxiredoxin 3 and 5 should be regarded as main targets for peroxynitrite in mitochondria.
Asunto(s)
Mitocondrias/metabolismo , Oxidantes/metabolismo , Peroxiredoxina III/genética , Peroxirredoxinas/genética , Dióxido de Carbono/metabolismo , Cisteína/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Cinética , Oxidación-Reducción , Peroxiredoxina III/metabolismo , Ácido Peroxinitroso/metabolismo , Procesamiento Proteico-Postraduccional/genética , Transducción de Señal/genéticaRESUMEN
OBJECTIVE: Although peroxiredoxin 3 (PRX3) was reported to be overexpressed in liver cancer, the precise function of PRX3 in the development and/or progression of liver cancer remained to be obscure. The present study was conducted to investigate the response of PRX3 to oxidative stress in hepatocellular carcinoma (HCC) cells. METHODS: After successful knockdown of PRX3 expression by small interfering RNA, we treated HCC cell lines Hep-3b and Hep-G2 with gradient concentrations of H2O2 and detected cell proliferation, apoptosis, and the level of reactive oxygen species (ROS) in the cells. RESULTS: After low-dose (5-20 µmol/l) H2O2 treatment, the ROS level was significantly higher in PRX3-knockdown Hep-3b cells than in controls. In addition, PRX3 down-regulation resulted in decreased proliferation, increased apoptosis, and increased caspase 3 activity of Hep-3b cells. We did not notice significant difference between PrxIII knockdown and control Hep-G2 cells in ROS level, cell viability or apoptosis. CONCLUSION: Our results suggest that PRX3 is an indispensable ROS scavenger that protects tumor cells against oxidative damage and subsequent apoptosis, which provides a clue that PRX3 may be involved in the chemotherapeutic resistance of liver cancer. The underlying mechanism for PRX3 function needs further investigation.
Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Neoplasias Hepáticas/patología , Peroxiredoxina III/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Western Blotting , Carcinoma Hepatocelular/metabolismo , Caspasa 3/metabolismo , Citometría de Flujo , Humanos , Neoplasias Hepáticas/metabolismo , Oxidantes/farmacología , Oxidación-Reducción , Peroxiredoxina III/antagonistas & inhibidores , Peroxiredoxina III/genética , ARN Interferente Pequeño/genética , Células Tumorales CultivadasRESUMEN
BACKGROUND: Bovine Herpesvirus type-5 (BoHV-5) is a neurovirulent α-Herpesvirus which is potentially pathogenic for cows and suspected to be associated with reproductive disorders. Interestingly, natural transmission of BoHV-5 by contaminated semen was recently described in Australia. Additionally, BoHV-5 was also isolated from the semen of a healthy bull in the same country and incriminated in a natural outbreak of reproductive disease after artificial insemination. In contrast with BoHV-1, experimental exposure of in vitro produced bovine embryos to BoHV-5 does not affect embryo viability and seems to inhibit some pathways of apoptosis. However, the mechanisms responsible for these phenomena are poorly understood. In this study, we examined mitochondrial activity, antioxidant protection, stress response and developmental rates of in vitro produced bovine embryos that were exposed and unexposed to BoHV-5. METHODS: For this purpose, bovine embryos produced in vitro were assayed for cell markers after experimental infection of oocytes (n = 30; five repetitions), in vitro fertilization and development. The indirect immunofluorescence was employed to measure the expression of superoxide dismutase 1 (SOD1), anti-oxidant like protein 1 (AOP-1), heat shock protein 70.1 (Hsp 70.1) and also viral antigens in embryos derived from BoHV-5 exposed and unexposed oocytes. The determination of gene transcripts of mitochondrial activity (SOD1), antioxidant protection (AOP-1) and stress response (Hsp70.1) were evaluated using the reverse transcriptase polymerase chain reaction (RT-PCR). MitoTracker Green FM, JC-1 and Hoechst 33342-staining were used to evaluate mitochondrial distribution, segregation patterns and embryos morphology. The intensity of labeling was graded semi-quantitatively and embryos considered intensively marked were used for statistical analysis. RESULTS: The quality of the produced embryos was not affected by exposure to BoHV-5. Of the 357 collected oocytes, 313 (+/- 6.5; 87.7%) were cleaved and 195 (+/- 3.2; 54.6%) blastocysts were produced without virus exposure. After exposure, 388 oocytes were cleaved into 328 (+/- 8.9, 84.5%), and these embryos produced 193 (+/- 3.2, 49.7%) blastocysts. Viral DNA corresponding to the US9 gene was only detected in embryos at day 7 after in vitro culture, and confirmed by indirect immunofluorescence assay (IFA). These results revealed significant differences (p < 0.05) between exposed and unexposed oocytes fertilized, as MitoTracker Green FM staining Fluorescence intensity of Jc-1 staining was significantly higher (p < 0.005) among exposed embryos (143 +/- 8.2). There was no significant difference between the ratios of Hoechst 33342-stained nuclei and total cells in good-quality blastocysts (in both the exposed and unexposed groups). Using IFA and reverse transcriptase polymerase chain reaction (RT-PCR) for the set of target transcripts (SOD1, AOP-1 and Hsp 70.1), there were differences in the mRNA and respective proteins between the control and exposed embryos. Only the exposed embryos produced anti-oxidant protein-like 1 (AOP-1). However, neither the control nor the exposed embryos produced the heat shock protein Hsp 70.1. Interestingly, both the control and the exposed embryos produced superoxide dismutase (SOD1), revealing intense mitochondrial activity. CONCLUSION: This is the first demonstration of SOD1 and AOP-1 production in bovine embryos exposed to BoHV-5. Intense mitochondrial activity was also observed during infection, and this occurred without interfering with the quality or number of produced embryos. These findings further our understanding on the ability of α-Herpesviruses to prevent apoptosis by modulating mitochondrial pathways.