Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
ACS Infect Dis ; 10(8): 3071-3082, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39082980

RESUMEN

Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.


Asunto(s)
Antibacterianos , Girasa de ADN , Topoisomerasa de ADN IV , Neisseria gonorrhoeae , Inhibidores de Topoisomerasa II , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/enzimología , Topoisomerasa de ADN IV/metabolismo , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/genética , Girasa de ADN/metabolismo , Girasa de ADN/genética , Girasa de ADN/química , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Humanos , Oxazolidinonas/farmacología , Oxazolidinonas/química , Barbitúricos/farmacología , Barbitúricos/química , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana , Isoxazoles , Morfolinas , Compuestos de Espiro
2.
Eur J Med Chem ; 273: 116493, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38761790

RESUMEN

The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents to treat drug-resistant bacteria. We previously discovered compound OB-158 with potent antibacterial activity but exhibited poor oral bioavailability. Herein, a systematic structural optimization of OB-158 to improve pharmacokinetic profiles yielded 26 novel biaryloxazolidinone analogues, and their activities against Gram-positive S. aureus, multidrug resistant S. aureus and Enterococcus faecalis were evaluated. Remarkably, compound 8b was identified with potent antibacterial activity against S. aureus (MIC = 0.06 µg/mL), MSSA (MIC = 0.125 µg/mL), MRSA (MIC = 0.06 µg/mL), LRSA (MIC = 0.125 µg/mL) and LREFa (MIC = 0.5 µg/mL). Compound 8b was demonstrated as a promising candidate through druglikeness evaluation including metabolism in microsomes and plasma, Caco-2 cell permeability, plasma protein binding, cytotoxicity, and inhibition of CYP450 and human monoamine oxidase. Notably, compound 8b displayed excellent PK profile with appropriate T1/2 of 1.49 h, high peak plasma concentration (Cmax = 2320 ng/mL), high plasma exposure (AUC0-t = 8310 h ng/mL), and superior oral bioavailability (F = 68.1 %) in Sprague-Dawley rats. Ultimately, in vivo efficacy of compound 8b in a mouse model of LRSA systemic infection was also demonstrated. Taken together, compound 8b represents a promising drug candidate for the treatment of linezolid-resistant Gram-positive bacterial strains infection.


Asunto(s)
Antibacterianos , Linezolid , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Humanos , Animales , Linezolid/farmacología , Relación Estructura-Actividad , Células CACO-2 , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Staphylococcus aureus/efectos de los fármacos , Ratas , Farmacorresistencia Bacteriana/efectos de los fármacos , Masculino , Enterococcus faecalis/efectos de los fármacos , Oxazolidinonas/farmacología , Oxazolidinonas/química , Oxazolidinonas/síntesis química , Ratas Sprague-Dawley
3.
ACS Infect Dis ; 10(5): 1679-1695, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581700

RESUMEN

Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Oxazolidinonas , Profármacos , Profármacos/farmacología , Profármacos/química , Antituberculosos/farmacología , Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Oxazolidinonas/farmacología , Oxazolidinonas/química , Animales , Pruebas de Sensibilidad Microbiana , Ratones , Humanos , Linezolid/farmacología , Linezolid/química , Farmacorresistencia Bacteriana , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
4.
Eur J Med Chem ; 269: 116326, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513340

RESUMEN

Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated ß-lactamase-triggered release, making them effective against GNB.


Asunto(s)
Antiinfecciosos , Oxazolidinonas , Antibacterianos/química , Oxazolidinonas/farmacología , Oxazolidinonas/química , Linezolid/farmacología , Relación Estructura-Actividad , Antiinfecciosos/farmacología , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
5.
Chirality ; 36(2): e23629, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37961817

RESUMEN

First antibiotic in the oxazolidinone class, linezolid fights gram-positive multiresistant bacteria by inhibiting protein synthesis through its interaction with the 50S subunit of the functional bacterial ribosome. For its antimicrobial action, it is necessary that its chiral carbon located in the oxazolidinone ring is in the S-conformation. Computational calculation at time-dependent density functional theory methodology, ultraviolet-visible (UV-Vis), and electronic circular dichroism spectra was obtained for noncomplexed and complexed forms of linezolid to verify the possible chirality of nitrogen atom in the acetamide group of the molecule. The molecular system has two chiral centers. So, there are now four possible configurations: RR, RS, SR, and SS. For a better understanding of the system, the electronic spectra at the PBE0/6-311++G(3df,2p) level of theory were obtained. The complexed form was obtained from the crystallographic data of the ribosome, containing the S-linezolid molecular system. The computational results obtained for the electronic properties are in good agreement with the experimental crystallographic data and available theoretical results.


Asunto(s)
Antibacterianos , Oxazolidinonas , Linezolid/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Haloarcula marismortui/química , Dominio Catalítico , Estereoisomerismo , Oxazolidinonas/farmacología , Oxazolidinonas/química , Bacterias , Modelos Teóricos , Subunidades Ribosómicas
6.
Molecules ; 28(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836663

RESUMEN

Agelastatin A is a marine alkaloid with potent biological activity. To date, at least 17 different strategies have achieved its total synthesis, along with many analogues. The present study focuses on the acidity stability of some N-methyl derivatives of agelastatin A. The study made use of chemical reactions and spectroscopic acquisitions. The chemical structure of some derivatives can undergo a profound rearrangement. The results could shed light on the mechanism of action of agelastatin A and suggest the preparation of analogues with improved pharmacological efficacy.


Asunto(s)
Alcaloides , Antineoplásicos , Oxazolidinonas , Alcaloides/farmacología , Alcaloides/química , Oxazolidinonas/química , Antineoplásicos/farmacología , Alquilación
7.
Molecules ; 28(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298744

RESUMEN

In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were designed and synthesized based on compounds previously reported, and their antibacterial activity was investigated. Then their antibacterial activity was investigated for the first time. Preliminary screening results showed that all these compounds exhibited antibacterial activity against gram-positive bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration (MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode between active compound 7j and the target. Interestingly, these compounds could not only hamper the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments. All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.


Asunto(s)
Oxazolidinonas , Oxazolidinonas/farmacología , Oxazolidinonas/química , Oxindoles/farmacología , Simulación del Acoplamiento Molecular , Piperazina/farmacología , Antibacterianos/química , Bacterias Grampositivas , Pirimidinas/farmacología , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Estructura Molecular
8.
Eur J Med Chem ; 250: 115239, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36893700

RESUMEN

Due to the long-term and widespread use of antibiotics in clinic, the problem of bacterial resistance is increasingly serious, and the development of new drugs to treat drug-resistant bacteria has gradually become the mainstream direction of antibiotic research. The oxazolidinone-containing drugs linezolid, tedizolid phosphate and contezolid have been approved to the market, which are effective against a variety of Gram-positive bacterium infections. Moreover, there are also many antibiotics containing oxazolidinone fragment under clinical investigation that show good pharmacokinetic and pharmacodynamic properties with unique mechanism of action against resistant bacteria. In this review, we summarized the oxazolidinone-based antibiotics already on the market or in clinical trials and the representative bioactive molecules, and mainly focused on their structural optimizations, development strategies and structure-activity relationships in hope of insight into the reasonable design for medical chemists to develop new oxazolidinone antibiotics with highly potency and fewer side effects.


Asunto(s)
Infecciones por Bacterias Grampositivas , Oxazolidinonas , Humanos , Antibacterianos/química , Oxazolidinonas/farmacología , Oxazolidinonas/química , Linezolid , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Relación Estructura-Actividad
9.
J Med Chem ; 65(20): 14144-14179, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36257060

RESUMEN

The clinical success of linezolid for treating Gram-positive infections paired with the high conservation of bacterial ribosomes predicts that if oxazolidinones were engineered to accumulate in Gram-negative bacteria, then this pharmacological class would find broad utility in eradicating infections. Here, we report an investigative study of a strategically designed library of oxazolidinones to determine the effects of molecular structure on accumulation and biological activity. Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa strains with varying degrees of compromise (in efflux and outer membrane) were used to identify motifs that hinder permeation across the outer membrane and/or enhance efflux susceptibility broadly and specifically between species. The results illustrate that small changes in molecular structure are enough to overcome the efflux and/or permeation issues of this scaffold. Three oxazolidinone analogues (3e, 8d, and 8o) were identified that exhibit activity against all three pathogens assessed, a biological profile not observed for linezolid.


Asunto(s)
Oxazolidinonas , Oxazolidinonas/farmacología , Oxazolidinonas/química , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Bacterias Gramnegativas , Escherichia coli
10.
ACS Infect Dis ; 8(9): 1894-1904, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35881068

RESUMEN

Enterobactin (ENT) is a tris-catechol siderophore used to acquire iron by multiple bacterial species. These ENT-dependent iron uptake systems have often been considered as potential gates in the bacterial envelope through which one can shuttle antibiotics (Trojan horse strategy). In practice, siderophore analogues containing catechol moieties have shown promise as vectors to which antibiotics may be attached. Bis- and tris-catechol vectors (BCVs and TCVs, respectively) were shown using structural biology and molecular modeling to mimic ENT binding to the outer membrane transporter PfeA in Pseudomonas aeruginosa. TCV but not BCV appears to cross the outer membrane via PfeA when linked to an antibiotic (linezolid). TCV is therefore a promising vector for Trojan horse strategies against P. aeruginosa, confirming the ENT-dependent iron uptake system as a gate to transport antibiotics into P. aeruginosa cells.


Asunto(s)
Enterobactina , Oxazolidinonas , Antibacterianos/química , Catecoles/química , Catecoles/metabolismo , Enterobactina/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oxazolidinonas/química , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
11.
Bioorg Med Chem Lett ; 71: 128842, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680102

RESUMEN

Increased resistance to gram positive infections have highlighted the limitations of currently available drug treatments including penicillins, macrolides and glycopeptides. As an alternative to address these challenges; Linezolid, the first antibiotic from oxazolidinone class, have shown the promising activities against such infections, although associated toxicological issues limiting the use of linezolid for prolonged treatments. In order to circumvent disadvantages allied with the marketed drugs, we herein reporting the synthesis of WCK 4034, an oxazolidinone antibiotic through our structure activity relationship (SAR) program. Through this exercise, WCK 4034, has shown competitive MIC values against Methicillin Sensitive S. aureus (MSSA, Sta-001), Methicillin Resistant S. aureus (MRSA, Sta-032), S. pneumoniae ATCC 49619 and H. influenza ATCC 35054 species as like linezolid. Although with an additional advantage; WCK 4034 has been found superior during dog PK studies as compare to Linezolid. With the preliminary studies in our hand, we herein assuming these improved pharmacokinetic values would be helpful. Moreover, WCK 4034 has successfully completed pre-clinical studies and ready to enter the clinical space, and paved the way for in house development of other oxazolidinone NCEs.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Oxazolidinonas , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Perros , Linezolid/farmacología , Linezolid/uso terapéutico , Pruebas de Sensibilidad Microbiana , Oxazolidinonas/química , Oxazolidinonas/farmacología , Oxazolidinonas/uso terapéutico , Staphylococcus aureus , Streptococcus pneumoniae
12.
Bioorg Chem ; 126: 105869, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35598571

RESUMEN

The quest for new antifungal and antitubercular drugs is a need of the hour because of morbid co-pathogenesis and an increase in immunocompromised patients. One of the ways forward is to explore and repurpose the established pharmacophores for the desired application. Oxazolidinones are well-known antibacterial agents, with few investigations reported to exploit their antifungal properties. Herein, we report the design and synthesis of a series of linezolid-based oxazolidinones as potent anticandidiasis and antitubercular agents. Studies revealed that two of the novel oxazolidinones 2 and 3a exhibited excellent anticandidiasis activity against different Candida fungus strains, superior to standard drugs. Mechanistic and docking studies revealed that oxazolidinones were better inhibitors of the ergosterol biosynthesis pathway than the controls used. In addition, the oxazolidinones 2 and 3a also exhibited prominent inhibitory activity against M. tuberculosis H37Rv with MIC values of 1 and 2 µg/ml, respectively. Computational studies demonstrated the binding of the compounds to the transcriptional regulatory repressor protein, which was reinforced by the molecular dynamics simulations. The pharmacophore modeling experiments validated the molecular docking results in both the target proteins.


Asunto(s)
Mycobacterium tuberculosis , Oxazolidinonas , Antibacterianos/farmacología , Antifúngicos/farmacología , Antituberculosos/farmacología , Humanos , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Oxazolidinonas/química , Oxazolidinonas/farmacología
14.
Nat Struct Mol Biol ; 29(2): 162-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165456

RESUMEN

The antibiotic linezolid, the first clinically approved member of the oxazolidinone class, inhibits translation of bacterial ribosomes by binding to the peptidyl transferase center. Recent work has demonstrated that linezolid does not inhibit peptide bond formation at all sequences but rather acts in a context-specific manner, namely when alanine occupies the penultimate position of the nascent chain. However, the molecular basis for context-specificity has not been elucidated. Here we show that the second-generation oxazolidinone radezolid also induces stalling with a penultimate alanine, and we determine high-resolution cryo-EM structures of linezolid- and radezolid-stalled ribosome complexes to explain their mechanism of action. These structures reveal that the alanine side chain fits within a small hydrophobic crevice created by oxazolidinone, resulting in improved ribosome binding. Modification of the ribosome by the antibiotic resistance enzyme Cfr disrupts stalling due to repositioning of the modified nucleotide. Together, our findings provide molecular understanding for the context-specificity of oxazolidinones.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Oxazolidinonas/química , Oxazolidinonas/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Alanina/química , Sitios de Unión , Microscopía por Crioelectrón , Linezolid/química , Linezolid/farmacología , Modelos Moleculares , Peptidil Transferasas/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/ultraestructura
15.
Molecules ; 27(3)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35164353

RESUMEN

The treatment of seizure disorders with currently available pharmacotherapeutic agents is not optimal due to the failure of some patients to respond, coupled with occurrences of side effects. There is therefore a need for research into the development of new chemical entities as potential anticonvulsant agents, which are different structurally from the existing class of drugs. We recently identified a novel triazolyl-oxazolidinone derivative, PH-192, as a potential anticonvulsant agent. PH-192 demonstrated protection comparable to phenytoin against both chemically- and electrically-induced seizures in rodents with little or no central nervous system side effects. However, PH-192 did not exhibit protection beyond 30 min; therefore, we decide to investigate a stability-indicating assay of PH-192 in plasma and other solutions. A reliable and validated analytical method was developed to investigate the stability of PH-192 for 90 min in human plasma, acidic, basic, and oxidative conditions, using a Waters Acquity ultra high-performance liquid chromatography (UHPLC) system with a quaternary Solvent Manager (H-Class). A simple extraction method indicated that PH-192 was stable in human plasma after 90 min at 37 °C, with more than 90% successfully recovered. Moreover, stress stability studies were performed, and degradants were identified using LC-QToF-MS under acidic, basic, and oxidative simulated conditions.


Asunto(s)
Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Cromatografía Líquida de Alta Presión/métodos , Oxazolidinonas/química , Oxazolidinonas/farmacología , Convulsiones/tratamiento farmacológico , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Humanos , Límite de Detección
16.
Nat Prod Res ; 36(7): 1686-1692, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32865028

RESUMEN

Thelepamide, an unique ketide-amino acid isolated from a marine annelid worm Thelepus crispus, has a unique oxazolidinone ring derived from cysteine, glycine and valine. Rareness in nature as well as promising bioactive possibility make the oxazolidinone ring an attractive synthetic target. The hydroxy oxazolidinone fragment of thelepamide was prepared by acid-catalysed N,O-acetal formation between a ketoamide and formaldehyde. Lactone-carbonyl selective isopropyl addition to an oxazilidine-dione under Grignard conditions also forms the target compound.


Asunto(s)
Oxazolidinonas , Policétidos , Oxazolidinonas/química
17.
Molecules ; 28(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615437

RESUMEN

A type of MCM-41 supported dicationic imidazolium ionic liquid nanocatalyst has been synthesized and found to be competent for the synthesis of 2-oxazolidinones through the sustainable chemical conversion of CO2 with aziridines. It was shown that the highest efficiency was achieved in the cycloaddition of a series of aziridines and CO2 in the presence of a catalytic amount of the solid catalyst MCM-41@ILLaCl4 under mild conditions. Merits of this meticulously designed protocol are the use of a novel supported ionic liquid catalyst, the easy work-up process, good to excellent yields, a short reaction time, and purification without column chromatography. Overall, the present protocol of synthesizing 2-oxazolidinones under cocatalyst- and solvent-free conditions using MCM-41@ILLaCl4 is promising for industrial applications.


Asunto(s)
Aziridinas , Líquidos Iónicos , Oxazolidinonas , Dióxido de Carbono/química , Líquidos Iónicos/química , Oxazolidinonas/química , Aziridinas/química , Catálisis
18.
J Med Chem ; 64(18): 13212-13214, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34498872

RESUMEN

Inhibitors of cholesteryl ester transfer protein (CETP) elevate HDL levels human clinical trials. However, the first CETP inhibitors proved toxic in pivotal trials or showed minimal therapeutic benefit. Anacetrapib showed some clinical benefit but is high lipophilic. This Viewpoint highlights efforts to optimize anacetrapib to a best-in-class CETP inhibitor.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Proteínas de Transferencia de Ésteres de Colesterol/antagonistas & inhibidores , Oxazolidinonas/uso terapéutico , Aldosterona/metabolismo , Animales , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacología , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Humanos , Ratones Transgénicos , Estructura Molecular , Oxazolidinonas/química , Oxazolidinonas/farmacología
19.
J Med Chem ; 64(15): 10557-10580, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34260235

RESUMEN

The widespread use of antibiotics has made the problem of bacterial resistance increasingly serious, and the study of new drug-resistant bacteria has become the main direction of antibacterial drug research. Among antibiotics, the fully synthetic oxazolidinone antibacterial drugs linezolid and tedizolid have been successfully marketed and have achieved good clinical treatment effects. Oxazolidinone antibacterial drugs have good pharmacokinetic and pharmacodynamic characteristics and unique antibacterial mechanisms, and resistant bacteria are sensitive to them. This Perspective focuses on reviewing oxazolidinones based on the structural modification of linezolid and new potential oxazolidinone drugs in the past 10 years, mainly describing their structure, antibacterial activity, safety, druggability, and so on, and discusses their structure-activity relationships, providing insight into the reasonable design of safer and more potent oxazolidinone antibacterial drugs.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Oxazolidinonas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxazolidinonas/síntesis química , Oxazolidinonas/química
20.
Chem Pharm Bull (Tokyo) ; 69(7): 698-701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193718

RESUMEN

By employing a silica-coated magnetite as a catalyst, a silica-catalyzed carboxylative cyclization of propargylic amines with carbon dioxide (CO2) proceeded to afford the corresponding 2-oxazolidinones. Moreover, after the reaction, the silica-coated magnetic catalyst was readily recovered by use of an external magnet and could be reused up to six times without deactivation.


Asunto(s)
Aminas/química , Dióxido de Carbono/química , Magnetismo , Dióxido de Silicio/química , Catálisis , Ciclización , Oxazolidinonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA