Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Am J Physiol Cell Physiol ; 322(2): C231-C245, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936504

RESUMEN

Autophagy of granulosa cells (GCs) is involved in follicular atresia, which occurs repeatedly during the ovarian development cycle. Several circadian clock genes are rhythmically expressed in both rodent ovarian tissues and GCs. Nuclear receptor subfamily 1 group D member 1 (NR1D1), an important component of the circadian clock system, is involved in the autophagy process through the regulation of autophagy-related genes. However, there are no reports illustrating the role of the circadian clock system in mouse GC autophagy. In the present study, we found that core circadian clock genes (Bmal1, Per2, Nr1d1, and Dbp) and an autophagy-related gene (Atg5) exhibited rhythmic expression patterns across 24 h in mouse ovaries and primary GCs. Treatment with SR9009, an agonist of NR1D1, significantly reduced the expression of Bmal1, Per2, and Dbp in mouse GCs. ATG5 expression was significantly attenuated by SR9009 treatment in mouse GCs. Conversely, Nr1d1 knockdown increased ATG5 expression in mouse GCs. Decreased NR1D1 expression at both the mRNA and protein levels was detected in the ovaries of Bmal1-/- mice, along with elevated expression of ATG5. Dual-luciferase reporter assay and electrophoretic mobility shift assay showed that NR1D1 inhibited Atg5 transcription by binding to two putative retinoic acid-related orphan receptor response elements within the promoter. In addition, rapamycin-induced autophagy and ATG5 expression were partially reversed by SR9009 treatment in mouse GCs. Taken together, our current data demonstrated that the circadian clock regulates GC autophagy through NR1D1-mediated inhibition of ATG5 expression, and thus, plays a role in maintaining autophagy homeostasis in GCs.


Asunto(s)
Proteína 5 Relacionada con la Autofagia/biosíntesis , Autofagia/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Células de la Granulosa/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/biosíntesis , Animales , Proteína 5 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 5 Relacionada con la Autofagia/genética , Células Cultivadas , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Femenino , Células de la Granulosa/patología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética
2.
J Cell Mol Med ; 24(18): 11024-11029, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32767644

RESUMEN

The chronopharmacology refers to the utilization of physiological circadian rhythms to optimize the administration time of drugs, thus increasing their efficacy and safety, or reducing adverse effects. Simvastatin is one of the most widely prescribed drugs for the treatment of hypercholesterolaemia, hyperlipidemia and coronary artery disease. There are conflicting statements regarding the timing of simvastatin administration, and convincing experimental evidence remains unavailable. Thus, we aimed to examine whether different administration times would influence the efficacy of simvastatin. High-fat diet-fed mice were treated with simvastatin at zeitgeber time 1 (ZT1) or ZT13, respectively, for nine weeks. Simvastatin showed robust anti-hypercholesterolaemia and anti-hyperlipidemia effects on these obese mice, regardless of administration time. However, simvastatin administrated at ZT13, compared to ZT1, was more functional for decreasing serum levels of total cholesterol, triglycerides, non-esterified free fatty acids and LDL cholesterol, as well as improving liver pathological characteristics. In terms of possible mechanisms, we found that simvastatin did not alter the expression of hepatic circadian clock gene in vivo, although it failed to change the period, phase and amplitude of oscillation patterns in Per2::Luc U2OS and Bmal1::Luc U2OS cells in vitro. In contrast, simvastatin regulated the expression of Hmgcr, Mdr1 and Slco2b1 in a circadian manner, which potentially contributed to the chronopharmacological function of the drug. Taken together, we provide solid evidence to suggest that different administration times affect the lipid-lowering effects of simvastatin.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Hiperlipidemias/tratamiento farmacológico , Simvastatina/farmacocinética , Animales , Cronofarmacocinética , Relojes Circadianos/efectos de los fármacos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Dieta Alta en Grasa/efectos adversos , Cronoterapia de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/administración & dosificación , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Obesos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Distribución Aleatoria , Simvastatina/administración & dosificación , Simvastatina/uso terapéutico
3.
Elife ; 82019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30973326

RESUMEN

Autism Spectrum Disorder (ASD) is the most prevalent neurodevelopmental disorder in the United States and often co-presents with sleep problems. Sleep problems in ASD predict the severity of ASD core diagnostic symptoms and have a considerable impact on the quality of life of caregivers. Little is known, however, about the underlying molecular mechanisms of sleep problems in ASD. We investigated the role of Shank3, a high confidence ASD gene candidate, in sleep architecture and regulation. We show that mice lacking exon 21 of Shank3 have problems falling asleep even when sleepy. Using RNA-seq we show that sleep deprivation increases the differences in prefrontal cortex gene expression between mutants and wild types, downregulating circadian transcription factors Per3, Bhlhe41, Hlf, Tef, and Nr1d1. Shank3 mutants also have trouble regulating wheel-running activity in constant darkness. Overall, our study shows that Shank3 is an important modulator of sleep and clock gene expression.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Sueño , Factores de Transcripción/metabolismo , Animales , Perfilación de la Expresión Génica , Ratones , Proteínas de Microfilamentos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia de ARN
4.
Elife ; 82019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30789342

RESUMEN

In the present study we show that the master myogenic regulatory factor, MYOD1, is a positive modulator of molecular clock amplitude and functions with the core clock factors for expression of clock-controlled genes in skeletal muscle. We demonstrate that MYOD1 directly regulates the expression and circadian amplitude of the positive core clock factor Bmal1. We identify a non-canonical E-box element in Bmal1 and demonstrate that is required for full MYOD1-responsiveness. Bimolecular fluorescence complementation assays demonstrate that MYOD1 colocalizes with both BMAL1 and CLOCK throughout myonuclei. We demonstrate that MYOD1 and BMAL1:CLOCK work in a synergistic fashion through a tandem E-box to regulate the expression and amplitude of the muscle specific clock-controlled gene, Titin-cap (Tcap). In conclusion, these findings reveal mechanistic roles for the muscle specific transcription factor MYOD1 in the regulation of molecular clock amplitude as well as synergistic regulation of clock-controlled genes in skeletal muscle.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Regulación de la Expresión Génica , Músculo Esquelético/enzimología , Proteína MioD/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas CLOCK/metabolismo , Relojes Circadianos , Conectina/metabolismo , Ratones Endogámicos C57BL
5.
Cereb Cortex ; 28(2): 644-657, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28052921

RESUMEN

A molecular circadian oscillator resides in neurons of the cerebral cortex, but its role is unknown. Using the Cre-LoxP method, we have here abolished the core clock gene Arntl in those neurons. This mouse represents the first model carrying a deletion of a circadian clock component specifically in an extrahypothalamic cell type of the brain. Molecular analyses of clock gene expression in the cerebral cortex of the Arntl conditional knockout mouse revealed disrupted circadian expression profiles, whereas clock gene expression in the suprachiasmatic nucleus was still rhythmic, thus showing that Arntl is required for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry.


Asunto(s)
Factores de Transcripción ARNTL/deficiencia , Corteza Cerebral/metabolismo , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Locomoción/fisiología , Neuronas/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Corteza Cerebral/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Depresión/metabolismo , Depresión/psicología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/química
6.
Physiol Res ; 66(Suppl 4): S501-S510, 2017 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-29355377

RESUMEN

The effects of food reward on circadian system function were investigated in the hypothalamic nuclei, prefrontal cortex and liver. Food rewards of small hedonic and caloric value were provided for 16 days 3 h after light phase onset to male Wistar rats. The daily pattern of locomotor activity was monitored. Gene expression profiling performed in the dorsomedial hypothalamus (DMH) and liver at the time of reward delivery indicated transcriptional factors egr1 and npas2 as possible mediators of food reward effects. Candidate genes were measured in the suprachiasmatic nuclei (SCN), DMH, arcuate nucleus (ARC), prefrontal cortex (PFC) and liver along with per2 expression. A daily pattern in glycemia and per2 expression in the SCN was emphasized by food reward. The expression of egr1 was rhythmic in the SCN, DMH, PFC and liver and food reward weakened or diminished this rhythm. The expression of npas2 was rhythmic in all tissues except for the PFC where food reward induced rhythm in npas2 expression. Food reward induced npas2 and egr1 expression in the DMH at the time of reward delivery. We suppose that the DMH and PFC participate in the adjustment of the circadian system to utilize food reward-induced input via egr1 and npas2 expression.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Núcleo Hipotalámico Dorsomedial/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/biosíntesis , Privación de Alimentos/fisiología , Corteza Prefrontal/metabolismo , Recompensa , Animales , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Expresión Génica , Masculino , Ratas , Ratas Wistar
7.
Am J Physiol Endocrinol Metab ; 311(3): E575-86, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27406739

RESUMEN

Adaptations in maternal carbohydrate metabolism are particularly important in pregnancy because glucose is the principal energy substrate used by the fetus. As metabolic homeostasis is intricately linked to the circadian system via the rhythmic expression of clock genes, it is likely that metabolic adaptations during pregnancy also involve shifts in maternal circadian function. We hypothesized that maternal adaptation in pregnancy involves changes in the hepatic expression of clock genes, which drive downstream shifts in circadian expression of glucoregulatory genes. Maternal liver and plasma (n = 6-8/group) were collected across 24-h periods (0800, 1200, 1600, 2000, 0000, 0400) from C57Bl/6J mice under isoflurane-nitrous oxide anesthesia prior to and on days 6, 10, 14 and 18 of pregnancy (term = day 19). Hepatic expression of clock genes and glucoregulatory genes was determined by RT-qPCR. Hepatic clock gene expression was substantially altered across pregnancy, most notably in late gestation when the circadian rhythmicity of several clock genes was attenuated (≤64% reduced amplitude on day 18). These changes were associated with a similar decline in rhythmicity of the key glucoregulatory genes Pck1, G6Pase, and Gk, and by day 18, Pck1 was no longer rhythmic. Overall, our data show marked adaptations in the liver clock during mouse pregnancy, changes that may contribute to the altered circadian variation in glucoregulatory genes near term. We propose that the observed reduction of daily oscillations in glucose metabolism ensure a sustained supply of glucose to meet the high demands of fetal growth.


Asunto(s)
Relojes Circadianos/genética , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Ritmo Circadiano/fisiología , Glucosa/metabolismo , Hígado/metabolismo , Preñez/fisiología , Animales , Glucemia/metabolismo , Femenino , Feto/metabolismo , Gluconeogénesis/genética , Homeostasis , Insulina/sangre , Glucógeno Hepático/metabolismo , Ratones , Ratones Endogámicos C57BL , Embarazo
8.
PLoS Genet ; 12(3): e1005922, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26982486

RESUMEN

Circadian (daily) rhythms are a fundamental and ubiquitous property of eukaryotic organisms. However, cyanobacteria are the only prokaryotic group for which bona fide circadian properties have been persuasively documented, even though homologs of the cyanobacterial kaiABC central clock genes are distributed widely among Eubacteria and Archaea. We report the purple non-sulfur bacterium Rhodopseudomonas palustris (that harbors homologs of kaiB and kaiC) only poorly sustains rhythmicity in constant conditions-a defining characteristic of circadian rhythms. Moreover, the biochemical characteristics of the Rhodopseudomonas homolog of the KaiC protein in vivo and in vitro are different from those of cyanobacterial KaiC. Nevertheless, R. palustris cells exhibit adaptive kaiC-dependent growth enhancement in 24-h cyclic environments, but not under non-natural constant conditions. Therefore, our data indicate that Rhodopseudomonas does not have a classical circadian rhythm, but a novel timekeeping mechanism that does not sustain itself in constant conditions. These results question the adaptive value of self-sustained oscillatory capability for daily timekeepers and establish new criteria for circadian-like systems that are based on adaptive properties (i.e., fitness enhancement in rhythmic environments), rather than upon observations of persisting rhythms in constant conditions. We propose that the Rhodopseudomonas system is a "proto" circadian timekeeper, as in an ancestral system that is based on KaiC and KaiB proteins and includes some, but not necessarily all, of the canonical properties of circadian clocks. These data indicate reasonable intermediate steps by which bona fide circadian systems evolved in simple organisms.


Asunto(s)
Proteínas Bacterianas/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Ritmo Circadiano/genética , Evolución Molecular , Aptitud Genética , Proteínas Bacterianas/biosíntesis , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Cianobacterias/genética , Regulación Bacteriana de la Expresión Génica , Fosforilación , Rhodopseudomonas/genética
9.
Metabolism ; 65(4): 482-91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26975540

RESUMEN

OBJECTIVE: Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. MATERIALS/METHODS: We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. RESULTS: Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accß) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. CONCLUSIONS: These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice.


Asunto(s)
Relojes Circadianos/efectos de los fármacos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Dieta Alta en Grasa , Insulina/sangre , Hígado/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Relojes Circadianos/genética , Expresión Génica/efectos de los fármacos , Lipogénesis/genética , Masculino , Ratones , Ratones Endogámicos ICR , Tamaño de los Órganos/efectos de los fármacos , Factores de Transcripción/genética
10.
Int J Clin Exp Pathol ; 8(9): 10985-94, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617816

RESUMEN

Preoperative neoadjuvant chemoradiation therapy may be useful in patients with operable rectal cancer, but treatment responses are variable. We examined whether expression levels of circadian clock genes could be used as biomarkers to predict treatment response. We retrospectively analyzed clinical data from 250 patients with rectal cancer, treated with neoadjuvant chemoradiation therapy in a single institute between 2011 and 2013. Gene expression analysis (RT-PCR) was performed in tissue samples from 20 patients showing pathological complete regression (pCR) and 20 showing non-pCR. The genes analyzed included six core clock genes (Clock, Per1, Per2, Cry1, Cry2 and Bmal1) and three downstream target genes (Wee1, Chk2 and c-Myc). Patient responses were analyzed through contrast-enhanced pelvic MRI and endorectal ultrasound, and verified by histological assessment. pCR was defined histologically as an absence of tumor cells. Among the 250 included patients, 70.8% showed regression of tumor size, and 18% showed pCR. Clock, Cry2 and Per2 expressions were significantly higher in the pCR group than in the non-pCR group (P<0.05), whereas Per1, Cry1 and Bmal1 expressions did not differ significantly between groups. Among the downstream genes involved in cell cycle regulation, c-Myc showed significantly higher expression in the pCR group (P<0.05), whereas Wee1 and Chk2 expression did not differ significantly between groups. Circadian genes are potential biomarkers for predicting whether a patient with rectal cancer would benefit from neoadjuvant chemoradiation therapy.


Asunto(s)
Quimioradioterapia , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Terapia Neoadyuvante , Neoplasias del Recto/patología , Adulto , Anciano , Ritmo Circadiano/genética , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias del Recto/terapia , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Mol Cell Endocrinol ; 413: 26-35, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26116827

RESUMEN

Melatonin actions on oscillators in reproductive organs are poorly understood. Here we analyzed melatonin effects on rhythmic expression of clock and steroidogenesis-related genes in adult rat Leydig cells (LCs). The effect of melatonin was tested both in vivo using pinealectomized and melatonin-substituted rats and in vitro on isolated LCs. Data revealed 24-h-rhythmic expression of clock genes (Bmal1, Per1,2,3, Rev-erba,b, Rorb), steroidogenic genes (Star, Cyp11a1, Cyp17a1), and genes of steroidogenic regulators (positive-Nur77, negative-Arr19). Pinealectomy increased 24-h-oscillations of serum testosterone and LC's cAMP levels, expression of Insl3, Per1, Star/StAR, Hsd3b1/2, Nur77, decreased Arr19 and canceled Per2 oscillatory expression pattern. At hypothalamic-pituitary level, pinealectomy increased mesor of Gnrh, Lhb and rhythm robustness of Mntr1a expression. All parameters disturbed were restored by melatonin-replacement. In vitro studies did not confirm direct melatonin effects on neither clock nor steroidogenic genes. Accordingly, melatonin influence 24-h-rhythmic LC-function likely through hypothalamic-pituitary axis and consequently cAMP-signaling in LCs.


Asunto(s)
Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Ritmo Circadiano/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Melatonina/farmacología , Animales , Células Intersticiales del Testículo , Masculino , Melatonina/metabolismo , Ratas , Ratas Wistar
12.
Philos Trans R Soc Lond B Biol Sci ; 370(1667)2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25780233

RESUMEN

Over the past 3 billion years, an endogenous circadian rhythmicity has developed in almost all life forms in which daily oscillations in physiology occur. This allows for anticipation of sunrise and sunset. This physiological rhythmicity is kept at precisely 24 h by the daily cycle of sunlight and dark. However, since the introduction of electric lighting, there has been inadequate light during the day inside buildings for a robust resetting of the human endogenous circadian rhythmicity, and too much light at night for a true dark to be detected; this results in circadian disruption and alters sleep/wake cycle, core body temperature, hormone regulation and release, and patterns of gene expression throughout the body. The question is the extent to which circadian disruption compromises human health, and can account for a portion of the modern pandemics of breast and prostate cancers, obesity, diabetes and depression. As societies modernize (i.e. electrify) these conditions increase in prevalence. There are a number of promising leads on putative mechanisms, and epidemiological findings supporting an aetiologic role for electric lighting in disease causation. These include melatonin suppression, circadian gene expression, and connection of circadian rhythmicity to metabolism in part affected by haem iron intake and distribution.


Asunto(s)
Ritmo Circadiano , Contaminación Ambiental/efectos adversos , Iluminación/efectos adversos , Relojes Circadianos/efectos de la radiación , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Monitoreo del Ambiente , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Melaninas/biosíntesis , Fotoperiodo , Sueño
13.
Methods Enzymol ; 551: 153-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25662456

RESUMEN

The central oscillator of the cyanobacterial circadian clock is unique in the biochemical simplicity of its components and the robustness of the oscillation. The oscillator is composed of three cyanobacterial proteins: KaiA, KaiB, and KaiC. If very pure preparations of these three proteins are mixed in a test tube in the right proportions and with ATP and MgCl2, the phosphorylation states of KaiC will oscillate with a circadian period, and these states can be analyzed simply by SDS-PAGE. The purity of the proteins is critical for obtaining robust oscillation. Contaminating proteases will destroy oscillation by degradation of Kai proteins, and ATPases will attenuate robustness by consumption of ATP. Here, we provide a detailed protocol to obtain pure recombinant proteins from Escherichia coli to construct a robust cyanobacterial circadian oscillator in vitro. In addition, we present a protocol that facilitates analysis of phosphorylation states of KaiC and other phosphorylated proteins from in vivo samples.


Asunto(s)
Proteínas Bacterianas/química , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Synechococcus/fisiología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/aislamiento & purificación , Pruebas de Enzimas , Escherichia coli , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
14.
PLoS Biol ; 12(4): e1001839, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24736997

RESUMEN

Circadian rhythms are controlled by a system of negative and positive genetic feedback loops composed of clock genes. Although many genes have been implicated in these feedback loops, it is unclear whether our current list of clock genes is exhaustive. We have recently identified Chrono as a robustly cycling transcript through genome-wide profiling of BMAL1 binding on the E-box. Here, we explore the role of Chrono in cellular timekeeping. Remarkably, endogenous CHRONO occupancy around E-boxes shows a circadian oscillation antiphasic to BMAL1. Overexpression of Chrono leads to suppression of BMAL1-CLOCK activity in a histone deacetylase (HDAC) -dependent manner. In vivo loss-of-function studies of Chrono including Avp neuron-specific knockout (KO) mice display a longer circadian period of locomotor activity. Chrono KO also alters the expression of core clock genes and impairs the response of the circadian clock to stress. CHRONO forms a complex with the glucocorticoid receptor and mediates glucocorticoid response. Our comprehensive study spotlights a previously unrecognized clock component of an unsuspected negative circadian feedback loop that is independent of another negative regulator, Cry2, and that integrates behavioral stress and epigenetic control for efficient metabolic integration of the clock.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Criptocromos/metabolismo , Proteínas Represoras/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Criptocromos/genética , Histona Desacetilasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Receptores de Glucocorticoides/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Alineación de Secuencia , Transcripción Genética/genética
15.
PLoS Biol ; 12(4): e1001840, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24737000

RESUMEN

Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Inteligencia Artificial , Línea Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Criptocromos/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Alineación de Secuencia , Transcripción Genética/genética
16.
Rev Neurol ; 57(2): 71-8, 2013 Jul 16.
Artículo en Español | MEDLINE | ID: mdl-23836337

RESUMEN

The incidence of obesity worldwide has become a serious, constantly growing public health issue that reaches alarming proportions in some countries. To date none of the strategies developed to combat obesity have proved to be decisive, and hence there is an urgent need to address the problem with new approaches. Today, studies in the field of chronobiology have shown that our physiology continually adapts itself to the cyclical changes in the environment, regard-less of whether they are daily or seasonal. This is possible thanks to the existence of a biological clock in our hypothalamus which regulates the expression and/or activity of enzymes and hormones involved in regulating our metabolism, as well as all the homeostatic functions. It has been observed that this clock can be upset as a result of today's modern lifestyle, which involves a drop in physical activity during the day and the abundant ingestion of food during the night, among other factors, which together promote metabolic syndrome and obesity. Hence, the aim of this review is to summarise the recent findings that show the effect that altering the circadian rhythms has on the metabolism and how this can play a part in the development of metabolic diseases.


TITLE: La alteracion de los ritmos biologicos causa enfermedades metabolicas y obesidad.La incidencia de la obesidad a escala mundial se ha convertido en un grave y creciente problema de salud publica, que alcanza en algunos paises proporciones alarmantes, y hasta el momento ninguna de las estrategias desarrolladas para combatir la obesidad se ha demostrado resolutiva, por lo que es urgente abordar el problema con nuevos enfoques. Actualmente, en el estudio de la cronobiologia se ha demostrado que nuestra fisiologia se adapta continuamente a los cambios ciclicos del ambiente, sean estos diarios o estacionales, debido a la presencia de un reloj biologico en nuestro hipotalamo que regula la expresion y actividad de enzimas y hormonas implicadas en la regulacion del metabolismo, asi como de todas las funciones homeostaticas. Se ha observado que este reloj puede alterarse debido al estilo de vida moderno, que implica una baja actividad fisica durante el dia e ingesta abundante de comida durante la noche, entre otros factores, que promueven todos ellos el sindrome metabolico y la obesidad. Por lo tanto, el objetivo de esta revision es resumir los hallazgos recientes que demuestran el efecto de la alteracion circadiana sobre el metabolismo y como esta puede participar en el desarrollo de enfermedades metabolicas.


Asunto(s)
Trastornos Cronobiológicos/complicaciones , Síndrome Metabólico/etiología , Obesidad/etiología , Animales , Relojes Biológicos/fisiología , Trastornos Cronobiológicos/metabolismo , Trastornos Cronobiológicos/fisiopatología , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica/efectos de la radiación , Glucosa/metabolismo , Homeostasis/fisiología , Hormonas/metabolismo , Humanos , Hipotálamo/fisiopatología , Incidencia , Estilo de Vida , Luz , Síndrome Metabólico/epidemiología , Síndrome Metabólico/fisiopatología , Ratones , Obesidad/epidemiología , Obesidad/fisiopatología , Ratas , Tasa de Secreción , Trastornos del Sueño del Ritmo Circadiano/etiología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Tolerancia al Trabajo Programado
17.
J Biol Rhythms ; 28(3): 183-92, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23735497

RESUMEN

Like neurons in the suprachiasmatic nucleus (SCN), the master circadian pacemaker in the brain, single fibroblasts can function as independent oscillators. In the SCN, synaptic and paracrine signaling among cells creates a robust, synchronized circadian oscillation, whereas there is no evidence for such integration in fibroblast cultures. However, interactions among single-cell fibroblast oscillators cannot be completely excluded, because fibroblasts were not isolated in previous work. In this study, we tested the autonomy of fibroblasts as single-cell circadian oscillators in high- and low-density culture, by single-cell imaging of cells from PER2::LUC circadian reporter mice. We found greatly reduced PER2::LUC rhythmicity in low-density cultures, which could result from lack of either constitutive or rhythmic paracrine signals from neighboring fibroblasts. To discriminate between these 2 possibilities, we mixed PER2::LUC wild-type (WT) cells with nonluminescent, nonrhythmic Bmal1-/- cells, so that density of rhythmic cells was low but overall cell density remained high. In this condition, WT cells showed clear rhythmicity similar to high-density cultures. We also mixed PER2::LUC WT cells with nonluminescent, long period Cry2-/- cells. In this condition, WT cells showed a period no different from cells cultured with rhythmic WT cells or nonrhythmic Bmal1-/- cells. In previous work, we found that low K⁺ suppresses fibroblast rhythmicity, and we and others have found that either low K⁺ or low Ca²âº suppresses SCN rhythmicity. Therefore, we attempted to rescue rhythmicity of low-density fibroblasts with high K⁺ (21 mM), high Ca²âº (3.6 mM), or conditioned medium. Conditioned medium from high-density fibroblast cultures rescued rhythmicity of low-density cultures, whereas high K⁺ or Ca²âº medium did not consistently rescue rhythmicity. These data suggest that fibroblasts require paracrine signals from adjacent cells for normal expression of rhythmicity, but that these signals do not have to be rhythmic, and that rhythmic signals from other cells do not affect the intrinsic periods of fibroblasts.


Asunto(s)
Ritmo Circadiano/fisiología , Fibroblastos/metabolismo , Proteínas Circadianas Period/fisiología , Factores de Transcripción ARNTL/genética , Animales , Recuento de Células , Células Cultivadas , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Técnicas de Cocultivo , Criptocromos/genética , Medios de Cultivo Condicionados , Fibroblastos/fisiología , Expresión Génica/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Luciferasas/genética , Luminiscencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Comunicación Paracrina/genética , Comunicación Paracrina/fisiología , Proteínas Circadianas Period/genética
18.
J Bacteriol ; 195(6): 1276-84, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23316037

RESUMEN

The filamentous, heterocystous cyanobacterium Anabaena sp. strain PCC 7120 is one of the simplest multicellular organisms that show both morphological pattern formation with cell differentiation (heterocyst formation) and circadian rhythms. Therefore, it potentially provides an excellent model in which to analyze the relationship between circadian functions and multicellularity. However, detailed cyanobacterial circadian regulation has been intensively analyzed only in the unicellular species Synechococcus elongatus. In contrast to the highest-amplitude cycle in Synechococcus, we found that none of the kai genes in Anabaena showed high-amplitude expression rhythms. Nevertheless, ~80 clock-controlled genes were identified. We constructed luciferase reporter strains to monitor the expression of some high-amplitude genes. The bioluminescence rhythms satisfied the three criteria for circadian oscillations and were nullified by genetic disruption of the kai gene cluster. In heterocysts, in which photosystem II is turned off, the metabolic and redox states are different from those in vegetative cells, although these conditions are thought to be important for circadian entrainment and timekeeping processes. Here, we demonstrate that circadian regulation is active in heterocysts, as shown by the finding that heterocyst-specific genes, such as all1427 and hesAB, are expressed in a robust circadian fashion exclusively without combined nitrogen.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Relojes Circadianos , Ritmo Circadiano , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Expresión Génica , Fijación del Nitrógeno/genética
19.
Endocr J ; 60(4): 483-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23292171

RESUMEN

To assess the effect of adiponectin on the circadian rhythm disturbances associated with metabolic syndrome, we generated a KK/Ta mouse line expressing the human adiponectin transgene in the liver. Locomotor activity of control C57BL/6 mice was highest during the beginning of the dark period and low during the light period. Under constant darkness, the length of locomotor activity rhythm of control mice was slightly shorter than 24 h. In KK/Ta mice the peak of locomotor activity was blunted and significant activity was observed during the light period. Furthermore, KK/Ta mice showed shorter average period length of free-running locomotor activity rhythm when compared with control mice. However, the transgenic expression of adiponectin in the liver significantly altered the circadian rhythm of locomotor activity and the length of free-running rhythm of KK/Ta mice towards those of C57BL/6 mice. In the liver and skeletal muscles from control mice, mRNA levels of Arntl and Cry1 were increased during the dark period, whereas those of Dbp, Cry2, Per1 and Per2 were elevated during the light period. KK/Ta mice exhibited phase advances in circadian rhythms of Arntl, Dbp, Cry2 and Per2 in both tissues. The phase shifts of the circadian clock gene expression in the liver were attenuated in adiponectin-transgenic mice. These results suggest that adiponectin is a peripheral regulator of the circadian clocks in the brain and peripheral organs, and may be a novel target for the treatment of obesity-associated disorders of circadian rhythms.


Asunto(s)
Adiponectina/metabolismo , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Adiponectina/biosíntesis , Adiponectina/genética , Animales , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Cruzamientos Genéticos , Regulación hacia Abajo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Actividad Motora , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
20.
Am J Physiol Endocrinol Metab ; 304(6): E566-75, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23299500

RESUMEN

The present study was designed to assess the relationship between gap junctions and the maturation of a clock system in rat granulosa cells stimulated by follicle-stimulating hormone (FSH). Immature and mature granulosa cells were prepared by puncturing the ovaries of diethylstilbestrol- and equine chorionic gonadotropin (eCG)-treated mouse Period2 (Per2)-dLuc reporter gene transgenic rats, respectively. Mature granulosa cells exposed to dexamethasone (DXM) synchronization displayed several Per2-dLuc oscillations and a rhythmic expression of clock genes. Intriguingly, we observed clear evidence that the FSH stimulation significantly increased the amplitude of Per2 oscillations in the granulosa cells, which was confirmed by the elevation of the Per2 and Rev-erbα (Nr1d1) mRNA levels. FSH also induced a major phase-advance shift of Per2 oscillations. The mature granulosa cells cultured for 2 days with FSH expressed higher mRNA levels of Per2, Rev-erbα, Bmal1 (Arnt1), Lhcgr, and connexin (Cx) 43 (Gja1) compared with the immature granulosa cells. Consistently, our immunofluorescence results revealed abundant Cx43 protein in antral follicles stimulated with eCG and weak or no fluorescence signal of Cx43 in primary and preantral follicles. Similar results were confirmed by Western blotting analysis. Two gap junction blockers, lindane and carbenoxolone (CBX), significantly decreased the amplitude of Per2 oscillations, which further adhered significant decreases in Per2 and Rev-erbα transcript levels. In addition, both lindane and CBX induced a clear phase-delay shift of Per2 oscillations. These findings suggest that FSH induces the development of the clock system by increasing the expression of Cx43.


Asunto(s)
Relojes Circadianos , Conexina 43/metabolismo , Hormona Folículo Estimulante/metabolismo , Uniones Comunicantes/metabolismo , Células de la Granulosa/metabolismo , Regulación hacia Arriba , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Gonadotropina Coriónica/metabolismo , Relojes Circadianos/efectos de los fármacos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Conexina 43/antagonistas & inhibidores , Conexina 43/genética , Dexametasona/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Uniones Comunicantes/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Glucocorticoides/farmacología , Células de la Granulosa/citología , Células de la Granulosa/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Ratones , Proteínas Circadianas Period/biosíntesis , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratas , Ratas Transgénicas , Receptores de HL/biosíntesis , Receptores de HL/genética , Receptores de HL/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA