Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.627
Filtrar
1.
Microb Biotechnol ; 17(9): e70007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235571

RESUMEN

Previous studies have reported the functional role, biochemical features and synthesis pathway of podophyllotoxin (PTOX) in plants. In this study, we employed combined morphological and molecular techniques to identify an endophytic fungus and extract PTOX derivatives. Based on the analysis of ITS sequences and the phylogenetic tree, the isolate was classified as Penicillium herquei HGN12.1C, with a sequence identity of 98.58%. Morphologically, the HGN12.1C strain exhibits white colonies, short-branched mycelia and densely packed hyphae. Using PacBio sequencing at an average read depth of 195×, we obtained a high-quality genome for the HGN12.1C strain, which is 34.9 Mb in size, containing eight chromosomes, one mitochondrial genome and a GC content of 46.5%. Genome analysis revealed 10 genes potentially involved in PTOX biosynthesis. These genes include VdtD, Pinoresinollariciresinol reductase (PLR), Secoisolariciresinol dehydrogenase (SDH), CYP719A23, CYP71BE54, O-methyltransferase 1 (OMT1), O-methyltransferase 3 (OMT3), 2-ODD, CYP71CU and CYP82D61. Notably, the VdtD gene in fungi shares functional similarities with the DIR gene found in plants. Additionally, we identified peltatin, a PTOX derivative, in the HGN12.1C extract. Docking analysis suggests a potential role for the 2-ODD enzyme in converting yatein to deoxypodophyllotoxin. These findings offer invaluable insights into the synthesis mechanism of PTOX in fungi, shedding light on the relationship between host plants and endophytes.


Asunto(s)
Vías Biosintéticas , Genoma Fúngico , Penicillium , Filogenia , Podofilotoxina , Podofilotoxina/biosíntesis , Podofilotoxina/análogos & derivados , Penicillium/genética , Penicillium/metabolismo , Vías Biosintéticas/genética , Endófitos/genética , Endófitos/metabolismo , Análisis de Secuencia de ADN , Composición de Base , Genómica
2.
Org Lett ; 26(36): 7632-7637, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39235108

RESUMEN

Penicillium daleae L3SO is a fungus isolated from the rhizospheric soil of the chloroplast-deficient plant Monotropa uniflora. A chemical study on the rice fermentation of this fungus led to the isolation and identification of two cage-like polyketides, penidaleodiolide A (1) and its biosynthetic-related congener penidaleodiolide B (2). The structures of 1 and 2 were determined by a combination of extensive spectroscopic analysis, biosynthetic consideration, chemical derivatization, and computational methods. Compound 1 harbors an unusual tricyclo[4.3.04,9]nonane scaffold, unprecedented in polyketide natural products. The hypothetical biosynthetic pathways for 1 and 2 were postulated and were supported by CRISPR/Cas9 genome editing results. Penidaleodiolide A (1) showed a significant inhibitory effect on the action potentials of murine hippocampal basket neurons and decreased the frequency of spontaneous excitatory postsynaptic currents in a concentration-dependent manner (the inhibition ratios were 0.30 ± 0.02 for 1 µM, 0.37 ± 0.03 for 10 µM, and 0.50 ± 0.07 for 20 µM) while being devoid of cytotoxicity against the nerve cells.


Asunto(s)
Penicillium , Policétidos , Policétidos/química , Policétidos/farmacología , Policétidos/aislamiento & purificación , Penicillium/química , Penicillium/metabolismo , Animales , Ratones , Estructura Molecular , Transmisión Sináptica/efectos de los fármacos , Microbiología del Suelo , Neuronas/efectos de los fármacos , Hipocampo/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 462, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264460

RESUMEN

Bioinformatic analysis revealed that the genomes of ubiquitous Penicillium spp. might carry dozens of biosynthetic gene clusters (BGCs), yet many clusters have remained uncharacterized. In this study, a detailed investigation of co-culture fermentation including the basidiomycete Armillaria mellea CPCC 400891 and the P. brasilianum CGMCC 3.4402 enabled the isolation of five new compounds including two bisabolene-type sesquiterpenes (arpenibisabolanes A and B), two carotane-type sesquiterpenes (arpenicarotanes A and B), and one polyketide (arpenichorismite A) along with seven known compounds. The assignments of their structures were deduced by the extensive analyses of detailed spectroscopic data, electronic circular dichroism spectra, together with delimitation of the biogenesis. Most new compounds were not detected in monocultures under the same fermentation conditions. Arpenibisabolane A represents the first example of a 6/5-fused bicyclic bisabolene. The bioassay of these five new compounds exhibited no cytotoxic activities in vitro against three human cancer cell lines (A549, MCF-7, and HepG2). Moreover, sequence alignments and bioinformatic analysis to other metabolic pathways, two BGCs including Pb-bis and Pb-car, responsible for generating sesquiterpenoids from co-culture were identified, respectively. Furthermore, based on the chemical structures and deduced gene functions of the two clusters, a hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed. These results demonstrated that the co-culture approach would facilitate bioprospecting for new metabolites even from the well-studied microbes. Our findings would provide opportunities for further understanding of the biosynthesis of intriguing sesquiterpenoids via metabolic engineering strategies. KEY POINTS: • Penicillium and Armillaria co-culture facilitates the production of diverse secondary metabolites • Arpenibisabolane A represents the first example of 6/5-fused bicyclic bisabolenes • A hypothetic metabolic pathway for biosynthesizing induced sesquiterpenoids was proposed.


Asunto(s)
Armillaria , Técnicas de Cocultivo , Fermentación , Penicillium , Metabolismo Secundario , Sesquiterpenos , Armillaria/metabolismo , Armillaria/genética , Penicillium/metabolismo , Penicillium/genética , Penicillium/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Humanos , Familia de Multigenes , Línea Celular Tumoral , Vías Biosintéticas/genética , Policétidos/metabolismo , Policétidos/química , Policétidos/aislamiento & purificación , Células Hep G2
4.
J Agric Food Chem ; 72(35): 19447-19461, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39177289

RESUMEN

α-Terpineol, an alcoholic monoterpene with lilac-like aroma, possesses diverse biological activities and has found applications in the food, pharmaceutical, cosmetic, and agricultural industries. Our previous studies indicated that gene PdTP1 was highly expressed in Penicillium digitatum DSM 62840 during the biotransformation of limonene to α-terpineol, while its actual biological functions are not fully understood. Here, PdTP1 was functionally characterized with bioinformatics analysis, subcellular localization, transcriptional activation activity, overexpression, and RNA interference (RNAi) silencing and RNA-seq analysis. Results showed that PdTP1 protein contained a GAL4-like Zn2Cys6 DNA-binding domain and a fungal_trans domain, was located in the nucleus and cell membrane and presented transcriptional activation effect, suggesting that PdTP1 encoded a Zn2Cys6 type transcription factor. Overexpression of PdTP1 in P. digitatum promoted limonene biotransformation and increased α-terpineol production, and opposite results were observed after the silencing of PdTP1. Moreover, transcription factor PdTP1 was found to affect the growth of P. digitatum and participate in ionic stress and oxidative stress responses. RNA-seq data revealed that altering the PdTP1 expression influenced the expression of some genes related to terpene metabolism or biosynthesis, fungal growth, and stress responses. In summary, PdTP1, which encoded a Zn2Cys6 transcription factor, played important roles in improving the production of α-terpineol from limonene and regulating fungal growth and environmental stress responses.


Asunto(s)
Biotransformación , Monoterpenos Ciclohexánicos , Proteínas Fúngicas , Limoneno , Penicillium , Factores de Transcripción , Penicillium/metabolismo , Penicillium/genética , Penicillium/crecimiento & desarrollo , Limoneno/metabolismo , Limoneno/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Monoterpenos Ciclohexánicos/metabolismo , Regulación Fúngica de la Expresión Génica , Terpenos/metabolismo
5.
BMC Microbiol ; 24(1): 301, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134942

RESUMEN

BACKGROUND: Penicillium oxalicum is an important fungal agent in the composting of cattle manure, but the changes that occur in the microbial community, physicochemical factors, and potential functions of microorganisms at different time points are still unclear. To this end, the dynamic changes occurring in the microbial community and physicochemical factors and their correlations during the composting of cattle manure with Penicillium oxalicum were analysed. RESULTS: The results showed that the main phyla observed throughout the study period were Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Halanaerobiaeota, Apicomplexa and Ascomycota. Linear discriminant analysis effect size (LEfSe) illustrated that Chitinophagales and Eurotiomycetes were biomarker species of bacteria and eukaryote in samples from Days 40 and 35, respectively. Bacterial community composition was significantly correlated with temperature and pH, and eukaryotic microorganism community composition was significantly correlated with moisture content and NH4+-N according to redundancy analysis (RDA). The diversity of the microbial communities changed significantly, especially that of the main pathogenic microorganisms, which showed a decreasing trend or even disappeared after composting. CONCLUSIONS: In conclusion, a combination of high-throughput sequencing and physicochemical analysis was used to identify the drivers of microbial community succession and the composition of functional microbiota during cattle manure composting with Penicillium oxalicum. The results offer a theoretical framework for explaining microecological assembly during cattle manure composting with Penicillium oxalicum.


Asunto(s)
Bacterias , Compostaje , Estiércol , Microbiota , Penicillium , Animales , Penicillium/metabolismo , Bovinos , Estiércol/microbiología , Estiércol/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Temperatura , Microbiología del Suelo , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , Biodiversidad , ARN Ribosómico 16S/genética
6.
Food Chem ; 461: 140863, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153373

RESUMEN

A critical transcription factor, PacC, modulates the expression of fungal pH signaling. Although PacC-mediated environmental pH has been reported to regulate the growth and pathogenicity of postharvest pathogens, the involvement of PacC in sucrose metabolism, sugar transport, and the pentose phosphate pathway (PPP) in different zones of decayed fruit remains unclear. Our work showed that the inoculation with a PePacC deletion strain of Penicillium expansum (ΔPePacC) accelerated sucrose catabolism and glucose and fructose accumulation in different zones of apple fruit. This was attributed to an increase in sucrose metabolism enzyme activities and up-regulation of the sugar transporter protein-related gene expression. Moreover, ΔPePacC inoculation increased the PPP-related enzyme activities and the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+. In conclusion, PacC modulates sucrose metabolism, sugar transport, and the PPP in apple fruit by mediating dynamic changes in environmental pH, thereby enhancing fruit disease resistance.


Asunto(s)
Frutas , Proteínas Fúngicas , Malus , Penicillium , Vía de Pentosa Fosfato , Sacarosa , Malus/microbiología , Malus/metabolismo , Penicillium/metabolismo , Penicillium/crecimiento & desarrollo , Penicillium/genética , Frutas/microbiología , Frutas/metabolismo , Frutas/química , Sacarosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transporte Biológico , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
7.
Bioresour Technol ; 412: 131370, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39209229

RESUMEN

The production of alternative proteins is of great significance in the mitigation of food problems. This study proposes an integrated approach including protein extraction, enzymatic hydrolysis, and fermentation to produce both plant proteins and single-cell proteins as alternative proteins from tobacco leaves, a highly-abundant and protein-rich agricultural waste. Alkaline extraction of proteins before polysaccharide hydrolysis was found to be preferable for increasing the yields of plant proteins and mono-sugars. The combined use of pectinase-rich enzymes from Aspergillus brunneoviolaceus and hemicellulase-rich enzymes from Penicillium oxalicum achieved the release of 80.7 % of the sugars after 72 h. Cutaneotrichosporon cutaneum could simultaneously utilize multiple sugars, including galacturonic acid, in the enzymatic hydrolysate to produce single-cell proteins. Via this approach, 43.54 g crude proteins of high protein contents and rich in essential amino acids can be produced from 100.00 g waste tobacco leaves, providing a promising strategy for its valorization.


Asunto(s)
Nicotiana , Pectinas , Hojas de la Planta , Proteínas de Plantas , Nicotiana/metabolismo , Pectinas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Hidrólisis , Poligalacturonasa/metabolismo , Fermentación , Glicósido Hidrolasas/metabolismo , Aspergillus/metabolismo , Álcalis , Penicillium/metabolismo , Proteínas Fúngicas/metabolismo , Residuos , Proteínas en la Dieta
8.
Molecules ; 29(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39202967

RESUMEN

Penicillide is the founder product of a class of natural products of fungal origin. Although this compound and its analogues have been identified from taxonomically heterogeneous fungi, they are most frequently and typically reported from the species of Talaromyces and Penicillium. The producing strains have been isolated in various ecological contexts, with a notable proportion of endophytes. The occurrence of penicillides in these plant associates may be indicative of a possible role in defensive mutualism based on their bioactive properties, which are also reviewed in this paper. The interesting finding of penicillides in fruits and seeds of Phyllanthus emblica is introductory to a new ground of investigation in view of assessing whether they are produced by the plant directly or as a result of the biosynthetic capacities of some endophytic associates.


Asunto(s)
Penicillium , Talaromyces , Talaromyces/química , Penicillium/química , Penicillium/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Estructura Molecular , Humanos , Endófitos/química
9.
Fungal Biol ; 128(6): 1992-2006, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39174235

RESUMEN

The aim of this study is to develop safe biological methods for controlling fungal deterioration of historical manuscripts. Therefore, fifteen fungal isolates were obtained from paper sheets and leather skins of a deteriorated historical manuscript (dated back to the 13th century). Those isolates were identified using both traditional methods and ITS-sequencing analysis. Aspergillus niger accounted for seven strains, Penicillium citrinum for one strain, Aspergillus flavus for three, Aspergillus fumigatus for one, Aspergillus nidulans for one, and Penicillium chrysogenum for two of the fungal strains that were obtained. The ability of fungal strains for the secretion of cellulase, amylase, gelatinase, and pectinase as hydrolytic enzymes was evaluated. The capability of the probiotic-bacterial strain Lactobacillus plantarum DSM 20174 for inhibition of fungal strains that cause severe deterioration was studied using ethyl acetate-extract. The metabolic profile of the ethyl acetate-extract showed the presence of both high- and low-molecular-weight active compounds as revealed by GC-MS analysis. The safe dose to prevent fungal growth was determined by testing the ethyl acetate extract's biocompatibility against Wi38 and HFB4 as normal cell lines. The extract was found to have a concentration-dependent cytotoxic impact on Wi38 and HFB4, with IC50 values of 416 ± 4.5 and 349.7 ± 5.9 µg mL-1, respectively. It was suggested that 100 µg mL-1 as a safe concentration could be used for paper preservation. Whatman filter paper treated with ethyl acetate extract was used to cultivate the fungal strain Penicillium citrinum AX2. According to data analysis, fungal inhibition measurement, SEM, ATR-FT-IR, XRD, color change measurement, and mechanical property assessment, the recommended concentration of ethyl acetate extract was adequate to protect paper inoculated with the highest enzymatic producer fungi, P. citrinum AX2.


Asunto(s)
Lactobacillus plantarum , Probióticos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/aislamiento & purificación , Penicillium/crecimiento & desarrollo , Penicillium/efectos de los fármacos , Penicillium/aislamiento & purificación , Penicillium/metabolismo , Antibiosis , Humanos , Antifúngicos/farmacología
10.
Food Chem ; 460(Pt 2): 140590, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067424

RESUMEN

Ochratoxin A (OTA) is a nephrotoxin that contaminates grains in storage. Moisture and temperature sensors give delayed responses due to their slow kinetic movement within the silo. This study examines if CO2 production could predict OTA contamination and identify storage conditions exceeding the maximum limit (5 µg/kg). The impact of water activity levels (0.70-0.90 aw), temperatures (15 and 20 °C), and storage duration on (a)Penicillium verrucosum population, (b)CO2 respiration rates (RR), and (c)ochratoxins concentrations in stored wheat was investigated. 96 samples were analysed for ochratoxins with LCMS-MS. RR was >7 times higher at wetter conditions than at drier aw levels. A positive correlation between CO2, OTA, OTB, and OTα was observed at the wettest conditions. OTA exceeded the limit at >0.80 aw (16% moisture content) with RR > 0.01 mg CO2 kg-1 h-1. The knowledge of the RR of stored grain would alert grain farmers/managers to improve grain storage management.


Asunto(s)
Dióxido de Carbono , Contaminación de Alimentos , Ocratoxinas , Penicillium , Temperatura , Triticum , Agua , Triticum/química , Triticum/microbiología , Triticum/metabolismo , Ocratoxinas/análisis , Ocratoxinas/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Penicillium/metabolismo , Penicillium/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Agua/metabolismo , Agua/análisis , Agua/química , Almacenamiento de Alimentos
11.
Appl Environ Microbiol ; 90(8): e0039024, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39023351

RESUMEN

Filamentous fungi can produce raw-starch-degrading enzyme, however, regulation of production of raw-starch-degrading enzyme remains poorly understood thus far. Here, two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) were identified to participate in the production of raw-starch-degrading enzyme in Penicillium oxalicum. Individual knockout of rsrD and rsrE in the parental strain Δku70 resulted in 31.1%-92.9% reduced activity of raw-starch-degrading enzyme when cultivated in the presence of commercial starch from corn. RsrD and RsrE contained a basic leucine zipper and a Zn2Cys6-type DNA-binding domain, respectively, but with unknown functions. RsrD and RsrE dynamically regulated the expression of genes encoding major amylases over time, including raw-starch-degrading glucoamylase gene PoxGA15A and α-amylase gene amy13A. Interestingly, RsrD and RsrE regulated each other at transcriptional level, through binding to their own promoter regions; nevertheless, both failed to bind to the promoter regions of PoxGA15A and amy13A, as well as the known regulatory genes for regulation of amylase gene expression. RsrD appears to play an epistatic role in the module RsrD-RsrE on regulation of amylase gene expression. This study reveals a novel regulatory pathway of fungal production of raw-starch-degrading enzyme.IMPORTANCETo survive via combating with complex extracellular environment, filamentous fungi can secrete plant polysaccharide-degrading enzymes that can efficiently hydrolyze plant polysaccharide into glucose or other mono- and disaccharides, for their nutrients. Among the plant polysaccharide-degrading enzymes, raw-starch-degrading enzymes directly degrade and convert hetero-polymeric starch into glucose and oligosaccharides below starch gelatinization temperature, which can be applied in industrial biorefinery to save cost. However, the regulatory mechanism of production of raw-starch-degrading enzyme in fungi remains unknown thus far. Here, we showed that two novel transcription factors raw-starch-degrading enzyme regulator D (RsrD) and raw-starch-degrading enzyme regulator E (RsrE) positively regulate the production of raw-starch-degrading enzyme by Penicillium oxalicum. RsrD and RsrE indirectly control the expression of genes encoding enzymes with amylase activity but directly regulate each other at transcriptional level. These findings expand diversity of gene expression regulation in fungi.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Penicillium , Almidón , Factores de Transcripción , Penicillium/genética , Penicillium/enzimología , Penicillium/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Almidón/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Amilasas/metabolismo , Amilasas/genética , Regiones Promotoras Genéticas
12.
Int J Food Microbiol ; 423: 110841, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39059140

RESUMEN

Penicillium exopolysaccharide (EPS) inhibits galactose lectins and enhances immunity. However, EPS production is low and its synthesis mechanism remains unclear. Penicillium EF-2 strains with high EPS production were selected for this study, and Penicillium fermentation conditions were subsequently improved. The optimal culture conditions were 30 g/L lactose, 6 g/L yeast extract powder, 4 d seed age, 10 % inoculation amount, 3 d of secondary fermentation time, and the final EPS yield was 3.97 g/L. UHPLC-Q-TOF-MS/MS was used to explore the mechanism of EPS synthesis at the metabolic level. Optimal carbon source: lactose and optimal nitrogen source: yeast extract can provide precursors for EPS synthesis through related metabolic pathways. Moreover, regulating the energy, vitamin, and lipid metabolic pathways created favourable conditions for EPS synthesis and secretion. These findings explain the mechanism of EPS synthesis at the metabolic level and provide a theoretical basis for optimising and industrialising EPS production.


Asunto(s)
Fermentación , Metabolómica , Penicillium , Espectrometría de Masas en Tándem , Penicillium/metabolismo , Penicillium/crecimiento & desarrollo , Metabolómica/métodos , Cromatografía Líquida de Alta Presión , Medios de Cultivo/química , Nitrógeno/metabolismo
13.
Fungal Genet Biol ; 174: 103912, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004163

RESUMEN

The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.


Asunto(s)
Vías Biosintéticas , Fusarium , Fenalenos , Pigmentación , Sintasas Poliquetidas , Fusarium/genética , Fusarium/metabolismo , Fenalenos/metabolismo , Vías Biosintéticas/genética , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Pigmentación/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Talaromyces/genética , Talaromyces/metabolismo , Penicillium/genética , Penicillium/metabolismo
14.
Appl Microbiol Biotechnol ; 108(1): 427, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046587

RESUMEN

Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.


Asunto(s)
Sistemas CRISPR-Cas , Penicillium , Metabolismo Secundario , Penicillium/genética , Penicillium/metabolismo , Metabolismo Secundario/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Familia de Multigenes , Marcación de Gen/métodos , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vías Biosintéticas/genética , Ingeniería Metabólica/métodos , Expresión Génica
15.
Commun Biol ; 7(1): 848, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992164

RESUMEN

Filamentous fungi produce polysaccharide-degrading enzymes, which is controlled by poorly understood transcriptional circuits. Here we show that a circuit comprising RsrC-RsrA-RsrB (Rsr: production of raw-starch-degrading enzyme regulator) that positively regulates production of raw starch-degrading enzymes in Penicillium oxalicum. Transcription factor (TF) RsrA is essential for biosynthesis of raw starch-degrading enzymes. RsrB and RsrC containing Zn2Cys6- and C2H2-zinc finger domains, act downstream and upstream of RsrA, respectively. RsrA activates rsrB transcription, and three nucleotides (G-286, G-287 and G-292) of rsrB promoter region are required for RsrA, in terms of TF, for binding. RsrB165-271 binds to DNA sequence 5'-TCGATCAGGCACGCC-3' in the promoter region of the gene encoding key raw-starch-degrading enzyme PoxGA15A. RsrC specifically binds rsrA promoter, but not amylase genes, to positively regulate the expression of rsrA and the production of raw starch-degrading enzymes. These findings expand complex regulatory network of fungal raw starch-degrading enzyme biosynthesis.


Asunto(s)
Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Penicillium , Factores de Transcripción , Penicillium/genética , Penicillium/metabolismo , Penicillium/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas , Polisacáridos/metabolismo , Polisacáridos/biosíntesis , Redes Reguladoras de Genes
16.
Environ Pollut ; 357: 124431, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925214

RESUMEN

Soil contamination by hydrocarbons is a problem that causes severe damage to the environment and public health. Technologies such as bioremediation using native microbial species represent a promising and environmentally friendly alternative for decontamination. This study aimed to isolate indigenous fungi species from the State of Rio de Janeiro, Brazil and evaluate their diesel degrading capacity in soils contaminated with crude oil. Seven filamentous fungi were isolated after enrichment cultivation from soils collected from contaminated sites and subjected to growth analysis on diesel nutrient media. Two fungal species were pre-selected and identified by morphological genus analysis and molecular techniques as Trichoderma asperellum and Penicillium pedernalense. The microdilution test showed that T. asperellum presented better fungal growth in high diesel concentrations than P. pedernalense. In addition, T. asperellum was able to degrade 41 and 54% of the total petroleum hydrocarbon (TPH) content present in soil artificially contaminated with diesel (10 g/kg of soil) in 7 and 14 days of incubation, respectively. In higher diesel concentration (1000 g of diesel/kg of soil) the TPH degradation reached 26%, 45%, and 48%, in 9, 16, and 30 d, respectively. The results demonstrated that the selected species was suitable for diesel degradation. We can also conclude that the isolation and selection process proposed in this work was successful and represents a simple alternative for obtaining native species with hydrocarbon degradation capacity, for use in the bioremediation process in the recovery of contaminated areas in an ecologically acceptable way.


Asunto(s)
Biodegradación Ambiental , Hongos , Gasolina , Hidrocarburos , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Brasil , Hidrocarburos/metabolismo , Hongos/metabolismo , Penicillium/metabolismo , Suelo/química , Petróleo/metabolismo , Trichoderma/metabolismo
17.
Appl Environ Microbiol ; 90(7): e0034224, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38899884

RESUMEN

Black apples are the result of late-stage microbial decomposition after falling to the ground. This phenomenon is highly comparable from year to year, with the filamentous fungus Monilinia fructigena most commonly being the first invader, followed by Penicillium expansum. Motivated by the fact that only little chemistry has been reported from apple microbiomes, we set out to investigate the chemical diversity and potential ecological roles of secondary metabolites (SMs) in a total of 38 black apples. Metabolomics analyses were conducted on either whole apples or small excisions of fungal biomass derived from black apples. Annotation of fungal SMs in black apple extracts was aided by the cultivation of 15 recently isolated fungal strains on 9 different substrates in a One Strain Many Compounds (OSMAC) approach, leading to the identification of 3,319 unique chemical features. Only 6.4% were attributable to known compounds based on analysis of high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS/MS) data using spectral library matching tools. Of the 1,606 features detected in the black apple extracts, 32% could be assigned as fungal-derived, due to their presence in the OSMAC-based training data set. Notably, the detection of several antifungal compounds indicates the importance of such compounds for the invasion of and control of other microbial competitors on apples. In conclusion, the diversity and abundance of microbial SMs on black apples were found to be much higher than that typically observed for other environmental microbiomes. Detection of SMs known to be produced by the six fungal species tested also highlights a succession of fungal growth following the initial invader M. fructigena.IMPORTANCEMicrobial secondary metabolites constitute a significant reservoir of biologically potent and clinically valuable chemical scaffolds. However, their usefulness is hampered by rapidly developing resistance, resulting in reduced profitability of such research endeavors. Hence, the ecological role of such microbial secondary metabolites must be considered to understand how best to utilize such compounds as chemotherapeutics. Here, we explore an under-investigated environmental microbiome in the case of black apples; a veritable "low-hanging fruit," with relatively high abundances and diversity of microbially produced secondary metabolites. Using both a targeted and untargeted metabolomics approach, the interplay between metabolites, other microbes, and the apple host itself was investigated. This study highlights the surprisingly low incidence of known secondary metabolites in such a system, highlighting the need to study the functionality of secondary metabolites in microbial interactions and complex microbiomes.


Asunto(s)
Malus , Penicillium , Metabolismo Secundario , Malus/microbiología , Penicillium/metabolismo , Penicillium/aislamiento & purificación , Penicillium/genética , Hongos/clasificación , Hongos/metabolismo , Hongos/genética , Hongos/aislamiento & purificación , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/clasificación , Metabolómica , Microbiota , Biodiversidad , Micobioma
18.
J Am Chem Soc ; 146(26): 18172-18183, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888159

RESUMEN

Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1ß by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Penicillium , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Inflamasomas/metabolismo , Inflamasomas/antagonistas & inhibidores , Penicillium/metabolismo , Penicillium/química , Humanos , Vías Biosintéticas/efectos de los fármacos , Interleucina-1beta/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/metabolismo , Estructura Molecular
19.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38849297

RESUMEN

Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.


Asunto(s)
Biodegradación Ambiental , Carbón Mineral , Hongos , Lignina , Metano , Metano/metabolismo , Carbón Mineral/microbiología , Hongos/metabolismo , Hongos/clasificación , Lignina/metabolismo , Fermentación , Penicillium/metabolismo
20.
Food Microbiol ; 122: 104532, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839238

RESUMEN

Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.


Asunto(s)
Genoma Fúngico , Familia de Multigenes , Micotoxinas , Penicillium , Filogenia , Metabolismo Secundario , Penicillium/genética , Penicillium/metabolismo , Micotoxinas/metabolismo , Micotoxinas/genética , Contaminación de Alimentos/análisis , Patulina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nueces/microbiología , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Microbiología de Alimentos , Corylus/microbiología , Compuestos Heterocíclicos de 4 o más Anillos , Indoles , Piperazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA