RESUMEN
Folate metabolism is required for important biochemical processes that regulate cell functioning, but its role in female reproductive physiology in cattle during peri- and post-conceptional periods has not been thoroughly explored. Previous studies have shown the presence of folate in bovine oviductal fluid, as well as finely regulated gene expression of folate receptors and transporters in bovine oviduct epithelial cells (BOECs). Additionally, extracellular folic acid (FA) affects the transcriptional levels of genes important for the functioning of BOECs. However, it remains unknown whether the anatomical and cyclic features inherent to the oviduct affect regulation of folate metabolism. The present study aimed to characterize the gene expression pattern of folate cycle enzymes in BOECs from different anatomical regions during the estrous cycle and to determine the transcriptional response of these genes to increasing concentrations of exogenous FA. A first PCR screening showed the presence of transcripts encoding dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR), and methionine synthase (MTR) in bovine reproductive tissues (ovary, oviduct and uterus), with expression levels in oviductal tissues comparable to, or even higher than, those detected in ovarian and uterine tissues. Moreover, expression analysis through RT-qPCR in BOECs from the ampulla and isthmus during different stages of the estrous cycle demonstrated that folate metabolism-related enzymes exhibited cycle-dependent variations. In both anatomical regions, DHFR was upregulated during the preovulatory stage, while MTHFR and MTR exhibited increased expression levels during the postovulatory stage. Under in vitro culture conditions, ampullary and isthmic cells were cultured in the presence of 10, 50, and 100 µM FA for 24 h. Under these conditions, isthmus epithelial cells exhibited a unique transcriptional response to exogenous FA, showing a pronounced increase in MTR expression levels. Our results suggest that the expression of folate metabolism-related genes in BOECs is differentially regulated during the estrous cycle and may respond to exogenous levels of folate. This offers a new perspective on the transcriptional regulation of genes associated with the folate cycle in oviductal cells and provides groundwork for future studies on their functional and epigenetic implications within the oviductal microenvironment.
Asunto(s)
Ciclo Estral , Ácido Fólico , Animales , Femenino , Bovinos , Ciclo Estral/metabolismo , Ácido Fólico/farmacología , Ácido Fólico/metabolismo , Trompas Uterinas/metabolismo , Trompas Uterinas/efectos de los fármacos , Oviductos/metabolismo , Oviductos/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacosRESUMEN
The complex interactome crucial for successful pregnancy is constituted by the intricate network of endocrine and paracrine signaling pathways, involving gametes, embryos, and the female reproductive tract. Specifically, the oviduct exhibits distinct responses to gametes and early embryos during particular phases of the estrus cycle, a process tightly regulated by reproductive hormones. Moreover, these hormones play a pivotal role in orchestrating cyclical changes within oviductal epithelial cells. To unravel the molecular mechanisms underlying these dynamic changes, our study aimed to investigate the involvement of protein kinase A (PKA) in oviductal epithelial cells throughout the estrus cycle and in advanced pregnancy, extending our studies to oviductal epithelial cell in primary culture. By a combination of 2D-gel electrophoresis, Western blotting, and mass spectrometry, we identified 17 proteins exhibiting differential phosphorylation status mediated by PKA. Among these proteins, we successfully validated the phosphorylation status of heat shock 70 kDa protein (HSP70), aconitase 2 (ACO2), and lamin B1 (LMNB1). Our findings unequivocally demonstrate the dynamic regulation of PKA throughout the estrus cycle in oviductal epithelial cells. Also, analysis by bioinformatics tools suggest its pivotal role in mediating cyclical changes possibly through modulation of apoptotic pathways. This research sheds light on the intricate molecular mechanisms underlying reproductive processes, with implications for understanding fertility and reproductive health.
Asunto(s)
Apoptosis , Proteínas Quinasas Dependientes de AMP Cíclico , Células Epiteliales , Ciclo Estral , Transducción de Señal , Animales , Femenino , Células Epiteliales/metabolismo , Bovinos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclo Estral/fisiología , Ciclo Estral/metabolismo , Oviductos/metabolismo , Oviductos/citología , Trompas Uterinas/metabolismo , Trompas Uterinas/citología , FosforilaciónRESUMEN
During the luteal and follicular phases of the estrous cycle, cumulus-oocyte complexes (COC) and oviduct epithelial cells (OEC) undergo notable physiological and morphological changes. Maintaining proper zinc (Zn) homeostasis is crucial in both somatic and germinal mammalian cells. This study aimed to assess the impact of the estrous phase (luteal or follicular) on Zn transporter expression in bovine COC and OEC (BOEC). The expression of Zn transporters Slc39a6 (ZIP6), Slc39a8 (ZIP8), Slc39a14 (ZIP14), Slc30a3 (ZnT3), Slc30a7 (ZnT7), and Slc30a9 (ZnT9) was analyzed in COC and BOEC from cows during the luteal or follicular phases. Gene expression of ZIP6, ZIP14, and ZnT9 was quantified in COC and BOEC. The gene expression in the remaining transporters could not be quantified due to low mRNA levels (ZIP8 and ZnT3 in COC and BOEC; ZnT7 in BOEC) or absence of expression (ZnT7 in COC). In COC, the relative expression (RE) of all three transporters was higher in the luteal phase compared to the follicular phase (P ≤ 0.05). In BOEC, the luteal phase increased the RE of ZIP 6 (P ≤ 0.05), decreased the RE of ZnT9 (P ≤ 0.05), and did not modify the RE of ZIP14 (P > 0.05) compared to the follicular phase. In conclusion, the study reveals differences in the gene expression of ZIP6, ZIP14, and ZnT9 according to the estrous cycle phase in ex vivo samples of bovine COC and OEC.
Asunto(s)
Células del Cúmulo , Células Epiteliales , Ciclo Estral , Oocitos , Animales , Femenino , Bovinos , Células Epiteliales/metabolismo , Ciclo Estral/fisiología , Ciclo Estral/metabolismo , Células del Cúmulo/metabolismo , Oocitos/metabolismo , Oviductos/metabolismo , Oviductos/citología , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica , Trompas Uterinas/citología , Trompas Uterinas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismoRESUMEN
The efficiency of in vitro embryo production in mammals is influenced by variables associated with culture conditions during maturation, fertilization, and embryonic development. The embryos obtained often exhibit low quality due to suboptimal in vitro culture conditions compared to the in vivo environment. Co-culturing gametes and embryos with somatic cells has been developed to enhance in vitro culture conditions. This study aimed to assess the impact of coculturing in vitro-produced porcine embryos with porcine oviductal epithelial cells (POEC) on embryo development and quality. Firstly, a pure culture of POEC suitable for coculture systems was established. The epithelial origin of the cells was confirmed by the expression of E-cadherin and cytokeratin. The expression pattern of hormone receptors aligned with the diestrous oviduct, and POEC also secreted oviductal glycoprotein type 1 (OVGP-1). Secondly, POEC from passage 1 (POEC-1) were used to coculture with in vitro-produced porcine embryos. A successful coculture system was established without the addition of fetal bovine serum as a supplement. Coculturing POEC-1 in monolayers with in vitro-produced porcine embryos during the initial two days of culture enhanced the percentage of blastocysts and their hatching. Although the coculture did not alter the number of cells in the blastocysts or apoptosis assessed by TUNEL, it significantly reduced reactive oxygen species (ROS) levels in cleaved porcine embryos. This study represents the first report evaluating the quality of porcine embryos produced by IVF in coculture systems and assessing ROS levels in cleaved porcine embryos obtained by IVF.
Asunto(s)
Blastocisto , Técnicas de Cocultivo , Técnicas de Cultivo de Embriones , Células Epiteliales , Fertilización In Vitro , Animales , Técnicas de Cocultivo/veterinaria , Porcinos/embriología , Femenino , Técnicas de Cultivo de Embriones/veterinaria , Fertilización In Vitro/veterinaria , Células Epiteliales/citología , Células Epiteliales/fisiología , Blastocisto/fisiología , Blastocisto/citología , Desarrollo Embrionario/fisiología , Trompas Uterinas/citología , Oviductos/citología , Embrión de Mamíferos/fisiologíaRESUMEN
Nuclear speckles are compartments enriched in splicing factors present in the nucleoplasm of eucaryote cells. Speckles have been studied in mammalian culture and tissue cells, as well as in some non-mammalian vertebrate cells and invertebrate oocytes. In mammals, their morphology is linked to the transcriptional and splicing activities of the cell through a recruitment mechanism. In rats, speckle morphology depends on the hormonal cycle. In the present work, we explore whether a similar situation is also present in non-mammalian cells during the reproductive cycle. We studied the speckled pattern in several tissues of a viviparous reptile, the lizard Sceloporus torquatus, during two different stages of reproduction. We used immunofluorescence staining against splicing factors in hepatocytes and oviduct epithelium cells and fluorescence and confocal microscopy, as well as ultrastructural immunolocalization and EDTA contrast in Transmission Electron Microscopy. The distribution of splicing factors in the nucleoplasm of oviductal cells and hepatocytes coincides with the nuclear-speckled pattern described in mammals. Ultrastructurally, those cell types display Interchromatin Granule Clusters and Perichromatin Fibers. In addition, the morphology of speckles varies in oviduct cells at the two stages of the reproductive cycle analyzed, paralleling the phenomenon observed in the rat. The results show that the morphology of speckles in reptile cells depends upon the reproductive stage as it occurs in mammals.
Asunto(s)
Núcleo Celular , Hepatocitos , Lagartos , Animales , Femenino , Lagartos/anatomía & histología , Lagartos/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Hepatocitos/citología , Viviparidad de Animales no Mamíferos/fisiología , Oviductos/metabolismo , Oviductos/ultraestructura , Oviductos/citologíaRESUMEN
Among vertebrates, the yolk is commonly the only form of nutritional investment offered by the female to the embryo. Some species, however, have developed parental care behaviors associated with specialized food provisioning essential for offspring survival, such as the production of lipidic-rich parental milk in mammals. Here, we show that females of the egg-laying caecilian amphibian Siphonops annulatus provide similarly lipid-rich milk to altricial hatchlings during parental care. We observed that for 2 months, S. annulatus babies ingested milk released through the maternal vent seemingly in response to tactile and acoustic stimulation by the babies. The milk, composed mainly of lipids and carbohydrates, originates from the maternal oviduct epithelium's hypertrophied glands. Our data suggest lactation in this oviparous nonmammalian species and expand the knowledge of parental care and communication in caecilians.
Asunto(s)
Anfibios , Lactancia , Leche , Oviparidad , Animales , Femenino , Anfibios/fisiología , Leche/química , Oviductos/citología , Oviductos/fisiología , Oviparidad/fisiología , Tacto , Lípidos/análisisRESUMEN
Zinc (Zn) plays essential roles in numerous cellular processes. However, there is limited understanding of Zn homeostasis within the bovine reproductive system. This study investigated the influence of estradiol (E2) and progesterone (P4) on Zn transporter expression and intracellular free Zn levels in bovine oviduct epithelial cells (BOEC). For this purpose, cells were harvested from slaughtered cows and cultured in vitro. Intracellular Zn concentrations were measured using FluoZin-3AM staining, while real-time polymerase chain reaction assessed Zn transporter gene expression and quantification. Overall, our results confirmed the gene expression of all the evaluated Zn transporters (ZIP6, ZIP8, ZIP14, ZnT3, ZnT7 and ZnT9), denoted and the active role of E2 and P4 in intracellular Zn regulation. Our findings suggest an interaction between Zn, E2 and P4.
Asunto(s)
Proteínas Portadoras , Progesterona , Zinc , Femenino , Bovinos , Animales , Progesterona/farmacología , Progesterona/metabolismo , Zinc/farmacología , Zinc/metabolismo , Oviductos/metabolismo , Células Epiteliales/metabolismo , Estrógenos/farmacologíaRESUMEN
BACKGROUND: Extracellular vesicles (EVs) and their cargoes, including MicroRNAs (miRNAs) play a crucial role in cell-to-cell communication. We previously demonstrated the upregulation of bta-mir-148b in EVs from oviductal fluid of cyclic cows. This miRNA is linked to the TGF-ß pathway in the cell proliferation. Our aim was to verify whether miR-148b is taken up by embryos through gymnosis, validate its target genes, and investigate the effect of miR-148b supplementation on early embryo development and quality. METHODS: Zygotes were cultured in SOF + 0.3% BSA (Control) or supplemented with: 1 µM miR-148b mimics during: D1-D7 (miR148b) or D1-D4 (miR148b-OV: representing miRNA effect in the oviduct) or D4-D7 (miR148b-UT: representing miRNA effect in the uterus) or 1 µM control mimics was used during: D1-D7 (CMimic). Embryos at ≥ 16-cells and D7 blastocysts (BD7) were collected to examine the mRNA abundance of transcripts linked to the TGF-ß pathway (TGFBR2, SMAD1, SMAD2, SMAD3, SMAD5, BMPR2, RPS6KB1, POU5F1, NANOG), total cell number (TC), trophectoderm (TE), and inner cell mass (ICM) were also evaluated. One-way ANOVA was used for all analyses. RESULTS: We demonstrated that miR-148b can be taken up in both 16-cell embryos and BD7 by gymnosis, and we observed a decrease in SMAD5 mRNA, suggesting it's a potential target of miR-148b. Cleavage and blastocysts rates were not affected in any groups; however, supplementation of miR-148b mimics had a positive effect on TC, TE and ICM, with values of 136.4 ± 1.6, 92.5 ± 0.9, 43.9 ± 1.3 for miR148b and 135.3 ± 1.5, 92.6 ± 1.2, 42.7 ± 0.8, for miR148b-OV group. Furthermore, mRNA transcripts of SMAD1 and SMAD5 were decreased (P ≤ 0.001) in 16-cell embryos and BD7 from miR148b and miR148b-OV groups, while POU5F1 and NANOG were upregulated (P ≤ 0.001) in BD7 and TGFBR2 was only downregulated in 16-cell embryos. pSMAD1/5 levels were higher in the miR148b and miR148b-OV groups. CONCLUSIONS: Our findings suggest that supplementation of bta-miR-148b mimics during the entire culture period (D1 - D7) or from D1 - D4 improves embryo quality and influences the TGF-ß signaling pathway by altering the transcription of genes associated with cellular differentiation and proliferation. This highlights the importance of miR-148b on embryo quality and development.
Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Femenino , Bovinos , Animales , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , MicroARNs/genética , Oviductos/metabolismo , Vesículas Extracelulares/metabolismo , ARN Mensajero/genéticaRESUMEN
The oviduct, the organ of the female reproductive system where fertilization and early embryonic development occur, provides an optimal environment for the final maturation of oocytes, storage, and sperm capacitation and transport of gametes and embryos. During the estrous cycle, the oviduct is affected by ovarian sex hormones, resulting in changes aimed at maintaining an appropriate microenvironment. Normal cell migration is tightly regulated, its role being essential for the development and maintenance of organ and tissue functions as well as for regeneration following injury. Due to their involvement in focal contact formations, focal adhesion kinase (PTK2) and paxillin (PXN) are key proteins in the study of cell migration and adhesion. The objective of this work was to compare the expression of PTK2 and PXN in oviductal cells along the estrous cycle and to determine if their expression is regulated by the presence of 17-ß estradiol (E2) and/or progesterone (P4). No transcripts of PTK2 or of PXN were detected in cells corresponding to the luteal phase. Additionally, hormonal stimulation experiments on bovine oviductal cell cultures (BOECs) were carried out, where P4 inhibited the expression of both genes. Migration assays demonstrated that P4 reduced BOECs migration capacity. P4 treatment also reduced cell adhesion, while E2 increased the number of adhered cells. In conclusion, the presence of E2 and P4 regulates the expression of genes involved in the formation of focal contacts and modifies the migration and adhesion of BOECs. Understanding the effect of steroid hormones on BOECs is critical to grasp the impact of steroid control on oviductal function and its contribution to establishing successful pregnancies.
Asunto(s)
Células Epiteliales , Estradiol , Trompas Uterinas , Adhesiones Focales , Progesterona , Animales , Femenino , Bovinos , Estradiol/farmacología , Progesterona/farmacología , Progesterona/metabolismo , Células Epiteliales/fisiología , Trompas Uterinas/fisiología , Trompas Uterinas/citología , Paxillin/metabolismo , Paxillin/genética , Movimiento Celular , Ciclo Estral/fisiología , Células Cultivadas , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Oviductos/fisiologíaRESUMEN
The oviduct provides a suitable microenvironment from the gametes' final maturation until initial embryo development. Dynamic functional changes are observed in the oviduct cells, mainly controlled by steroid hormones and well-orchestrated during the estrous cycle. However, based on the roles played by the oviduct, additional layers of complexity might be present in its regulatory process. There is a cellular process that includes metabolic adaptation that can guide molecular modifications. This process is known as metaboloepigenetics. Therefore, we aimed to better understand how this crosstalk occurs in oviductal epithelial cells (OEC). Due to limited in situ access to the oviduct, we used the primary in vitro cell culture as a culture model and glucose as a metabolic disturbed factor. For that, cells derived from the oviductal epithelial layer were collected from cows at either follicular or luteal stages (n = 4 animals per group). They were cultured on a monolayer culture system under normoglycemic (2.7 mM glucose) or hyperglycemic conditions (27 mM glucose). On day five of culture, attached cells were submitted to analysis of mitochondrial metabolism (mitochondrial membrane potential - MMP) and epigenetics markers (5- methylcytosine - 5 mC and histone 3 lysine 9 acetylation - H3K9ac). Moreover, the culture media were submitted to the metabolites analysis profile by Raman spectrometry. Data were analyzed considering the effect of glucose level (normoglycemic vs. hyperglycemic), stages when OEC were harvested (follicular vs. luteal), and their interaction (glucose level * cycle stage) by two-way ANOVA. As a result, the high glucose level decreased the H3K9ac and MMP levels but did not affect the 5 mC. Regardless of the metabolic profile of the culture media, the glucose level was the only factor that changed the Raman shifts abundance. Although this present study evaluated oviductal epithelial cells after being submitted to an in vitro monolayer culture system, which is known to lead to cell dedifferentiation, yet, these results provide evidence of a relationship between epigenetic reprogramming and energy metabolism under these cell culture conditions. In conclusion, the levels of metabolites in culture media may be crucial for cellular function and differentiation, meaning that it should be considered in studies culturing oviductal cells.
Asunto(s)
Trompas Uterinas , Oviductos , Femenino , Animales , Bovinos , Oviductos/metabolismo , Células Epiteliales/metabolismo , Epigénesis Genética , Medios de Cultivo , Glucosa/farmacología , Glucosa/metabolismoRESUMEN
Alpacas are species of induced ovulation and with foetal development only in the left uterine horn (98%). The histoarchitecture of the oviductal regions determine a spatio-temporal interaction between the gametes/embryos and the oviduct. This study compares the morphometric changes of the left and right oviducts in alpaca during the follicular phase. Five oviducts (n = 05), from adult alpacas with dominant follicle in the right ovary were recovered, dissected, and processed by histological technique with H&E and PAS stain for measurement of morphometric parameters and cell characteristics, respectively. Also, a 3D image reconstruction was performed (by reconstruct software). Resin moulds (polyurethane PU4ii) were applied for visualization of oviductal lumen. The multivariable data of parameters were analysed with ANOVA and principal component analysis (PCA). The histomorphometric parameters of left and right oviducts did not show statistically significant differences (p ≥ 0.05), although PCA showed morphometric differences between regions of the oviduct. No differences were observed between the 3D reconstruction of the left and right oviducts, as well as in the luminal spaces examined in the resin moulds. In conclusion, the histomorphometry of the oviduct is not affected by its location on either the left or right side; therefore, it cannot explain why 98% of foetuses implant in the left uterus.
Asunto(s)
Camélidos del Nuevo Mundo , Femenino , Animales , Trompas Uterinas , Oviductos , ÚteroRESUMEN
Telocytes (TCs), a recently discovered special type of stromal cells, have been identified in many organs of many species, including the female and male reproductive system, with proposed multiple potential bio-functions such as homeostasis, immunomodulation, tissue remodeling and regeneration, embryogenesis, angiogenesis and even tumorigenesis. The aim of this study was to investigate the existence, and characteristics of telocytes in normal equine oviduct. To identify them, we used routine light microscopy, non-conventional light microscopy (NCLM), transmission electron microscopy (TEM), and immunohistochemistry. We found that telocytes of the equine oviduct can be recognized in fixed specimens by light microscopy (methylene blue staining), with more details on Epon semi-thin sections (toluidine blue staining) by NCLM, and that they showed positive immunostaining for CD34. The telocytes, with their typical long and moniliform prolongations, formed networks in the stromal space of the submucosa, muscular and serosa layers, particularly in the lamina propia where they were observed in greater quantity. By TEM we have also confirmed the presence of cells ultrastructurally identifiable as telocytes (cells with telopodes alternating podomers and podoms) in the aforementioned locations. Direct intercellular contacts between epithelial cells and neighboring telocytes were evidenced. EIn conclusion, we demonstrated that telocytes are present in the equine oviduct as previously reported in other species. The potential implication of telocytes in multiple potential functions of physiological and pathological processes deserves further investigation.
Asunto(s)
Telocitos , Animales , Femenino , Caballos , Masculino , Telocitos/ultraestructura , Trompas Uterinas , Telopodos/ultraestructura , Oviductos/ultraestructura , Células del EstromaRESUMEN
Lipopolysaccharide (LPS) endotoxemia has been negatively associated with fertility. This study aimed to investigate the effect of LPS-induced inflammation on gene expression associated with bovine fertility in the uterus and oviduct. Sixteen healthy heifers were divided into two groups. The LPS group (n = 8) received two intravenous (i.v.) injections of 0.5 µg/kg of body weight of LPS with a 24-h interval, and the control group (n = 8) received two i.v. injections of saline solution with the same interval of time. All the animals had the follicular wave synchronized. Three days after the second injection of LPS, all animals were slaughtered and uterine and oviduct samples were collected. Gene expression associated with inflammatory response, thermal and oxidative stresses, oviduct environment quality, and uterine environment quality was evaluated. Body temperature and leucogram demonstrated that LPS induced an acute systemic inflammatory response. In the uterus, the expression of PTGS2 and NANOG genes was downregulated by the LPS challenge. However, no change in expression was observed in the other evaluated genes in the uterus, nor those evaluated in the oviduct. In conclusion, the inflammatory process triggered by LPS did not persist in the uterus and oviduct 3 days after challenge with LPS. Nonetheless, reduction in PTGS2 and NANOG expression in the uterus suggested that, indirectly, LPS may have a prolonged effect, which may affect corpus luteum and endometrial functions.
Asunto(s)
Bovinos , Fertilidad , Oviductos , Útero , Animales , Bovinos/genética , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Femenino , Fertilidad/genética , Lipopolisacáridos/farmacología , Oviductos/metabolismo , Útero/metabolismoRESUMEN
The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.(AU)
Asunto(s)
Animales , Bovinos , Oviductos , Desarrollo Embrionario , Fertilización , Vesículas Extracelulares , Células Germinativas , Productos BiológicosRESUMEN
Resumen El consumo crónico de alcohol es un problema de salud mundial que afecta particularmente a la población femenina. Sin embargo, los efectos de la ingesta semicrónica en cantidades moderadas a bajas en el ovario y el oocito son poco conocidos. En un modelo murino, se administró etanol al 10% en agua de bebida (hembras tratadas) o agua (hembras control) por 15 días, y luego de la superovulación o no (ovulación espontánea), se analizó el ciclo estral y la calidad ovárico-gamética. En las hembras tratadas, la frecuencia y duración del diestro aumentó, y las frecuencias de folículos y cuerpos lúteos disminuyeron vs hembras controles, valores que se restauraron luego de la superovulación. Sin embargo, en las hembras tratadas, la tasa de proliferación celular folicular y el desbalance de la expresión ovárica de VEGF (factor de crecimiento endotelial) persistieron luego de la superovulación. El número de ovocitos ovulados con metafase II anormal, fragmentados y activados partenogenéticamente fue mayor en las hembras tratadas respecto las controles. En conclusión, el consumo semicrónico moderado de alcohol produce anestro, ciclo estral irregular, foliculogénesis deficiente y anomalías núcleo-citoplasmáticas en los oocitos ovulados. Estas alteraciones podrían constituirse en un factor etiológico de pérdida gestacional temprana y desarrollo embrionario anormal luego del consumo de alcohol.
Abstract Chronic alcohol consumption is a global health problem that particularly affects the female population. However, the ef-fects of semi-chronic ethanol intake in low-moderate amounts on the ovary and oocyte are poorly understood. In a mouse model, 10% ethanol was administered in drinking water (treated females) or water (control females) for 15 days, and after superovulation or not (spontaneous ovulation), the estrous cycle and ovarian-gametic quality were analyzed. In treated females, the frequency and duration of the diestrus increased, and the frequencies of follicles and corpus luteum decreased vs control females, values that restored after superovulation. However, in treated females, the follicular cell proliferation rate and the imbalance in ovarian expression of VEGF (endothelial growth factor) persisted after superovulation. The number of ovulated oocytes with abnormal metaphase II, fragmented and parthenogenetically activated was higher in treated females than in control ones. In conclusion, moderate semi-chronic alcohol consumption produces anestrum, irregular estrous cycle, poor folliculogenesis, and nuclear-cytoplasmic abnormalities in ovulated oocytes. These alterations could constitute an etiological factor of early gestational loss and abnormal embryonic development after alcohol consumption.
Asunto(s)
Humanos , Animales , Femenino , Ratones , Oocitos/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Etanol/efectos adversos , Folículo Ovárico/efectos de los fármacos , Ovario/citología , Ovario/efectos de los fármacos , Oviductos/citología , Oviductos/efectos de los fármacos , Ovulación/efectos de los fármacos , Modelos Animales , Ciclo Estral/efectos de los fármacos , Proliferación Celular , Células Germinativas/citología , Células Germinativas/efectos de los fármacos , Folículo Ovárico/citologíaRESUMEN
Global warming is affecting biodiversity; however, the extent to which animal reproductive processes respond to predicted temperature increments remains largely unexplored. The thermal environment has a pronounced impact on metabolic rates of ectotherms; therefore, an interesting question to assess is whether temperature increase might affect specific reproductive mechanisms like sperm performance in ectotherms. Moreover, in many species, oviductal fluid (OF) is known to regulate and maintain sperm quality; however, the role of OF in relation to the effects of high temperature on sperm remains unclear. Our aim was to experimentally test the effect of increased temperature on sperm velocity, swimming path and percentage of motility in neutral conditions at ejaculation (without OF) and in female's reproductive tract fluid (with OF), in a social ectotherm lizard model, Tropidurus spinulosus, which has specific thermal requirements for reproduction. Our results suggest that a rising temperature associated with global warming (+4°C) affects negatively sperm dynamics and survival. However, OF ameliorated the harmful effects of high temperature. This is an important point, as this study is the first to have tested the role of OF in preserving sperm from a warmer pre-fertilization environment. These results contribute to our understanding of how thermal environment changes might affect post-copulatory reproductive mechanisms. This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Ectodermo/fisiología , Líquido Extracelular/metabolismo , Oviductos/fisiología , Espermatozoides/fisiología , Temperatura , Adaptación Fisiológica , Animales , Femenino , Lagartos/fisiología , Masculino , Motilidad EspermáticaRESUMEN
In the present work, we established and characterized a 3D functional polarized primary bovine oviduct epithelial cells (BOECs) culture on free-floating type I collagen hydrogels (rafts) at an air-liquid interface (ALI). Intercellular junctions, ultrastructural cellular morphology and the expression of the OVGP1 closely recapitulated those of the in vivo epithelium lining. These morphological and physiological epithelial cell features were maintained under standard DMEM/F12 with 10% foetal bovine serum culture medium for at least 28 days of ALI culture. The versatility of the BOECs raft cultures should allow testing of toxicity compounds, in vitro evaluation of physiological or pathological oviductal states, and the study of epithelial-mesenchymal interactions that are critical for the maintenance of oviductal homeostasis.
Asunto(s)
Técnicas de Cultivo de Célula/veterinaria , Células Epiteliales/metabolismo , Oviductos/citología , Animales , Bovinos , Polaridad Celular , Células Cultivadas , Colágeno , Medios de Cultivo , Células Epiteliales/ultraestructura , Femenino , Glicoproteínas/genética , Glicoproteínas/metabolismo , HidrogelesRESUMEN
Rhinella icterica is a Brazilian toad with a parotoid secretion that is toxic to insects. In this work, we examined the entomotoxicity of this secretion in locust (Locusta migratoria) semi-isolated heart and oviduct preparations in vitro. The parotoid secretion caused negative chronotropism in semi-isolated heart preparations (at the highest dose tested: 500 µg) and markedly enhanced the amplitude of spontaneous contractions and tonus of oviduct muscle (0.001-100 µg). In addition, the secretion enhanced neurally-evoked contractions of oviduct muscle, which was more sensitive to low concentrations of secretion than the semi-isolated heart. The highest dose of secretion (100 µg) caused neuromuscular blockade. In zero calcium-high magnesium saline, the secretion still enhanced muscle tonus, suggesting the release of intracellular calcium to stimulate contraction. Reverse-phase HPLC of the secretion yielded eight fractions, of which only fractions 4 and 5 affected oviduct muscle tonus and neurally-evoked contractions. No phospholipase A2 activity was detected in the secretion or its chromatographic fractions. The analysis of fractions 4 and 5 by LC-DAD-MS/MS revealed the following chemical compounds: suberoyl arginine, hellebrigenin, hellebrigenin 3-suberoyl arginine ester, marinobufagin 3-pimeloyl arginine ester, telocinobufagin 3-suberoyl arginine ester, marinobufagin 3-suberoyl arginine ester, bufalin 3-adipoyl arginine, marinobufagin, bufotalinin, and bufalitoxin. These findings indicate that R. icterica parotoid secretion is active in both of the preparations examined, with the activity in oviduct possibly being mediated by bufadienolides.
Asunto(s)
Bufanólidos , Bufonidae/metabolismo , Locusta migratoria/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Animales , Bufanólidos/química , Bufanólidos/toxicidad , Cromatografía Líquida de Alta Presión , Femenino , Corazón/efectos de los fármacos , Oviductos/efectos de los fármacos , Espectrometría de Masas en TándemRESUMEN
Atlantoraja platana is an oviparous skate endemic to the south-west Atlantic Ocean, and is one of the skate species most exploited by local industrial bottom trawl fisheries. Oviparous elasmobranchs encapsulate their eggs in complex egg cases produced by the oviductal gland (OG). This organ is exclusively present in these fishes and comprises four distinct zones: club, baffle, papillary and terminal. The relative size and structural complexity of these zones correlate with mode of reproduction. Glycans are known to play major roles in reproduction so their distribution in each zone of the OG could explain the functional multiplicity of the gland in skates, but this topic has not been previously investigated. In this study, morphological, histochemical and lectin-histochemical analysis revealed various novel aspects of A. platana's OG. The club, papillary and terminal zones positively stained for periodic acid Schiff's reagent (PAS) and Alcian Blue (AB), indicating the presence of neutral and acid mucopolysaccharides. However, the buffle zone was negative for PAS and AB stains, but was positive for all the lectins used. Each zone of the OG had a characteristic pattern of glycan expression. Finally, we confirmed the presence of sperm but not sperm storage. This is the first lectin-histochemical study of the OG in chondrichtyan fish and it has proven to be an important tool to understand some of the mechanisms of fertility and reproductive success in economic important species such as A. platana.
Asunto(s)
Oviductos/metabolismo , Polisacáridos/genética , Reproducción/fisiología , Rajidae/genética , Animales , Océano Atlántico , Femenino , Masculino , Oviductos/anatomía & histología , Polisacáridos/metabolismo , Rajidae/anatomía & histología , Rajidae/metabolismoRESUMEN
The Rasptail skate Rostroraja velezi is commercially exploited in artisanal elasmobranch fisheries along the west coast of Baja California Sur, Mexico, but information on its life history is limited. This study aimed to investigate the reproductive biology of R. velezi. A total of 105 specimens were caught from April 2008 to May 2012, including the largest reported specimen with 121 cm total length, 96 cm disc width (DW ). Females attained larger sizes than males. Males and females presented functional gonads. There was an asymmetry in the testes of males, with the left testis being larger. Histological analysis of the reproductive biology of R. velezi was performed here for the first time. The presence of sperm storage in females and spermatogenic development beginning at the first stages of maturity in males was recorded. It was possible to identify the development of secretions in the club, baffle and terminal zone of the oviducal gland. DW at maturity, defined as the DW at which 50% of the population is mature, was estimated at 68-72 cm for females and 65.1 cm for males. Egg-bearing females caught in April and May presented one egg capsule per uterus. Furthermore, a description of the egg capsule of R. velezi is provided. Elucidating the reproductive cycle, the type of reproductive strategies, and the fecundity of R. velezi will allow us to understand the impact of fisheries on this species.