Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Food Chem ; 462: 140965, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197242

RESUMEN

Perilla leaf oil (PLO) is a global premium vegetable oil with abundant nutrients and substantial economic value, rendering it susceptible to potential adulteration by unscrupulous entrepreneurs. The addition of cinnamon oil (CO) is one of the main adulteration avenues for illegal PLOs. In this study, new and real-time ambient mass spectrometric methods were developed to detect CO adulteration in PLO. First, atmospheric solids analysis probe tandem mass spectrometry combined with principal component analysis and principal component analysis-linear discriminant analysis was employed to differentiate between authentic and adulterated PLO. Then, a spectral library was established for the instantaneous matching of cinnamaldehyde in the samples. Finally, the results were verified using the SRM mode of ASAP-MS/MS. Within 3 min, the three methods successfully identified CO adulteration in PLO at concentrations as low as 5% v/v with 100% accuracy. The proposed strategy was successfully applied to the fraud detection of CO in PLO.


Asunto(s)
Cinnamomum zeylanicum , Contaminación de Alimentos , Hojas de la Planta , Aceites de Plantas , Contaminación de Alimentos/análisis , Aceites de Plantas/química , Aceites de Plantas/análisis , Hojas de la Planta/química , Cinnamomum zeylanicum/química , Perilla/química , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas/métodos
2.
Food Chem ; 462: 141006, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39213974

RESUMEN

Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 µL/mL PEO, 18.4 µg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 µg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.


Asunto(s)
Antibacterianos , Quitosano , Películas Comestibles , Emulsiones , Embalaje de Alimentos , Lauratos , Monoglicéridos , Nisina , Aceites Volátiles , Staphylococcus aureus , Nisina/farmacología , Nisina/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Lauratos/química , Lauratos/farmacología , Embalaje de Alimentos/instrumentación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Emulsiones/química , Quitosano/química , Quitosano/farmacología , Monoglicéridos/química , Monoglicéridos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Perilla/química
3.
Gene ; 929: 148828, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39122229

RESUMEN

Perilla (Perilla frutescens L.) is a time-honored herbal plant with widespread applications in both medicine and culinary practices around the world. Profiling the essential organs and tissues with medicinal significance on a global scale offers valuable insights for enhancing the yield of desirable compounds in Perilla and other medicinal plants. In the present study, genome-wide RNA-sequencing (RNA-seq) and assessing the global spectrum of metabolites were carried out in the two major organs/tissues of stem (PfST) and leaf (PfLE) in Perilla. The results showed a total of 18,490 transcripts as the DEGs (differentially expressed genes) and 144 metabolites as the DAMs (differentially accumulated metabolites) through the comparative profiling of PfST vs PfLE, and all the DEGs and DAMs exhibited tissue-specific trends. An association analysis between the transcriptomics and metabolomics revealed 14 significantly enriched pathways for both DEGs and DAMs, among which the pathways of Glycine, serine and threonine metabolism (ko00260), Glyoxylate and dicarboxylate metabolism (ko00630), and Glucagon signaling pathway (ko04922) involved relatively more DEGs and DAMs. The results of qRT-PCR assays of 18 selected DEGs confirmed the distinct tissue-specific characteristics of all identified DEGs between PfST and PfLE. Notably, all eight genes associated with the flavonoid biosynthesis/metabolism pathways exhibited significantly elevated expression levels in PfLE compared to PfST. This observation suggests a heightened accumulation of metabolites related to flavonoids in Perilla leaves. The findings of this study offer a comprehensive overview of the organs and tissues in Perilla that have medicinal significance.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metabolómica , Hojas de la Planta , Tallos de la Planta , Transcriptoma , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Metabolómica/métodos , Tallos de la Planta/metabolismo , Tallos de la Planta/genética , Perfilación de la Expresión Génica/métodos , Perilla frutescens/genética , Perilla frutescens/metabolismo , Perilla/genética , Perilla/metabolismo
4.
Food Res Int ; 192: 114752, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147533

RESUMEN

Japanese pickled apricot, called "umeboshi", is a traditional food that has experientially been consumed as a folk medicine. The main variation of umeboshi is called "shiso-zuke umeboshi", meaning pickled with red perilla leaves to add a colorful appearance. This study investigated changes in phenolics and antioxidant potential of shiso-zuke umeboshi during pickling processes and simulated digestion. Results showed that the red perilla pickling (PP; 1338.12) had 13 times higher phenolics than salt pickling (SP; 101.99) in µg/g DW, and the formation of rosmarinic acid was enhanced. The simulated digestion showed a gradual increase in antioxidant content and activity from the stomach to small intestine, with TPC and TFC being rapidly released in the intestinal environment. The study concluded that shiso-zuke umeboshi provides higher health benefits due to the excellent antioxidant compounds produced through the perilla pickling process.


Asunto(s)
Antioxidantes , Cinamatos , Depsidos , Digestión , Manipulación de Alimentos , Perilla , Hojas de la Planta , Polifenoles , Ácido Rosmarínico , Antioxidantes/análisis , Hojas de la Planta/química , Perilla/química , Polifenoles/análisis , Depsidos/análisis , Cinamatos/análisis , Manipulación de Alimentos/métodos , Prunus armeniaca/química , Pueblos del Este de Asia
5.
Food Chem ; 458: 140270, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959793

RESUMEN

A compact antioxidant interfacial layer was fabricated by combining phosphorylation treatment with protocatechuic acid (PA) copolymerization to enhance the physical and oxidative stability of high internal phase emulsions (HIPEs) prepared using perilla protein isolate (PPI). The covalent binding between PPI and phosphate groups induced conformational changes, facilitating the interaction between PPI and PA. The formed phosphorylated PPI-PA conjugates (LPPI-PA) exhibited a reduced particle size of 196.75 nm, promoting their adsorption at the interface. HIPEs prepared by LPPI-PA conjugates showed higher storage stability due to decreased droplet size, increased interfacial protein adsorption content (90.48%), and the formation of an interconnected network within the system. Additionally, the combination of LPPI and PA anchored PA to the interface, significantly inhibiting lipid oxidation in HIPEs as evidenced by low levels of lipid hydroperoxide (30.33 µmol/g oil) and malondialdehyde (379.34 nmol/g oil). This study holds significant implications for improving the stability of HIPEs.


Asunto(s)
Emulsiones , Hidroxibenzoatos , Oxidación-Reducción , Perilla , Proteínas de Plantas , Emulsiones/química , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Fosforilación , Proteínas de Plantas/química , Perilla/química , Polimerizacion , Tamaño de la Partícula , Antioxidantes/química , Antioxidantes/farmacología
6.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731431

RESUMEN

An excessive inflammatory response of the gastrointestinal tract is recognized as one of the major contributors to ulcerative colitis (UC). Despite this, effective preventive approaches for UC remain limited. Rosmarinic acid (RA), an enriched fraction from Perilla frutescens, has been shown to exert beneficial effects on disease-related inflammatory disorders. However, RA-enriched perilla seed meal (RAPSM) and perilla seed (RAPS) extracts have not been investigated in dextran sulfate sodium (DSS)-induced UC in mice. RAPSM and RAPS were extracted using the solvent-partitioning method and analyzed with high-pressure liquid chromatography (HPLC). Mice with UC induced using 2.5% DSS for 7 days were pretreated with RAPSM and RAPS (50, 250, 500 mg/kg). Then, the clinical manifestation, colonic histopathology, and serum proinflammatory cytokines were determined. Indeed, DSS-induced UC mice exhibited colonic pathological defects including an impaired colon structure, colon length shortening, and increased serum proinflammatory cytokines. However, RAPSM and RAPS had a protective effect at all doses by attenuating colonic pathology in DSS-induced UC mice, potentially through the suppression of proinflammatory cytokines. Concentrations of 50 mg/kg of RAPSM and RAPS were sufficient to achieve a beneficial effect in UC mice. This suggests that RAPSM and RAPS have a preventive effect against DSS-induced UC, potentially through alleviating inflammatory responses and relieving severe inflammation in the colon.


Asunto(s)
Colitis Ulcerosa , Citocinas , Sulfato de Dextran , Perilla , Extractos Vegetales , Semillas , Animales , Sulfato de Dextran/efectos adversos , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colitis Ulcerosa/prevención & control , Extractos Vegetales/farmacología , Extractos Vegetales/química , Citocinas/metabolismo , Citocinas/sangre , Semillas/química , Perilla/química , Modelos Animales de Enfermedad , Masculino , Depsidos/farmacología , Depsidos/química , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Cinamatos/farmacología , Cinamatos/química , Ácido Rosmarínico , Perilla frutescens/química
7.
Environ Geochem Health ; 46(6): 193, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696028

RESUMEN

Microplastics (MPs) and copper (Cu) pollution coexist widely in cultivation environment. In this paper, polyvinyl chloride (PVC) were used to simulate the MPs exposure environment, and the combined effects of MPs + Cu on the germination of perilla seeds were analyzed. The results showed that low concentrations of Cu promoted seed germination, while medium to high concentrations exhibited inhibition and deteriorated the morphology of germinated seeds. The germination potential, germination index and vitality index of 8 mg • L-1 Cu treatment group with were 23.08%, 76.32% and 65.65%, respectively, of the control group. The addition of low concentration PVC increased the above indicators by 1.27, 1.15, and 1.35 times, respectively, while high concentration addition led to a decrease of 65.38%, 82.5%, and 66.44%, respectively. The addition of low concentration PVC reduced the amount of PVC attached to radicle. There was no significant change in germination rate. PVC treatment alone had no significant effect on germination. MPs + Cu inhibited seed germination, which was mainly reflected in the deterioration of seed morphology. Cu significantly enhanced antioxidant enzyme activity, increased reactive oxygen species (ROS) and MDA content. The addition of low concentration PVC enhanced SOD activity, reduced MDA and H2O2 content. The SOD activity of the Cu2+8 + PVC10 group was 4.05 and 1.35 times higher than that of the control group and Cu treatment group at their peak, respectively. At this time, the CAT activity of the Cu2+8 + PVC5000 group increased by 2.66 and 1.42 times, and the H2O2 content was 2.02 times higher than the control. Most of the above indicators reached their peak at 24 h. The activity of α-amylase was inhibited by different treatments, but ß-amylase activity, starch and soluble sugar content did not change regularly. The research results can provide new ideas for evaluating the impact of MPs + Cu combined pollution on perilla and its potential ecological risk.


Asunto(s)
Cobre , Germinación , Perilla , Cloruro de Polivinilo , Semillas , Germinación/efectos de los fármacos , Cobre/toxicidad , Semillas/efectos de los fármacos , Perilla/efectos de los fármacos , Microplásticos/toxicidad , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Malondialdehído/metabolismo , Contaminantes del Suelo/toxicidad
8.
Food Chem ; 454: 139739, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820632

RESUMEN

The effects and reasons of perilla juice (PJ) and ginger juice (GJ) on the reduction of "warmed-over flavor" (WOF) in surimi gels were revealed by detecting odor profiles and protein and lipid oxidation degrees of surimi gels, concentrations and odor activity values (OAVs) of WOF compounds. Adding PJ and GJ to surimi gels significantly reduced the WOF and improved the fish fragrance odor, but sodium ascorbate (SA) only weakened the WOF. The (E,E)-2,4-heptadienal's OAVs in the PJ and GJ groups were decreased by >50% compared with the control check (CK) and SA groups. Meanwhile, surimi gels added with PJ and GJ presented lower lipid and protein oxidation degrees. The verification test indicated that PJ and GJ's aroma had a masking effect on the WOF. In conclusion, PJ and GJ reduced the WOF in surimi gels by preventing WOF compounds' production and masking the WOF with their distinct aroma.


Asunto(s)
Jugos de Frutas y Vegetales , Odorantes , Perilla , Gusto , Zingiber officinale , Odorantes/análisis , Zingiber officinale/química , Animales , Jugos de Frutas y Vegetales/análisis , Perilla/química , Humanos , Aromatizantes/química , Productos Pesqueros/análisis , Geles/química , Peces
9.
Trop Anim Health Prod ; 56(4): 147, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684622

RESUMEN

This study investigates the effect of supplementation of Perilla seeds (PS) on the performance, egg quality, blood biochemical parameters, and egg yolk fatty acids composition in the diet of egg-laying chicken. A total of 1600 Lohmann laying hens were randomly assigned to four different groups with 4 replicates each (100 chickens/replicate) and were subjected to varying PS concentrations (PS0, PS6, PS12, and PS18; 0%, 6%, 12%, and 18%, respectively) for four weeks, including an acclimation period of one week. The results showed no significant differences among the groups for average egg weight (P > 0.005). The laying rate (%), feed conversion ratio (FCR) and average feed intake (AFI) decreased significantly for birds fed on 18% PS as compared to the other treatments (P < 0.005). Haugh unit, albumin height, egg-shape index and eggshell thickness among hens fed PS diets were greater averaging 80.53, 7.00, 1.29, 0.34 compared to 76.84, 6.86, 1.25 and 0.32 from Control hen eggs (P < 0.05). Serum analysis showed a trend towards elevated levels of glucose (Glu), total protein (TP) and aspartate aminotransferase (AST) among treatments. Total cholesterol (TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) decreased for the birds fed on 6% PS. The fatty acid composition of egg yolk showed a substantial reduction for α-linolenic acid and docosahexaenoic acid increased significantly by the incorporating PS in the diet (P < 0.001). PS incorporation in diets resulted in significant improvements in both performance indicators and greater amounts of α-linolenic acid and DHA in egg yolks. These findings indicate that PS at 6% inclusion has the potential to improve fatty acid profiles of egg yolk without any adverse effect on performance of egg quality.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Yema de Huevo , Ácidos Grasos , Semillas , Animales , Pollos/fisiología , Yema de Huevo/química , Femenino , Ácidos Grasos/análisis , Alimentación Animal/análisis , Dieta/veterinaria , Semillas/química , Suplementos Dietéticos/análisis , Perilla/química , Distribución Aleatoria , Huevos/análisis , Huevos/normas , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos
10.
Food Chem ; 439: 138074, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38091791

RESUMEN

A Pickering water-in-oil-in-water nanoemulsion co-encapsulating lysozyme (LYS) and Perilla leaf oil (PO) was prepared using whey protein isolate-tannin acid conjugated nanoparticles (WPI-TA NPs) as emulsifiers, called LYS-PO-NE, and subsequently analyzed. The nano size and multiple phases was confirmed based on the results of confocal laser scanning microscope, scanning electron microscope, and droplet size analysis. LYS-PO-NE had high encapsulation efficiencies of 89.36 % (PO) and 43.91 % (LYS) and both could be released at a slow and continuous rate. The PO addition increased the droplet size, and the LYS addition delayed the release of PO. LYS-PO-NE also showed good storage, pH, thermal, and salt stability, and an effective combined bactericidal activity of LYS and PO against spoilage bacteria. Furthermore, the results of chilled salmon storage experiments indicated that LYS-PO-NE could extend the shelf life of chilled salmon to at least 6 days, demonstrating the potential in the shelf life for fish products.


Asunto(s)
Muramidasa , Perilla , Animales , Emulsiones/química , Productos Pesqueros , Agua/química
11.
Gene ; 895: 147953, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37925118

RESUMEN

MicroRNAs (miRNA) are small noncoding RNAs that play a crucial as molecular regulators in lipid metabolism in various oil crops. Perilla (Perilla frutescens) is a specific oil crop known for its high alpha-linolenic acid (C18:3n3, ALA) content (>65 %) in their seed oils. In view of the regulatory mechanism of miRNAs in perilla remains unclear, we conducted miRNAs and transcriptome sequencing in two cultivars with distinct lipid compositions. A total of 525 unique miRNAs, including 142 differentially expressed miRNAs was identified in perilla seeds. The 318 miRNAs targeted 7,761 genes. Furthermore, we identified 112 regulated miRNAs and their 610 target genes involved in lipid metabolism. MiR159b and miR167a as the core nodes to regulate the expression of genes in oil biosynthesis (e.g., KAS, FATB, GPAT, FAD, DGK, LPAAT) and key regulatory TFs (e.g., MYB, ARF, DOF, SPL, NAC, TCP, and bHLH). The 1,219 miRNA-mRNA regulation modules were confirmed through degradome sequencing. Notably, pf-miR159b-MYBs and pf-miR167a-ARFs regulation modules were confirmed. They exhibited significantly different expression levels in two cultivars and believed to play important roles in oil biosynthesis in perilla seeds. This provides valuable insights into the functional analysis of miRNA-regulated lipid metabolism in perilla seeds.


Asunto(s)
MicroARNs , Perilla , Transcriptoma/genética , Perilla/genética , Perilla/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Metabolismo de los Lípidos/genética , Semillas/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Food Chem ; 440: 138153, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103503

RESUMEN

Perilla meal hydrolysates (PMHs) were prepared by proteases; volatile profiles from heated mixtures of PMH and coconut oil (CO) were evaluated for their application as odor providers. Amino acids composition and degree of hydrolysis, and antioxidant activity in O/W emulsion of PMHs were assessed. PMHs were heated with different concentration of CO or with CO, xylose, and cysteine, which were non-Maillard and Maillard system, respectively. Among PMHs, double enzyme treatment using Alcalase and Flavourzyme showed higher degree of hydrolysis and antioxidant activity compared to PMHs from one type of enzymes. The presence of CO significantly increased oxygen, sulfur, and nitrogen-containing volatiles from PMHs in non-Maillard system. In case of Maillard system, PMHs with 10 % (w/w) CO contributed the formation of oxygen and nitrogen-containing volatiles such as furan and 2-methylpyrazine. PMHs might serve as an odor generator in the presence of edible oils like CO.


Asunto(s)
Reacción de Maillard , Perilla , Antioxidantes , Aceite de Coco , Nitrógeno , Oxígeno , Cadáver , Hidrolisados de Proteína
13.
Genes (Basel) ; 14(12)2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-38136959

RESUMEN

Red perilla is an important medicinal plant used in Kampo medicine. The development of elite varieties of this species is urgently required. Medicinal compounds are generally considered target traits in medicinal plant breeding; however, selection based on compound phenotypes (i.e., conventional selection) is expensive and time consuming. Here, we propose genomic selection (GS) and marker-assisted selection (MAS), which use marker information for selection, as suitable selection methods for medicinal plants, and we evaluate the effectiveness of these methods in perilla breeding. Three breeding populations generated from crosses between one red and three green perilla genotypes were used to elucidate the genetic mechanisms underlying the production of major medicinal compounds using quantitative trait locus analysis and evaluating the accuracy of genomic prediction (GP). We found that GP had a sufficiently high accuracy for all traits, confirming that GS is an effective method for perilla breeding. Moreover, the three populations showed varying degrees of segregation, suggesting that using these populations in breeding may simultaneously enhance multiple target traits. This study contributes to research on the genetic mechanisms of the major medicinal compounds of red perilla, as well as the breeding efficiency of this medicinal plant.


Asunto(s)
Perilla , Plantas Medicinales , Sitios de Carácter Cuantitativo , Perilla/genética , Fitomejoramiento/métodos , Fenotipo , Genómica/métodos
14.
Food Res Int ; 174(Pt 1): 113586, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986527

RESUMEN

Oilseeds are important sources of diversified nutraceuticals with marked health attributes. Thus, a better understanding of metabolome differences between common oilseeds will be conducive to the food pharmacy. This study aimed to compare the metabolite profiles and antioxidant activity of sesame, soybean, peanut, and perilla seeds and reveal the variation in bioactive compounds. LC-MS-based widely targeted metabolic profiling identified a total of 975 metabolites, of which 753 were common to the four crops. Multivariate analyses unveiled a crop-specific accumulation of metabolites, with 298-388 DAMs (differentially accumulated metabolites) identified. Amino acid metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis, and lipid metabolism were the most differentially regulated pathways. Furthermore, we revealed the variation in the relative content of 48, 20, 18, 9, 18, 11, and 6 differentially accumulated bioactive flavonoids, phenolic acids, amino acids, vitamins, terpenoids, alkaloids, and coumarins, respectively. Most of the flavonoids accumulated highly in soybean, followed by perilla. Sesame exhibited a better amino acid profile than other oilseeds. DPPH and FRAP assays showed that the antioxidant activity of perilla seed extracts was the highest, followed by soybean, peanut, and sesame. Our results provide data support for the comprehensive use of sesame, perilla, soybean, and peanut seeds in food, and pharmaceutical industries.


Asunto(s)
Fabaceae , Perilla , Sesamum , Antioxidantes/química , Glycine max , Arachis , Flavonoides , Aminoácidos
15.
Molecules ; 28(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37959704

RESUMEN

The flavonoids from Perilla leaves were extracted using flash extraction assisted by ultrasonic extraction with ethanol. Subsequently, macroporous resin was employed for the isolation and purification of these flavonoids, followed by an investigation into their antioxidant activity. The process conditions for the extraction of flavonoids from Perilla leaves were designed and optimized using a one-way experiment combined with a response surface methodology. The optimal extraction conditions were determined as follows: the liquid-solid ratio was 20:1, ethanol volume fraction of 60%, ultrasound temperature of 60 °C, ultrasound time of 10 min and flash evaporation time of 60 s. The optimal extraction rate of flavonoids is 9.8 mg/g. In terms of separation and purification, a high-performance macroporous resin (HPD450 resin) with high purification efficiency was selected through static analysis and adsorption experiments. The optimal enrichment conditions were as follows: loading concentration of 0.06 mg/mL, optimal loading concentration of 20 mL, elution concentration of 70% and 76 mL, providing a reference for the further development and utilization of Perilla leaf flavonoids.


Asunto(s)
Flavonoides , Perilla , Antioxidantes/farmacología , Hojas de la Planta , Extractos Vegetales , Etanol
16.
Genes (Basel) ; 14(10)2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895247

RESUMEN

Perilla is a key component of Korean food. It contains several plant-specialized metabolites that provide medical benefits. In response to an increased interest in healthy supplement food from the public, people are focusing on the properties of Perilla. Nevertheless, unlike rice and soybeans, there are few studies based on molecular genetics on Perilla, so it is difficult to systematically study the molecular breed. The wild Perilla, Perilla citriodora 'Jeju17', was identified a decade ago on the Korean island of Jeju. Using short-reads, long-reads, and Hi-C, a chromosome-scale genome spanning 676 Mbp, with high contiguity, was assembled. Aligning the 'Jeju17' genome to the 'PC002' Chinese species revealed significant collinearity with respect to the total length. A total of 31,769 coding sequences were predicted, among which 3331 were 'Jeju17'-specific. Gene enrichment of the species-specific gene repertoire highlighted environment adaptation, fatty acid metabolism, and plant-specialized metabolite biosynthesis. Using a homology-based approach, genes involved in fatty acid and lipid triacylglycerol biosynthesis were identified. A total of 22 fatty acid desaturases were found and comprehensively characterized. Expression of the FAD genes in 'Jeju17' was examined at the seed level, and hormone signaling factors were identified. The results showed that the expression of FAD genes in 'Jeju17' at the seed level was high 25 days after flowering, and their responses of hormones and stress were mainly associated with hormone signal transduction and abiotic stress via cis-elements patterns. This study presents a chromosome-level genome assembly of P. citriodora 'Jeju17', the first wild Perilla to be sequenced from the Korean island of Jeju. The analyses provided can be useful in designing ALA-enhanced Perilla genotypes in the future.


Asunto(s)
Perilla , Humanos , Perilla/genética , Perilla/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Fitomejoramiento , Hormonas , República de Corea
17.
Molecules ; 28(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894678

RESUMEN

Perilla frutescens leaves are hypothesized to possess antioxidant and amyloid-ß (Aß) aggregation inhibitory properties primarily due to their polyphenol-type compounds. While these bioactivities fluctuate daily, the traditional methods for quantifying constituent contents and functional properties are both laborious and impractical for immediate field assessments. To address this limitation, the present study introduces an expedient approach for on-site analysis, employing fluorescence spectra obtained through excitation light irradiation of perilla leaves. Standard analytical techniques were employed to evaluate various constituent contents (chlorophyl (Chl), total polyphenol content (TPC), total flavonoid content (TFC), and rosmarinic acid (RA)) and functional attributes (DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and Aß aggregation inhibitory activity). Correlations between the fluorescence spectra and these parameters were examined using normalized difference spectral index (NDSI), ratio spectral index (RSI), and difference spectral index (DSI) analyses. The resulting predictive model exhibited a high coefficient of determination, with R2 values equal to or greater than 0.57 for constituent contents and 0.49 for functional properties. This approach facilitates the convenient, simultaneous, and nondestructive monitoring of both the chemical constituents and the functional capabilities of perilla leaves, thereby simplifying the determination of optimal harvest times. The model derived from this method holds promise for real-time assessments, indicating its potential for the simultaneous evaluation of both constituents and functionalities in perilla leaves.


Asunto(s)
Perilla frutescens , Perilla , Perilla frutescens/química , Antioxidantes/química , Perilla/química , Polifenoles/análisis , Extractos Vegetales/química , Péptidos beta-Amiloides/análisis , Hojas de la Planta/química
18.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834377

RESUMEN

The herbal medicine perilla leaf extract (PLE) exhibits various pharmacological properties. We showed that PLE inhibits the viability of oral squamous cell carcinoma (OSCC) cells. HPLC analysis revealed that caffeic acid (CA) and rosmarinic acid (RA) are the two main phenols in PLE, and reduced OSCC cell viability in a dose-dependent manner. The optimal CA/RA combination ratio was 1:2 at concentrations of 300-500 µM but had no synergistic inhibitory effect on the viability of OSCC cells. CA, RA, or their combination effectively suppressed interleukin (IL)-1ß secretion by OSCC OC3 cells. Long-term treatment with CA and CA/RA mixtures, respectively, induced EGFR activation, which might cause OC3 cells to become EGFR-dependent and consequently increased the sensitivity of OC3 cells to a low dose (5 µM) of the EGFR tyrosine kinase inhibitor gefitinib. Chronic treatment with CA, RA, or their combination exhibited an inhibitory effect more potent than that of low-dose (1 µM) cisplatin on the colony formation ability of OSCC cells; this may be attributed to the induction of apoptosis by these treatments. These findings suggest that perilla phenols, particularly CA and RA, can be used as adjuvant therapies to improve the efficacy of chemotherapy and EGFR-targeted therapy in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Perilla , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Receptores ErbB , Apoptosis , Línea Celular Tumoral , Proliferación Celular
19.
Mol Genet Genomics ; 298(6): 1435-1447, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37725237

RESUMEN

High-quality molecular markers are essential for marker-assisted selection to accelerate breeding progress. Compared with diploid species, recently diverged polyploid crop species tend to have highly similar homeologous subgenomes, which is expected to limit the development of broadly applicable locus-specific single-nucleotide polymorphism (SNP) assays. Furthermore, it is particularly challenging to make genome-wide marker sets for species that lack a reference genome. Here, we report the development of a genome-wide set of kompetitive allele specific PCR (KASP) markers for marker-assisted recurrent selection (MARS) in the tetraploid minor crop perilla. To find locus-specific SNP markers across the perilla genome, we used genotyping-by-sequencing (GBS) to construct linkage maps of two F2 populations. The two resulting high-resolution linkage maps comprised 2326 and 2454 SNP markers that spanned a total genetic distance of 2133 cM across 16 linkage groups and 2169 cM across 21 linkage groups, respectively. We then obtained a final genetic map consisting of 22 linkage groups with 1123 common markers from the two genetic maps. We selected 96 genome-wide markers for MARS and confirmed the accuracy of markers in the two F2 populations using a high-throughput Fluidigm system. We confirmed that 91.8% of the SNP genotyping results from the Fluidigm assay were the same as the results obtained through GBS. These results provide a foundation for marker-assisted backcrossing and the development of new varieties of perilla.


Asunto(s)
Perilla , Tetraploidía , Genotipo , Perilla/genética , Polimorfismo de Nucleótido Simple/genética , Fitomejoramiento , Ligamiento Genético , Genoma de Planta/genética
20.
Gene ; 889: 147808, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37722611

RESUMEN

Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.


Asunto(s)
Perilla frutescens , Perilla , Perilla frutescens/genética , Perilla frutescens/metabolismo , Perilla/genética , Perilla/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Semillas/genética , Familia de Multigenes , Aceites de Plantas , Lípidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA