RESUMEN
The objective of this study was to determine the ecological relationships between bacterial species that colonize infected root canals. Root canal bacteria recovered from one patient with pulp canal necrosis were evaluated in vitro for synergistic and antagonistic activities determined by mono and co-culture growth kinetics and the production of bacteriocin-like substances using the double layer diffusion method. Peptostreptococcus prevotii triggered a significant increase of Fusobacterium nucleatum growth, while the former bacteria did not affect the growth of P. prevotii. The bacterial species did not produce antagonism activity against itself or against any of the other two species. Despite many studies have demonstrated the capability of root canal microorganisms to produce antagonistic substances, these in vitro experimental tests show the synergistic effect of P. prevotii on the growth of F. nucleatum.
Asunto(s)
Humanos , Cavidad Pulpar/crecimiento & desarrollo , Cavidad Pulpar/microbiología , Endodoncia , Infecciones por Fusobacterium , Fusobacterium nucleatum/crecimiento & desarrollo , Infecciones por Bacterias Grampositivas , Técnicas In Vitro , Peptostreptococcus/crecimiento & desarrollo , Tejido Periapical/crecimiento & desarrollo , Tejido Periapical/microbiología , Sinergismo Farmacológico , Métodos , Microbiología , MétodosRESUMEN
A small animal model was evaluated to study the interrelationships between microorganisms after their implantation in root canals (inferior central incisors) using germ-free (GF) and conventional (CV) mice. The selected microorganisms were: Porphyromonas endodontalis (ATCC 35406), Eubacterium lentum (ATCC 25559), Peptostreptococcus anaerobius (ATCC 27337), Fusobacterium nucleatum (ATCC 10953), Escherichia coli (ATCC 25922), and Enterococcus faecalis (ATCC 4083). Only P. anaerobius, E. coli, and E. faecalis, respectively, were able to colonize when inoculated alone into the root canal of both CV and GF mice. E. lentum, when inoculated alone colonized only in CV animals. P. endodontalis and F. nucleatum were unable to colonize in CV and GF animals after single inoculation. It is concluded that the experimental animal model presented herein is valuable for ecological studies of root canal infections and that only some strict anaerobic bacteria are able to colonize mice root canals when inoculated by themselves alone in pure culture.