RESUMEN
A simple and sensitive methodology to simultaneously quantify tetracycline and oxytetracycline in bovine serum samples is described. The method combines the advantages of the lanthanide-sensitized luminescence (i.e., sensitivity and selectivity) with partial least-squares (PLS) analysis, and requires no previous separation steps. Due to the strong overlapping of emission and excitation spectra of the analytes and their europium complexes, the luminescence decay curve (intensity of luminescence vs. time) of analyte-Eu complex was selected to resolve mixtures of tetracycline and oxytetracycline. Partial least-squares uses the luminescence decay as discriminatory parameter and regresses the luminescence versus time onto the concentrations of standards. Using a 16-sample aqueous calibration set, 10 validation samples, 11 spiked serum bovine samples and a blank of serum were studied. The analyte recoveries from serum samples ranged from 87 to 104% for tetracycline and from 94 to 106% for oxytetracycline. The results obtained by the developed method were statistically comparable to those obtained with high performance liquid chromatography.
Asunto(s)
Europio/química , Mediciones Luminiscentes/métodos , Compuestos Organometálicos/química , Oxitetraciclina/sangre , Oxitetraciclina/química , Tetraciclina/sangre , Tetraciclina/química , Animales , Calibración , Bovinos , Cromatografía Líquida de Alta Presión , Elementos de la Serie de los Lantanoides/química , Análisis de los Mínimos Cuadrados , Sensibilidad y Especificidad , Factores de TiempoRESUMEN
Eight male cattle were given a combined dose containing 20 mg/kg oxytetracycline and 0.5 mg/kg diclofenac intramuscularly. Blood samples were drawn at different times until 168 h after administration. Two experimental animals were slaughtered by humane means at weekly intervals up to 28 days after administration. Samples of muscle, injection zone tissue, liver, kidney and fat were obtained. Oxytetracycline and diclofenac concentrations were determined by high performance liquid chromatography. Kinetic analysis was performed by linear regression using the CSTRIP programme. Plasma oxytetracycline concentration showed a maximum (Cmax) of 3.89 +/- 1.48 microg/ml and a prolonged elimination half-life (T1/2beta: 47.73 +/- 18.33 h). The diclofenac plasma profile showed high Cmax (577.62 +/- 238.40 ng/ml), and its T1/2beta was also prolonged (30.48 +/- 9.42 h). Oxytetracycline concentrations were measurable in liver and adipose tissue until day 21 after administration, but all tissue samples were negative for diclofenac at 21 days. The long elimination half-life of diclofenac was an unexpected finding; its T1/2beta in humans is 1.1 h.
Asunto(s)
Antibacterianos/farmacocinética , Antiinflamatorios no Esteroideos/farmacocinética , Bovinos/metabolismo , Diclofenaco/farmacocinética , Oxitetraciclina/farmacocinética , Animales , Antibacterianos/sangre , Antiinflamatorios no Esteroideos/sangre , Área Bajo la Curva , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida de Alta Presión/veterinaria , Diclofenaco/sangre , Semivida , Inyecciones Intramusculares/veterinaria , Modelos Lineales , Masculino , Especificidad de Órganos , Oxitetraciclina/sangre , Distribución TisularRESUMEN
OBJECTIVE: To determine for two commercial preparations of oxytetracycline (OTC) the pharmacokinetic behaviour, the presence of detectable milk residues and the penetration in milk of OTC administered by intravenous (IV) (conventional formulation [CF]) and intramuscular (IM) routes (CF and long-acting [LA] formulations) in goats producing milk. The effects of these formulations on plasma activity values of creatine kinase (CK) and lactate dehydrogenase (LDH) were also determined as indicators of tissue damage. PROCEDURE: Five healthy lactating goats producing 1.5+/-0.5 L/d milk and weighing 56.0+/-4.8 kg were used. Single doses of OTC chlorhydrate (CF) were administered (20 mg OTC/kg) by IV (Trial 1 IV) and IM (Trial 1 IM) routes and OTC dehydrate (LA) by the IM route. The same goats were first given IV CF, then IM CF followed by IM LA with 3 weeks between each treatment. Blood and milk samples were taken. The quantification of OTC was performed by HPLC and the plasma activities of CK and LDH enzymes were determined by spectrophotometry. The presence of OTC residues in milk was determined by a commercial reagent. The plasma pharmacokinetic parameters were calculated using a two-compartment model. RESULTS: Estimates of kinetic variables following IV administration were: Vss= 400.0+/-120.0 mL/kg and CL= 110.0+/-14.0 (mL/h)/kg. The t(fi) for IV= 3.0+/-0.3 h; IM, CF = 10.5+/-2.1 h and IM, LA = 15.1+/-3.1 h. The concentration of OTC in milk at 48 h was: IV= 0.6+/-0.4; IM CF= 1.1+/-0.2 and at 72 h (IM LA)= 0.6+/-0.1 microg/mL and the penetration in milk of OTC was: IV= 70.0+/-18.0; IM CF= 79.0+/-14.0 and IM LA= 66.0+/-6.0%. The areas under the curve of CK and LDH activities in plasma were calculated by the trapezoidal method. Values of CK and LDH IM, LA were greater (P < 0.05) than those observed for IM, CF at 2 and 3 days after administration of the antibiotic. Finally, the bioavailability of OTC CF = 92.0+/-22.0 and LA= 78.0+/-23.0% was suitable for its usage by the IM route in lactating goats. CONCLUSION: Plasma concentration-time values of OTC administered parenterally in production dairy goats showed similar bioavailability for the two pharmaceutical preaprations. The presence of detectable residues in milk indicates that milk should not be used for human consumption for 2 and 3 days after administration of conventional and long-acting formulations, respectively. The increments in CK and LDH activities after the IM administration of LA are consistent with the presence of tissue damage provoked by the pharmaceutical preparations at the injection site.