RESUMEN
Cardiovascular diseases remain the leading cause of death in the world, and that is why finding an effective and multi-functional treatment alternative to combat these diseases has become more important. Fibrates and thiazolidinediones, peroxisome proliferator-activated receptors alpha and gamma are the pharmacological therapies used to treat dyslipidemia and type 2 diabetes, respectively. New mechanisms of action of these drugs have been found, demonstrating their pleiotropic effects, which contribute to preserving the heart by reducing or even preventing myocardial damage. Here, we review the mechanisms underlying the cardioprotective effects of PPAR agonists and regulating morphological and physiological heart alterations (metabolic flexibility, mitochondrial damage, apoptosis, structural remodeling, and inflammation). Moreover, clinical evidence regarding the cardioprotective effect of PPAR agonists is also addressed.
Asunto(s)
Miocardio , PPAR alfa , PPAR gamma , Humanos , PPAR gamma/agonistas , PPAR gamma/metabolismo , PPAR alfa/agonistas , PPAR alfa/metabolismo , Miocardio/patología , Miocardio/metabolismo , Animales , Cardiotónicos/farmacología , Cardiotónicos/uso terapéuticoRESUMEN
AIM: This study sought to evaluate the effects of LDT409, a pan-PPAR partial agonist obtained from the main industrial waste from cashew nut processing, on hepatic remodeling, highlighting energy metabolism and endoplasmic reticulum (ER) stress in high-fructose-fed mice. METHODS: Male C57BL/6 mice received a control diet (C) or a high-fructose diet (HFRU) for ten weeks. Then, a five-week treatment started: C, C-LDT409, HFRU, and HFRU-LDT409. The LDT409 (40 mg/kg of body weight) was mixed with the diets. RESULTS: The HFRU diet caused insulin resistance and endoplasmic reticulum (ER) stress. High Pparg and decreased Ppara expression increased steatosis and pro-fibrogenic gene expression in livers of HFRU-fed mice. Suppressed lipogenic factors, orchestrated by PPAR-gamma, and mitigated ER stress concomitant with the increase in beta-oxidation driven by PPAR-alpha mediated the LDT409 beneficial effects. CONCLUSIONS: LDT409 may represent a potential low-cost approach to treat metabolic dysfunction-associated steatotic liver disease, which does not currently have a specific treatment.
Asunto(s)
Estrés del Retículo Endoplásmico , Fructosa , Ratones Endogámicos C57BL , Animales , Masculino , Fructosa/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Resistencia a la Insulina , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR alfa/genética , PPAR gamma/agonistas , PPAR gamma/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/patología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patologíaRESUMEN
INTRODUCTION: This study aims to investigate if a mixture of functional lipids (FLs), containing conjugated linoleic acid (CLA), tocopherols (TPs), and phytosterols (PSs), prevents some lipid alterations induced by high-fat (HF) diets, without adverse effects. METHODS: Male CF1 mice (n = 6/group) were fed (4 weeks) with control (C), HF, or HF + FL diets. RESULTS: FL prevented the overweight induced by the HF diet and reduced the adipose tissue (AT) weight, associated with lower energy efficiency. After the intervention period, the serum triacylglycerol (TAG) levels in both HF diets underwent a decrease associated with an enhanced LPL activity (mainly in muscle). The beneficial effect of the FL mixture on body weight gain and AT weight might be attributed to the decreased lipogenesis, denoted by the lower mRNA levels of SREBP1-c and ACC in AT, as well as by an exacerbated lipid catabolism, reflected by increased mRNA levels of PPARα, ATGL, HSL, and UCP2 in AT. Liver TAG levels were reduced in the HF + FL group due to an elevated lipid oxidation associated with a higher CPT-1 activity and mRNA levels of PPARα and CPT-1a. Moreover, genes linked to fatty acid biosynthesis (SREBP1-c and ACC) showed decreased mRNA levels in both HF diets, this finding being more pronounced in the HF + FL group. CONCLUSION: The administration of an FL mixture (CLA + TP + PS) prevented some lipid alterations induced by a HF diet, avoiding frequent deleterious effects of CLA in mice through the modulation of gene expression related to the regulation of lipid metabolism.
Asunto(s)
Dieta Alta en Grasa , Ácidos Linoleicos Conjugados , Metabolismo de los Lípidos , Hígado , PPAR alfa , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Triglicéridos , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Masculino , Triglicéridos/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , PPAR alfa/metabolismo , PPAR alfa/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ácidos Linoleicos Conjugados/farmacología , Lipogénesis/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 2/genética , Fitosteroles/farmacología , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Lipoproteína Lipasa/metabolismo , Lipoproteína Lipasa/genéticaRESUMEN
AIM: To evaluate the effects of PPARα and PPARγ activation (alone or in combination) on the gut-liver axis, emphasizing the integrity of the intestinal barrier and hepatic steatosis in mice fed a high saturated fat diet. METHODS: Male C57BL/6J were fed a control diet (C) or a high-fat diet (HF) for ten weeks. Then, a four-week treatment started: HF-α (WY14643), HF-γ (low-dose pioglitazone), and HF-αγ (combination). RESULTS: The HF caused overweight, insulin resistance, impaired gut-liver axis, and marked hepatic steatosis. Treatments reduced body mass, improved glucose homeostasis, and restored the gut microbiota diversity and intestinal barrier gene expression. Treatments also lowered the plasma lipopolysaccharide concentrations and favored beta-oxidation genes, reducing macrophage infiltration and steatosis in the liver. CONCLUSION: Treatment with PPAR agonists modulated the gut microbiota and rescued the integrity of the intestinal barrier, alleviating hepatic steatosis. These results show that these agonists can contribute to metabolic-associated fatty liver disease treatment.
Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , PPAR alfa/genética , PPAR alfa/metabolismo , Obesidad/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismoRESUMEN
OBJECTIVE: The aim of this study was to investigate the role of peroxisome proliferator-activated receptor (PPAR) activation (single PPARα or PPARγ, and dual PPARα/γ) on UCP1-dependent and -independent thermogenic pathways and mitochondrial metabolism in the subcutaneous white adipose tissue of mice fed a high-fat diet. METHODS: Male C57BL/6 mice received either a control diet (10% lipids) or a high-fat diet (HF; 50% lipids) for 12 wk. The HF group was divided to receive the treatments for 4 wk: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group was overweight, insulin resistant, and had subcutaneous white adipocyte dysfunction. Treatment with PPARα and PPARα/γ reduced body mass, mitigated insulin resistance, and induced browning with increased UCP1-dependent and -independent thermogenesis activation and improved mitochondrial metabolism to support the beige adipocyte phenotype. CONCLUSION: PPARα and dual PPARα/γ activation recruited UCP1+ beige adipocytes and favored UCP1-independent thermogenesis, yielding body mass and insulin sensitivity normalization. Preserved mitochondrial metabolism emerges as a potential target for obesity treatment using PPAR agonists, with possible clinical applications.
Asunto(s)
Adipocitos Beige , Resistencia a la Insulina , Animales , Masculino , Ratones , Adipocitos Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos , Ratones Endogámicos C57BL , Dinámicas Mitocondriales , PPAR alfa/metabolismo , Termogénesis , Proteína Desacopladora 1/metabolismoRESUMEN
INTRODUCTION AND OBJECTIVES: As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS: ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRTâPCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS: With the progression of ALF, the expression levels of interleukin (IL) -1ß, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS: As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.
Asunto(s)
Fallo Hepático Agudo , PPAR alfa , Ratones , Animales , PPAR alfa/genética , PPAR alfa/metabolismo , Piroptosis , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/prevención & control , Hígado/patología , Inflamación/prevención & control , Inflamación/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BLRESUMEN
AIM: To evaluate the effects of single PPARα or PPARγ activation, and their synergism (combined PPARα/γ activation) upon the gut-adipose tissue axis, focusing on the endotoxemia and upstream interscapular brown adipose tissue (iBAT) function in high-saturated fat-fed mice. METHODS: Male C57BL/6 mice received a control diet (C, 10% lipids) or a high-fat diet (HF, 50% lipids) for 12 weeks. Then, the HF group was divided to receive the treatments for four weeks: HFγ (pioglitazone, 10 mg/kg), HFα (WY-14643, 3.5 mg/kg), and HFα/γ (tesaglitazar, 4 mg/kg). RESULTS: The HF group exhibited overweight, oral glucose intolerance, gut dysbiosis, altered gut permeability, and endotoxemia, culminating in iBAT whitening. The downregulation of LPS-Tlr4 signaling underpinned reduced inflammation and improved lipid metabolism in iBAT in the HFα/γ group, the unique to show normalized body mass and increased energy expenditure. CONCLUSION: PPARα/γ synergism treated obesity by ameliorating the gut-adipose tissue axis, where restored gut microbiota and permeability controlled endotoxemia and rescued iBAT whitening through favored thermogenesis.
Asunto(s)
Endotoxemia , PPAR alfa , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa , Lípidos , Ratones Endogámicos C57BL , Obesidad/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismoRESUMEN
OBJECTIVE: The purpose of this study is to investigate the pathogenic role of PPARα in periodontal antigen treated gingival cells in vitro and in experimental periodontitis in vivo . METHODOLOGY: Gingival fibroblasts, gingival epithelial cells and splenocytes were isolated from C57BL/6J wild type (WT) mice and treated with fixed P. gingivalis at for 48 hours. The mRNA levels of PPARs, TNFα, IL-1ß and IL-10 were detected by Real-time quantitative PCR. Silk ligatures after being soaked in the P.gingivalis suspension were tied around both maxillary second molars of WT mice or PPARα knock-out (KO) mice for two weeks. PPARα agonist fenofibrate and vehicle control were injected into the different side of the palatal gingiva on days 3, 6, and 9. At day 14, bone resorption and gingival mRNA expression levels of PPARs, TNFα, IL-1ß and IL-10 were measured by micro-computed tomography and RT-qPCR respectively. RESULTS: P. gingivalis treatment downregulated the expression of PPARα, but not PPARß or PPARγ, and increased the expression of TNF-α and IL-1ß in Gingival fibroblasts, gingival epithelial cells and splenocytes from WT mice. Gingival mRNA levels of PPARα were significantly decreased in experimental periodontitis in WT mice. The bone loss of PPARα KO mice in experimental periodontitis was significantly higher than WT mice and was not reduced by fenofibrate treatment. Gingival TNFα protein expressions were significantly increased by P. gingivalis associated ligation and decreased by fenofibrate treatment in WT mice but not in PPARα KO mice. CONCLUSION: This study suggests that PPARα plays an essential role in periodontitis.
Asunto(s)
Pérdida de Hueso Alveolar , Fenofibrato , PPAR alfa , Periodontitis , Pérdida de Hueso Alveolar/patología , Animales , Fenofibrato/farmacología , Encía/patología , Interleucina-10/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/metabolismo , Periodontitis/metabolismo , Periodontitis/patología , Porphyromonas gingivalis/metabolismo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Microtomografía por Rayos XRESUMEN
The objective of this study is to assess, in zebrafish, the effects of combining linseed oil (LO) and clove leaf essential oil (CLEO) on the incorporation of fatty acids in the muscle, oxidative markers, lipid peroxidation and expression of the PPAR-α (Peroxisome Proliferator-Activated Receptor-α) and the SREBP-2 (Sterol Regulatory Element Binding Protein-2) genes. Six diets were prepared, containing combinations of LO (3, 6 and 9%) and CLEO (0.5 and 1%): 3% LO + 0.5% CLEO; 3% LO + 1% CLEO; 6% LO + 0.5% CLEO; 6% LO + 1% CLEO; 9% LO + 0.5% CLEO; 9% LO + 1% CLEO. Results showed increase in the incorporation of n-3 fatty acids in the muscle concomitantly with the addition of LO and CLEO. The activities of superoxide dismutase and catalase were reduced and the glutathione content had increased. Lipid peroxidation was lower in the treatment with 1% CLEO, regardless of LO content. The expression of the PPAR-α and the SREBP-2 genes was higher in animals fed 9% LO + 0.5% CLEO. Therefore, for a greater incorporation and protection against the oxidative damages of n-3 fatty acids, a combined use of 9% LO with 0.5% CLEO is recommended for zebrafish.
Asunto(s)
Ácidos Grasos Omega-3 , Aceites Volátiles , Syzygium , Animales , Ácidos Grasos/análisis , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/metabolismo , Aceite de Linaza/química , Aceite de Linaza/metabolismo , Aceite de Linaza/farmacología , Peroxidación de Lípido , Hígado/metabolismo , Músculos/metabolismo , Aceites Volátiles/metabolismo , Estrés Oxidativo , PPAR alfa/análisis , PPAR alfa/metabolismo , Hojas de la Planta/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/análisis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Pez Cebra/metabolismoRESUMEN
The aim of this study was to evaluate the paternal programming of sex-dependent alterations in fetoplacental growth and placental lipid metabolism regulated by peroxisome proliferator-activated receptor (PPAR) target genes in F1 diabetic males born from F0 pregestational diabetic rats. F1 control and diabetic male rats were mated with control female rats. On day 21 of gestation, F2 male and female fetoplacental growth, placental lipid levels, and protein and mRNA levels of genes involved in lipid metabolism and transport were evaluated. Fetal but not placental weight was increased in the diabetic group. Triglyceride, cholesterol and free fatty acid levels were increased in placentas of male fetuses from the diabetic group. The mRNA levels of Pparα and Pparγ coactivator 1α (Pgc-1α) were increased only in placentas of male fetuses from the diabetic group. Protein levels of PPARα and PGC-1α were decreased only in placentas of male fetuses from the diabetic group. No differences were found in Pparγ mRNA and protein levels in placentas from the diabetic group. The mRNA levels of genes involved in lipid synthesis showed no differences between groups, whereas the mRNA levels of genes involved in lipid oxidation and transport were increased only in placentas of male fetuses from the diabetic group. In conclusion, paternal diabetes programs fetal overgrowth and sex-dependent effects on the regulation of lipid metabolism in the placenta, where only placentas of male fetuses show an increase in lipid accumulation and mRNA expression of enzymes involved in lipid oxidation and transport pathways.
Asunto(s)
Diabetes Mellitus Experimental , Diabetes Gestacional , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Femenino , Macrosomía Fetal/metabolismo , Humanos , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Placenta/metabolismo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Triglicéridos/metabolismoRESUMEN
In current work, we prepared a series of nine 4-benzyloxy-5-benzylidene-1,3-thiazolidine-2,4-diones using a two-step pathway. Compounds 1-9 were tested in vitro using a set of three proteins recognized as important targets in diabetes and related diseases: PPARα, PPARγ, and GLUT-4. Compounds 1-3, 5, and 7 showed significant increases in the mRNA expression of PPARγ and GLUT-4, whereas compounds 1-3 did it over PPARα. Compounds 1-3 were identified as a dual PPAR α/γ modulators and were selected for evaluating the in vivo antidiabetic action at 100 mg/kg dose, being orally actives and decreasing blood glucose concentration in a hyperglycemic mice model, as well as reducing the triacylglycerides levels in normolipidemic rats. Docking and molecular dynamics studies were conducted to clarify the dual effect and binding mode of compounds 1-3 on both PPARs. Compounds 2 and 3 exhibited robust in vitro and in vivo efficacy and could be considered dual PPAR modulators with antidiabetic and antidyslipidemic effects.
Asunto(s)
Hipoglucemiantes , PPAR gamma , Animales , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Lípidos , Ratones , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Ratas , Tiazolidinas/farmacologíaRESUMEN
In patients with age-related macular degeneration (AMD), the crucial retinal pigment epithelial (RPE) cells are characterized by mitochondria that are structurally and functionally defective. Moreover, deficient expression of the mRNA-editing enzyme Dicer is noted specifically in these cells. This Dicer deficit up-regulates expression of Alu RNA, which in turn damages mitochondria-inducing the loss of membrane potential, boosting oxidant generation, and causing mitochondrial DNA to translocate to the cytoplasmic region. The cytoplasmic mtDNA, in conjunction with induced oxidative stress, triggers a non-canonical pathway of NLRP3 inflammasome activation, leading to the production of interleukin-18 that acts in an autocrine manner to induce apoptotic death of RPE cells, thereby driving progression of dry AMD. It is proposed that measures which jointly up-regulate mitophagy and mitochondrial biogenesis (MB), by replacing damaged mitochondria with "healthy" new ones, may lessen the adverse impact of Alu RNA on RPE cells, enabling the prevention or control of dry AMD. An analysis of the molecular biology underlying mitophagy/MB and inflammasome activation suggests that nutraceuticals or drugs that can activate Sirt1, AMPK, Nrf2, and PPARα may be useful in this regard. These include ferulic acid, melatonin urolithin A and glucosamine (Sirt1), metformin and berberine (AMPK), lipoic acid and broccoli sprout extract (Nrf2), and fibrate drugs and astaxanthin (PPARα). Hence, nutraceutical regimens providing physiologically meaningful doses of several or all of the: ferulic acid, melatonin, glucosamine, berberine, lipoic acid, and astaxanthin, may have potential for control of dry AMD.
Asunto(s)
Berberina , Degeneración Macular , Melatonina , Ácido Tióctico , Proteínas Quinasas Activadas por AMP/metabolismo , Berberina/farmacología , ADN Mitocondrial/metabolismo , Suplementos Dietéticos , Glucosamina , Humanos , Inflamasomas/metabolismo , Degeneración Macular/tratamiento farmacológico , Melatonina/metabolismo , Mitocondrias/metabolismo , Mitofagia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Biogénesis de Organelos , Estrés Oxidativo , PPAR alfa/metabolismo , ARN/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Sirtuina 1/metabolismoRESUMEN
BACKGROUND: Obesity and comorbidities onset encompass gut dysbiosis, altered intestinal permeability, and endotoxemia. Treatments that target gut dysbiosis can cope with obesity and nonalcoholic fatty liver disease (NAFLD) management. Peroxisome proliferator-activated receptor (PPAR)-alpha activation and dipeptidyl-peptidase-4 (DPP-4) inhibition alleviate NAFLD, but the mechanism may involve gut microbiota modulation and merits further investigation. AIM: To address the effects of PPAR-alpha activation and DPP-4 inhibition (isolated or combined) upon the gut-liver axis, emphasizing inflammatory pathways in NAFLD management in high-fat-fed C57BL/6J mice. METHODS: Male C57BL/6J mice were fed a control diet (C, 10% of energy as lipids) or a high-fat diet (HFD, 50% of energy as lipids) for 12 wk, when treatments started, forming the groups: C, HF, HFA (HFD + PPAR-alpha agonist WY14643, 2.5 mg/kg body mass), HFL (HFD + DPP-4 inhibitor linagliptin, 15 mg/kg body mass), and HFC (HFD + the combination of WY14643 and linagliptin). RESULTS: The HFD was obesogenic compared to the C diet. All treatments elicited significant body mass loss, and the HFC group showed similar body mass to the C group. All treatments tackled oral glucose intolerance and raised plasma glucagon-like peptide-1 concentrations. These metabolic benefits restored Bacteroidetes/Firmicutes ratio, resulting in increased goblet cells per area of the large intestine and reduced lipopolysaccharides concentrations in treated groups. At the gene level, treated groups showed higher intestinal Mucin 2, Occludin, and Zo-1 expression than the HFD group. The reduced endotoxemia suppressed inflammasome and macrophage gene expression in the liver of treated animals. These observations complied with the mitigation of liver steatosis and reduced hepatic triacylglycerol, reassuring the role of the proposed treatments on NAFLD mitigation. CONCLUSION: PPAR alpha activation and DPP-4 inhibition (isolated or combined) tackled NAFLD in diet-induced obese mice by restoration of gut-liver axis. The reestablishment of the intestinal barrier and the rescued phylogenetic gut bacteria distribution mitigated liver steatosis through anti-inflammatory signals. These results can cope with NAFLD management by providing pre-clinical evidence that drugs used to treat obesity comorbidities can help to alleviate this silent and harmful liver disease.
Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Endotoxemia , Enfermedad del Hígado Graso no Alcohólico , Obesidad , PPAR alfa , Animales , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Disbiosis/tratamiento farmacológico , Disbiosis/metabolismo , Endotoxemia/complicaciones , Endotoxemia/tratamiento farmacológico , Linagliptina/farmacología , Linagliptina/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , PPAR alfa/agonistas , PPAR alfa/metabolismo , FilogeniaRESUMEN
Aim: To investigate the effects of egg white hydrolysate (EWH) on the lipid and glycemic metabolism disruption in the white adipose tissue (WAT) dysfunction induced by mercury (Hg). Experimental: Wistar rats were treated for 60 days: control (saline, intramuscular - i.m.); hydrolysate (EWH, gavage, 1 g kg-1 day-1); mercury (HgCl2, i.m., 1st dose 4.6 µg kg-1, subsequent doses 0.07 µg kg-1 day-1) and hydrolysate-mercury (EWH-HgCl2). Hg level and histological analyses were performed in epididymal WAT (eWAT), pancreas and liver. GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin, and CD11 mRNA expressions were analyzed in eWAT. The plasma lipid profile, glucose, and insulin levels were measured. Antioxidant status was also evaluated in the plasma and liver. Results: EWH intake prevented the reduced eWAT weight, adipocyte size, insulin levels, and antioxidant defenses and the increased glucose and triglyceride levels induced by Hg exposure; hepatic glutathione levels were higher in rats co-treated with EWH. The increased mRNA expression of CHOP, PPARα, and leptin induced by Hg was reduced in co-treated rats. EWH did not modify the elevated mRNA expression of GRP78, PPARγ and adiponectin in Hg-treated rats. Increased levels of Hg were found in the liver; the co-treatment did not alter this parameter. EWH prevented the morphological and metabolic disorder induced by Hg, by improving antioxidant defenses, inactivating pro-apoptotic pathways and normalizing the mRNA expression of PPARs and adipokines. Its effects enabled an increase in insulin levels and a normal balance between the fat storage and expenditure mechanisms in WAT. Conclusions: EWH may have potential benefits in the prevention and management of Hg-related metabolic disorders.
Asunto(s)
Insulinas , Mercurio , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo , Tejido Adiposo Blanco/metabolismo , Animales , Antioxidantes/farmacología , Clara de Huevo , Glucosa/metabolismo , Insulinas/metabolismo , Insulinas/farmacología , Leptina/metabolismo , Lípidos/farmacología , Mercurio/metabolismo , Mercurio/farmacología , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas WistarRESUMEN
Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.
Asunto(s)
Mitofagia , NADP Transhidrogenasas , Adenosina Trifosfato , Adulto , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas B/metabolismo , Autofagia/genética , Dióxido de Carbono/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Citocromos b/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Complejo III de Transporte de Electrones , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales , NAD/metabolismo , NADP Transhidrogenasas/metabolismo , PPAR alfa/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína Sequestosoma-1/metabolismo , Succinato Deshidrogenasa/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo , Ubiquinona , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismoRESUMEN
We postulated that Green tea (GT) improvements in non-alcoholic fatty liver disease (NAFLD) are dependent on adiponectin action in the liver. Male wild-type and adiponectin knockout (adipoKO) mice were induced to obesity for 8 weeks with a high-fat diet and then treated with GT for the last 12 weeks of the experimental protocol. Glucose and insulin tolerance tests, indirect calorimetry, histologic analysis of liver sections, and quantification of mRNA of hepatic genes related to glucose or fatty acid metabolism were performed. In vitro, we assessed the mechanism by which GT catechins act to improve hepatic steatosis by measuring lipid accumulation, and transcript levels of lipogenic genes in HepG2 cells treated with GT in the presence of a PPAR antagonist. Additionally, we performed a PPAR transactivation assay in 293T cells to test if catechins could activate PPARs. Different from wild-type mice, adipoKO animals treated with GT and fed a HFD gain body weight and fat mass, that were associated with a decrease in energy expenditure, were insulin resistant, and had no improvements in hepatic steatosis. Increased lipid levels were associated with no modulation of PPARα levels in the liver of adipoKO mice treated with GT. In vitro, we demonstrated GT catechins act to reduce hepatic steatosis in a PPARα-dependent manner, and especially epigallocatechin and epicatechin can indirectly activate PPARα, although it seems they are not direct ligands. By providing the mechanisms by which GT catechins act in the liver to improve steatosis, our data contribute to the discovery of novel therapeutic agents in the management of NAFLD.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , PPAR alfa , Adiponectina/metabolismo , Animales , Antioxidantes/metabolismo , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Té/químicaRESUMEN
The peroxisome proliferator-activated receptor alpha (PPARα) is a nuclear receptor that has been linked to the modulation of several physiological functions, including the sleep-wake cycle. The PPARα recognizes as endogenous ligands the lipids oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), which in turn, if systemically injected, they exert wake-promoting effects. Moreover, the activation of PPARα by the administration of OEA or PEA increases the extracellular contents of neurotransmitters linked to the control of wakefulness; however, the role of PPARα activated by OEA or PEA on additional biochemicals related to waking regulation, such as acetylcholine (ACh) and 5-hydroxytryptamine (5-HT), has not been fully studied. Here, we have investigated the effects of treatments of OEA or PEA on the contents of ACh and 5-HT by using in vivo microdialysis techniques coupled to HPLC means. For this purpose, OEA or PEA were systemically injected (5, 10 or 30 mg/kg; i.p.), and the levels of ACh and 5-HT were collected from the basal forebrain, a wake-related brain area. These pharmacological treatments significantly increased the contents of ACh and 5-HT as determined by HPLC procedures. Interestingly, PPARα antagonist MK-886 (30 mg/kg; i.p.) injected before the treatments of OEA or PEA blocked these outcomes. Our data suggest that the activation of PPARα by OEA or PEA produces significant changes on ACh and 5-HT levels measured from the basal forebrain and support the conclusion that PPARα is a suitable molecular element involved in the regulation of wake-related neurotransmitters.
Asunto(s)
PPAR alfa , Serotonina , Acetilcolina , Amidas , Encéfalo/metabolismo , Endocannabinoides , Etanolaminas , Ácidos Oléicos , PPAR alfa/metabolismo , Ácidos PalmíticosRESUMEN
Liver steatosis is one of the main drivers for the development of whole-body insulin resistance. Conversely, aerobic training (AT) has been suggested as non-pharmacological tool to improve liver steatosis, however, the underlying molecular mechanism remains unclear. Therefore, the aim of this study was to analyze the effect of 8-weeks AT in non-alcoholic liver disease (NAFLD) outcomes in obese mice. Male C57BL/6 J wild type (WT) were fed with standard (SD) or high-fat diet (HFD) for 12-weeks. Another group fed with HFD underwent 8-weeks of AT (60% of maximum velocity), initiated at the 5th week of experimental protocol. We measured metabolic, body composition parameters, protein and gene expression inflammatory and metabolic mediators. We found that AT attenuates the weight gain, but not body fat accumulation. AT improved triacylglycerol and non-esterified fatty acid plasma concentrations, and also whole-body insulin resistance. Regarding NAFLD, AT decreased the progression of macrovesicular steatosis and inflammation through the upregulation of AMPK Thr172 phosphorylation and PPAR-α protein expression. Moreover, although no effects of intervention in PPAR-γ protein concentration were observed, we found increased levels of its target genes Cd36 and Scd1 in exercised group, demonstrating augmented transcriptional activity. AT reduced liver cytokines concentrations, such as TNF-α, IL-10, MCP-1 and IL-6, regardless of increased Ser536 NF-κB phosphorylation. In fact, none of the interventions regulated NF-κB target genes Il1b and Cccl2, demonstrating its low transcriptional activity. Therefore, we conclude that AT attenuates the progression of liver macrovesicular steatosis and inflammation through AMPK-PPAR-α signaling and PPAR-γ activation, respectively, improving insulin resistance in obese mice.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inflamación/prevención & control , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/terapia , Obesidad/complicaciones , PPAR alfa/metabolismo , Condicionamiento Físico Animal , Proteínas Quinasas Activadas por AMP/genética , Animales , Biomarcadores/análisis , Citocinas/metabolismo , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/genética , Transducción de SeñalRESUMEN
The aim of this study was to evaluate the therapeutic effects of two different doses (250 and 500 mg/kg) of Morinda citrifolia fruit aqueous extract (AE) in high-fat/high-fructose-fed Swiss mice. The food intake, body weight, serum biochemical, oral glucose tolerance test (OGTT), and enzyme-linked immunosorbent assay (ELISA), as well as histological analyses of the liver, pancreatic, and epididymal adipose tissue, were used to determine the biochemical and histological parameters. The chemical profile of the extract was determined by ultra-fast liquid chromatography-diode array detector-tandem mass spectrometry (UFLC-DAD-MS), and quantitative real-time PCR (qRT-PCR) was used to evaluate the gene expressions involved in the lipid and glucose metabolism, such as peroxisome proliferative-activated receptors-γ (PPAR-γ), -α (PPAR-α), fatty acid synthase (FAS), glucose-6-phosphatase (G6P), sterol regulatory binding protein-1c (SREBP-1c), carbohydrate-responsive element-binding protein (ChREBP), and fetuin-A. Seventeen compounds were tentatively identified, including iridoids, noniosides, and the flavonoid rutin. The higher dose of AE (AE 500 mg/kg) was demonstrated to improve the glucose tolerance; however, both doses did not have effects on the other metabolic and histological parameters. AE at 500 mg/kg downregulated the PPAR-γ, SREBP-1c, and fetuin-A mRNA in the liver and upregulated the PPAR-α mRNA in white adipose tissue, suggesting that the hypoglycemic effects could be associated with the expression of genes involved in de novo lipogenesis.
Asunto(s)
Glucosa/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Síndrome Metabólico/metabolismo , Morinda/química , Extractos Vegetales/farmacología , Tejido Adiposo , Animales , Dieta Alta en Grasa , Femenino , Fructosa , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa-6-Fosfatasa/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/tratamiento farmacológico , Ratones , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Fitoterapia , Extractos Vegetales/uso terapéutico , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismoRESUMEN
Cisplatin is a chemotherapy drug widely used in the treatment of solid tumors. However, nephrotoxicity has been reported in about one-third of patients undergoing cisplatin therapy. Proximal tubules are the main target of cisplatin toxicity and cellular uptake; elimination of this drug can modulate renal damage. Organic transporters play an important role in the transport of cisplatin into the kidney and organic cations transporter 2 (OCT-2) has been shown to be one of the most important transporters to play this role. On the other hand, multidrug and toxin extrusion 1 (MATE-1) transporter is the main protein that mediates the extrusion of cisplatin into the urine. Cisplatin nephrotoxicity has been shown to be enhanced by increased OCT-2 and/or reduced MATE-1 activity. Peroxisome proliferator-activated receptor alpha (PPAR-α) is the transcription factor which controls lipid metabolism and glucose homeostasis; it is highly expressed in the kidneys and interacts with both MATE-1 and OCT-2. Considering the above, we treated wild-type and PPAR-α knockout mice with cisplatin in order to evaluate the severity of nephrotoxicity. Cisplatin induced renal dysfunction, renal inflammation, apoptosis and tubular injury in wild-type mice, whereas PPAR-α deletion protected against these alterations. Moreover, we observed that cisplatin induced down-regulation of organic transporters MATE-1 and OCT-2 and that PPAR-α deletion restored the expression of these transporters. In addition, PPAR-α knockout mice at basal state showed increased MATE-1 expression and reduced OCT-2 levels. Here, we show for the first time that PPAR-α deletion protects against cisplatin nephrotoxicity and that this protection is via modulation of the organic transporters MATE-1 and OCT-2.