RESUMEN
BACKGROUND: The immunomodulatory oligodeoxynucleotide (ODN) IMT504 might harbor antifibrotic properties within the liver. METHODS: Fibrosis models were induced in mice through thioacetamide (TAA) administration and bile-duct ligation. Cre-loxP mice were utilized to identify GLAST + Wnt1 + bone marrow stromal progenitors (BMSPs) and to examine their contribution with cells in the liver. In vivo and in vitro assays; flow-cytometry, immunohistochemistry, and qPCR were conducted. RESULTS: IMT504 demonstrated significant inhibition of liver fibrogenesis progression and reversal of established fibrosis. Early responses to IMT504 involved the suppression of profibrogenic and proinflammatory markers, coupled with an augmentation of hepatocyte proliferation. Additionally, this ODN stimulated the proliferation and mobilization of GLAST + Wnt1 + BMSPs, likely amplifying their contribution with endothelial- and hepatocytes-like cells. Moreover, IMT504 significantly modulated the expression levels of Wnt ligands and signaling pathway/target genes specifically within GLAST + Wnt1 + BMSPs, with minimal impact on other BMSPs. Intriguingly, both IMT504 and conditioned media from IMT504-pre-treated GLAST + Wnt1 + BMSPs shifted the phenotype of fibrotic macrophages, hepatic stellate cells, and hepatocytes, consistent with the potent antifibrotic effects observed. CONCLUSION: In summary, our findings identify IMT504 as a promising candidate molecule with potent antifibrotic properties, operating through both direct and indirect mechanisms, including the activation of GLAST + Wnt1 + BMSPs.
Asunto(s)
Cirrosis Hepática , Células Madre Mesenquimatosas , Proteína Wnt1 , Animales , Ratones , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Oligodesoxirribonucleótidos/farmacología , Masculino , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , TioacetamidaRESUMEN
Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.
Asunto(s)
Imiquimod , Células Asesinas Naturales , Activación de Linfocitos , Poli I-C , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Toll-Like , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Poli I-C/farmacología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Imiquimod/farmacología , Receptores Toll-Like/metabolismo , Receptores Toll-Like/agonistas , Niño , Oligodesoxirribonucleótidos/farmacología , Citocinas/metabolismo , Femenino , Interferón gamma/metabolismo , Masculino , Imidazoles/farmacología , Citotoxicidad Inmunológica/efectos de los fármacos , Preescolar , Agonistas de los Receptores Toll-LikeRESUMEN
New adjuvant strategies are needed to improve protein-based subunit vaccine immunogenicity. We examined the potential to use nanostructure of 6-O-ascorbyl palmitate to formulate ovalbumin (OVA) protein and an oligodeoxynucleotide (CpG-ODN) (OCC). In mice immunized with a single dose, OCC elicited an OVA-specific immune response superior to OVA/CpG-ODN solution (OC). Rheological studies demonstrated OCC's self-assembling viscoelastic properties. Biodistribution studies indicated that OCC prolonged OVA and CpG-ODN retention at injection site and lymph nodes, reducing systemic spread. Flow-cytometry assays demonstrated that OCC promoted OVA and CpG-ODN co-uptake by Ly6ChiCD11bhiCD11c+ monocytes. OCC and OC induced early IFN-γ in lymph nodes, but OCC led to higher concentration. Conversely, mice immunized with OC showed higher serum IFN-γ concentration compared to those immunized with OCC. In mice immunized with OCC, NK1.1+ cells were the IFN-γ major producers, and IFN-γ was essential for OVA-specific IgG2c switching. These findings illustrate how this nanostructure improves vaccine's response.
Asunto(s)
Nanoestructuras , Oligodesoxirribonucleótidos , Ovalbúmina , Vacunas de Subunidad , Animales , Nanoestructuras/química , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/farmacocinética , Ratones , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacocinética , Ovalbúmina/inmunología , Ovalbúmina/química , Femenino , Ratones Endogámicos C57BL , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/farmacocinética , Interferón gamma/metabolismo , Distribución Tisular , Ácido Ascórbico/análogos & derivadosRESUMEN
We have demonstrated that oligodeoxynucleotide IMT504 promotes significant improvement in the diabetic condition in diverse animal models. Based on these results, here we evaluated whether these effects observed in vivo could be due to direct effects on ß-cells. We demonstrate by immunofluorescence that IMT504 enters the cell and locates in cytoplasm where it induces GSK-3ß phosphorylation that inactivates this kinase. As GSK-3ß tags Pdx1 for proteasomal degradation, by inactivating GSK-3ß, IMT504 induces an increase in Pdx1 protein levels, demonstrated by Western blotting. Concomitantly, an increase in Ins2 and Pdx1 gene transcription was observed, with no significant increase in insulin content or secretion. Enhanced Pdx1 is promising since it is a key transcription factor for insulin synthesis and is also described as an essential factor for the maintenance ß-cell phenotype and function. Dose-dependent inhibition of H2 O2 -induced apoptosis determined by ELISA as well as decreased expression of Bax was also observed. These results were confirmed in another ß-cell line, beta-TC-6 cells, in which a cytokine mix induced apoptosis that was reversed by IMT504. In addition, an inhibitor of IMT504 entrance into cells abrogated the effect IMT504. Based on these results we conclude that the ß-cell recovery observed in vivo may include direct effects of IMT504 on ß-cells, by maintaining their identity/phenotype and protecting them from oxidative stress and cytokine-induced apoptosis. Thus, this work positions IMT504 as a promising option in the framework of the search of new therapies for type I diabetes treatment.
Asunto(s)
Apoptosis , Oligodesoxirribonucleótidos , Animales , Glucógeno Sintasa Quinasa 3 beta , Oligodesoxirribonucleótidos/farmacología , Insulina/metabolismo , Citocinas/farmacología , Proliferación CelularRESUMEN
To assess the feasibility of high-temperature aminolysis of deoxyribooligonucleotides containing rare bases as a method to determine their base sequence, the 2'-ß-D-deoxyribosides of 5-bromouracil, 2-aminopurine, uracil, adenine, cytosine, 5-methylcytosine, hypoxanthine, N6-methyladenine, N4-ethylcytosine, and guanine were compared as to their rate of degradation in 0.5 M aqueous pyrrolidine at 110 °C, conditions used earlier in the analysis of oligonucleotides containing only the canonical bases. The reaction mixtures were analyzed by chromatography on Zorbax XDB-CN and UV absorption spectroscopy. The first-order rate constants for the nucleoside degradations decreased in the above order, spanning a wide range of reactivities. Some of these nucleosides were also tested in 0.5 M aqueous ammonia at 110 °C, giving similar first-order rate constants, except for 2'-deoxyguanosine, which is much more reactive with ammonia, due to the lower basicity of this reagent, leaving a larger proportion of the nucleoside in the non-ionized form, susceptible to nucleophilic attack at the base. Short oligothymidylates containing a single 2-aminopurine, adenine, guanine, or cytosine unit in central position were tested in pyrrolidinolysis, to determine the cleavage rates at these sites and the dependence of these cleavage rates on oligonucleotide length. A model decadeoxyribonucleotide containing all four canonical bases was also pyrrolidinolyzed, followed by ion-exchange chromatography, to deduce the nucleotide sequence from the resulting chromatographic profile.
Asunto(s)
Desoxirribonucleósidos , Oligodesoxirribonucleótidos , Análisis de Secuencia de ADN , Desoxirribonucleósidos/análisis , Desoxirribonucleósidos/química , Oligodesoxirribonucleótidos/análisis , Oligodesoxirribonucleótidos/química , Solventes , CinéticaRESUMEN
Despite the available knowledge on underlying mechanisms and the development of several therapeutic strategies, optimal management of postoperative pain remains challenging. This preclinical study hypothesizes that, by promoting an anti-inflammatory scenario, pre-emptive administration of IMT504, a noncoding, non-CpG oligodeoxynucleotide with immune modulating properties, will reduce postincisional pain, also facilitating therapeutic opioid-sparing. Male adult Sprague-Dawley rats with unilateral hindpaw skin-muscle incision received pre-emptive (48 and 24 hours prior to surgery) or postoperative (6 hours after surgery) subcutaneous vehicle (saline) or IMT504. Various groups of rats were prepared for pain-like behavior analyses, including subgroups receiving morphine or naloxone, as well as for flow-cytometry or quantitative RT-PCR analyses of the spleen and hindpaws (for analysis of inflammatory phenotype). Compared to vehicle-treated rats, pre-emptive IMT504 significantly reduced mechanical allodynia by 6 hours after surgery, and accelerated recovery of basal responses from 72 hours after surgery and onwards. Cold allodynia was also reduced by IMT504. Postoperative administration of IMT504 resulted in similar positive effects on pain-like behavior. In IMT504-treated rats, 3 mg/kg morphine resulted in comparable blockade of mechanical allodynia as observed in vehicle-treated rats receiving 10 mg/kg morphine. IMT504 significantly increased hindpaw infiltration of mesenchymal stem cells, CD4+T and B cells, and caused upregulated or downregulated transcript expressions of interleukin-10 and interleukin-1ß, respectively. Also, IMT504 treatment targeted the spleen, with upregulated or downregulated transcript expressions, 6 hours after incision, of interleukin-10 and interleukin-1ß, respectively. Altogether, pre-emptive or postoperative IMT504 provides protection against postincisional pain, through participation of significant immunomodulatory actions, and exhibiting opioid-sparing effects. PERSPECTIVE: This preclinical study introduces the noncoding non-CpG oligodeoxynucleotide IMT504 as a novel modulator of postoperative pain and underlying inflammatory events. The opioid-sparing effects observed for IMT504 appear as a key feature that could contribute, in the future, to reducing opioid-related adverse events in patients undergoing surgical intervention.
Asunto(s)
Analgésicos Opioides , Hiperalgesia , Ratas , Masculino , Animales , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Ratas Sprague-Dawley , Interleucina-10 , Interleucina-1beta , Dolor Postoperatorio/tratamiento farmacológico , Morfina/farmacología , Morfina/uso terapéutico , Oligodesoxirribonucleótidos/uso terapéuticoRESUMEN
Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain.
Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , FN-kappa B , Animales , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Masculino , Ratones , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Oligodesoxirribonucleótidos , Dolor Postoperatorio/tratamiento farmacológico , Prostaglandinas E , Canales de Sodio/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
Microbial strains isolated from extreme and understudied environments, such as caves, are still poorly investigated for the production of bioactive secondary metabolites. Investigation of the ethyl acetate extract from the growth medium produced by the soil-derived fungus Aspergillus sp. SDC28, isolated from a Brazilian cave, yielded two anthraquinones: versicolorin C (1) and versiconol (2). The complete assignment of nuclear magnetic resonance and mass spectroscopic data of 1 and 2 was performed for the first time. Moreover, the yet unreported absolute configuration of both compounds was unambiguously established by analysis of experimental and theoretical electronic circular dichroism data. Vibrational circular dichroism was also applied to confirm the absolute stereochemistry of 2. Compounds 1 and 2 showed cytotoxic activity against human ovarian cancer cells (OVCAR3).
Asunto(s)
Cuevas , Neoplasias Ováricas , Antraquinonas/farmacología , Apoptosis , Aspergillus/química , Aspergillus/metabolismo , Brasil , Línea Celular Tumoral , Dicroismo Circular , Femenino , Humanos , Estructura Molecular , Oligodesoxirribonucleótidos , Suelo , Relación Estructura-Actividad , TionucleótidosRESUMEN
The effect of vicinal molecular groups on the intrinsic acidity of a central guanine residue in short single-stranded DNA models and the potentials exerted by the backbone and the nucleobases on the leaving proton were determined by the fragment molecular orbital (FMO) method, in terms of quantum descriptors (QDs) and pair interaction interfragment decomposition analysis (PIEDA). The acidity of the central guanine moiety decreased with increasing oligonucleotide length, in response to changes by less than 1 eV in the ionization potential, global softness, electrophilicity index, and electronegativity descriptors. The differences in these descriptors were majorly interpreted in terms of the electrostatic influence of the negative charges residing on the backbone of the molecule. Additionally, this electric-field effect was determined explicitly for the displacement of the test hydronium ion to a distance of 250 Å from its original position, resulting in good agreement with calculations of the variation in Gibbs free energies, obtained from physical experiments conducted on the identical oligonucleotide sequences. The reported results are useful for biophysical applications of deoxyriboligonucleotides containing guanine residues in order to induce local negative charges at specific positions in the DNA chain.
Asunto(s)
Guanina/química , Modelos Químicos , Modelos Moleculares , Oligodesoxirribonucleótidos/química , Protones , Algoritmos , Conformación Molecular , Estructura Molecular , Oligonucleótidos/química , Electricidad EstáticaRESUMEN
BACKGROUND: A range of safe and effective vaccines against SARS CoV 2 are needed to address the COVID 19 pandemic. We aimed to assess the safety and efficacy of the COVID-19 vaccine SCB-2019. METHODS: This ongoing phase 2 and 3 double-blind, placebo-controlled trial was done in adults aged 18 years and older who were in good health or with a stable chronic health condition, at 31 sites in five countries (Belgium, Brazil, Colombia, Philippines, and South Africa). The participants were randomly assigned 1:1 using a centralised internet randomisation system to receive two 0·5 mL intramuscular doses of SCB-2019 (30 µg, adjuvanted with 1·50 mg CpG-1018 and 0·75 mg alum) or placebo (0·9% sodium chloride for injection supplied in 10 mL ampoules) 21 days apart. All study staff and participants were masked, but vaccine administrators were not. Primary endpoints were vaccine efficacy, measured by RT-PCR-confirmed COVID-19 of any severity with onset from 14 days after the second dose in baseline SARS-CoV-2 seronegative participants (the per-protocol population), and the safety and solicited local and systemic adverse events in the phase 2 subset. This study is registered on EudraCT (2020-004272-17) and ClinicalTrials.gov (NCT04672395). FINDINGS: 30 174 participants were enrolled from March 24, 2021, until the cutoff date of Aug 10, 2021, of whom 30 128 received their first assigned vaccine (n=15 064) or a placebo injection (n=15 064). The per-protocol population consisted of 12 355 baseline SARS-CoV-2-naive participants (6251 vaccinees and 6104 placebo recipients). Most exclusions (13 389 [44·4%]) were because of seropositivity at baseline. There were 207 confirmed per-protocol cases of COVID-19 at 14 days after the second dose, 52 vaccinees versus 155 placebo recipients, and an overall vaccine efficacy against any severity COVID-19 of 67·2% (95·72% CI 54·3-76·8), 83·7% (97·86% CI 55·9-95·4) against moderate-to-severe COVID-19, and 100% (97·86% CI 25·3-100·0) against severe COVID-19. All COVID-19 cases were due to virus variants; vaccine efficacy against any severity COVID-19 due to the three predominant variants was 78·7% (95% CI 57·3-90·4) for delta, 91·8% (44·9-99·8) for gamma, and 58·6% (13·3-81·5) for mu. No safety issues emerged in the follow-up period for the efficacy analysis (median of 82 days [IQR 63-103]). The vaccine elicited higher rates of mainly mild-to-moderate injection site pain than the placebo after the first (35·7% [287 of 803] vs 10·3% [81 of 786]) and second (26·9% [189 of 702] vs 7·4% [52 of 699]) doses, but the rates of other solicited local and systemic adverse events were similar between the groups. INTERPRETATION: Two doses of SCB-2019 vaccine plus CpG and alum provides notable protection against the entire severity spectrum of COVID-19 caused by circulating SAR-CoV-2 viruses, including the predominating delta variant. FUNDING: Clover Biopharmaceuticals and the Coalition for Epidemic Preparedness Innovations.
Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/uso terapéutico , Adolescente , Adulto , Anciano , Compuestos de Alumbre/uso terapéutico , Bélgica , Brasil , Colombia , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Oligodesoxirribonucleótidos/uso terapéutico , Filipinas , Multimerización de Proteína , Proteínas Recombinantes/uso terapéutico , Riesgo , SARS-CoV-2 , Sudáfrica , Eficacia de las Vacunas , Adulto JovenRESUMEN
ABSTRACT: IMT504, a noncoding, non-CpG oligodeoxynucleotide, modulates pain-like behavior in rats undergoing peripheral nerve injury, through mechanisms that remain poorly characterized. Here, we chose the spared nerve injury model in rats to analyze the contribution of mesenchymal stem cells (MSCs) in the mechanisms of action of IMT504. We show that a single subcutaneous administration of IMT504 reverses mechanical and cold allodynia for at least 5 weeks posttreatment. This event correlated with long-lasting increases in the percentage of MSCs in peripheral blood and injured sciatic nerves, in a process seemingly influenced by modifications in the CXCL12-CXCR4 axis. Also, injured nerves presented with reduced tumor necrosis factor-α and interleukin-1ß and increased transforming growth factor-ß1 and interleukin-10 protein levels. In vitro analysis of IMT504-pretreated rat or human MSCs revealed internalized oligodeoxynucleotide and confirmed its promigratory effects. Moreover, IMT504-pretreatment induced transcript expression of Tgf-ß1 and Il-10 in MSCs; the increase in Il-10 becoming more robust after exposure to injured nerves. Ex vivo exposure of injured nerves to IMT504-pretreated MSCs confirmed the proinflammatory to anti-inflammatory switch observed in vivo. Interestingly, the sole exposure of injured nerves to IMT504 also resulted in downregulated Tnf-α and Il-1ß transcripts. Altogether, we reveal for the first time a direct association between the antiallodynic actions of IMT504, its promigratory and cytokine secretion modulating effects on MSCs, and further anti-inflammatory actions at injured nerves. The recapitulation of key outcomes in human MSCs supports the translational potential of IMT504 as a novel treatment for neuropathic pain with a unique mechanism of action involving the regulation of neuroimmune interactions.
Asunto(s)
Hiperalgesia , Células Madre Mesenquimatosas , Animales , Antiinflamatorios , Hiperalgesia/etiología , Hiperalgesia/terapia , Interleucina-10 , Oligodesoxirribonucleótidos/farmacología , Ratas , Ratas Sprague-Dawley , Nervio Ciático/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Proliferative retinopathies produces an irreversible type of blindness affecting working age and pediatric population of industrialized countries. Despite the good results of anti-VEGF therapy, intraocular and systemic complications are often associated after its intravitreal use, hence novel therapeutic approaches are needed. The aim of the present study is to test the effect of the AS1411, an antiangiogenic nucleolin-binding aptamer, using in vivo, ex vivo and in vitro models of angiogenesis and propose a mechanistic insight. Our results showed that AS1411 significantly inhibited retinal neovascularization in the oxygen induced retinopathy (OIR) in vivo model, as well as inhibited branch formation in the rat aortic ex vivo assay, and, significantly reduced proliferation, cell migration and tube formation in the HUVEC in vitro model. Importantly, phosphorylated NCL protein was significantly abolished in HUVEC in the presence of AS1411 without affecting NFκB phosphorylation and -21 and 221-angiomiRs, suggesting that the antiangiogenic properties of this molecule are partially mediated by a down regulation in NCL phosphorylation. In sum, this new research further supports the NCL role in the molecular etiology of pathological angiogenesis and identifies AS1411 as a novel anti-angiogenic treatment.
Asunto(s)
Aptámeros de Nucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/administración & dosificación , Oxígeno/efectos adversos , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Neovascularización Retiniana/tratamiento farmacológico , Animales , Aptámeros de Nucleótidos/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inyecciones Intravítreas , Ratones , MicroARNs/genética , Oligodesoxirribonucleótidos/farmacología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosforilación/efectos de los fármacos , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Neovascularización Retiniana/inducido químicamente , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , NucleolinaRESUMEN
Inflammatory pain associates with spinal glial activation and central sensitization. Systemic administration of IMT504, a non-CpG oligodeoxynucleotide originally designed as an immunomodulator, exerts remarkable anti-allodynic effects in rats with complete Freund´s adjuvant (CFA)-induced hindpaw inflammation. However, the anti-nociceptive mechanisms of IMT504 remain unknown. Here we evaluated whether IMT504 blocks inflammatory pain-like behavior by modulation of spinal glia and central sensitization. The study was performed in Sprague Dawley rats with intraplantar CFA, and a single lumbosacral intrathecal (i.t.) administration of IMT504 or vehicle was chosen to address if changes in glial activation and spinal sensitization relate to the pain-like behavior reducing effects of the ODN. Naïve rats were also included. Von Frey and Randall-Selitto tests, respectively, exposed significant reductions in allodynia and mechanical hypersensitivity, lasting at least 24 h after i.t. IMT504. Analysis of electromyographic responses to electrical stimulation of C fibers showed progressive reductions in wind-up responses. Accordingly, IMT504 significantly downregulated spinal glial activation, as shown by reductions in the protein expression of glial fibrillary acidic protein, CD11b/c, Toll-like receptor 4 (TLR4) and the phosphorylated p65 subunit of NFκB, evaluated by immunohistochemistry and western blot. In vitro experiments using early post-natal cortical glial cultures provided further support to in vivo data and demonstrated IMT504 internalization into microglia and astrocytes. Altogether, our study provides new evidence on the central mechanisms of anti-nociception by IMT504 upon intrathecal application, and further supports its value as a novel anti-inflammatory ODN with actions upon glial cells and the TLR4/NFκB pathway. Intrathecal administration of the non-CpG ODN IMT504 fully blocks CFA-induced mechanical allodynia and hypersensitivity, in association with reduced spinal sensitization. Administration of the ODN also results in downregulated gliosis and reduced TLR4-NF-κB pathway activation. IMT504 uptake into astrocytes and microglia support the concept of direct modulation of CFA-induced glial activation.
Asunto(s)
Sensibilización del Sistema Nervioso Central , Hiperalgesia , Animales , Hiperalgesia/tratamiento farmacológico , Inflamación , Oligodesoxirribonucleótidos , Dolor , Ratas , Ratas Sprague-Dawley , Médula EspinalRESUMEN
Type 1 diabetes occurs as a consequence of progressive autoimmune destruction of beta cells. A potential treatment for this disease should address the immune attack on beta cells and their preservation/regeneration. The objective of this study was to elucidate whether the immunomodulatory synthetic oligonucleotide IMT504 was able to ameliorate diabetes in NOD mice and to provide further understanding of its mechanism of action. We found that IMT504 restores glucose homeostasis in a diabetes mouse model similar to human type 1 diabetes, by regulating expression of immune modulatory factors and improving beta cell function. IMT504 treatment markedly improved fasting glycemia, insulinemia, and homeostatic model assessment of beta cell function (HOMA-Beta cell) index. Moreover, this treatment increased islet number and decreased apoptosis, insulitis, and CD45+ pancreas-infiltrating leukocytes. In a long-term treatment, we observed improvement of glucose metabolism up to 9 days after IMT504 cessation and increased survival after 15 days of the last IMT504 injection. We postulate that interleukin (IL)-12B (p40), possibly acting as a homodimer, and Galectin-3 (Gal-3) may function as mediators of this immunomodulatory action. Overall, these results validate the therapeutic activity of IMT504 as a promising drug for type 1 diabetes and suggest possible downstream mediators of its immunomodulatory effect.
Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Insulina/genética , Oligodesoxirribonucleótidos/farmacología , Oligonucleótidos/farmacología , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Modelos Animales de Enfermedad , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Ratones , Ratones Endogámicos NOD , Oligodesoxirribonucleótidos/genética , Oligonucleótidos/genética , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patologíaRESUMEN
IMT504 is a non-CPG, non-coding synthetic oligodeoxinucleotide (ODN) with immunomodulatory properties and a novel inhibitory role in pain transmission, exerting long-lasting analgesic effects upon multiple systemic administrations. However, its mechanisms of anti-nociceptive action are still poorly understood. In the present study in male adult rats undergoing complete Freund's adjuvant-induced hindpaw inflammation, we focused in the analysis of the immunomodulatory role of IMT504 over the cellular infiltrate, the impact on the inflammatory milieu, and the correlation with its anti-allodynic role. By means of behavioral analysis, we determined that a single subcutaneous administration of 6 mg/kg of IMT504 is sufficient to exert a 6-week-long full reversal of mechanical and cold allodynia, compromising neither acute pain perception nor locomotor activity. Importantly, we found that the anti-nociceptive effects of systemic IMT504, plus quick reductions in hindpaw edema, were associated with a modulatory action upon cellular infiltrate of B-cells, macrophages and CD8+ T-cells populations. Accordingly, we observed a profound downregulation of several inflammatory leukocyte adhesion proteins, chemokines and cytokines, as well as of ß-endorphin and an increase in the anti-inflammatory cytokine, interleukin-10. Altogether, we demonstrate that at least part of the anti-nociceptive actions of IMT504 relate to the modulation of the peripheral immune system at the site of injury, favoring a switch from pro- to anti-inflammatory conditions, and provide further support to its use against chronic inflammatory pain. Graphical abstract GA short description - IMT504 systemic Administration. Systemic administration of the non-CpG ODN IMT504 results in a 6-week long blockade of pain-like behavior in association with anti-inflammatory responses at the site of injury. These include modulation of lymphoid and myeloid populations plus downregulated expression levels of multiple pro-inflammatory cytokines and ß-endorphin. Nocifensive responses and locomotion remain unaltered.
Asunto(s)
Analgesia , Dolor Crónico , Animales , Linfocitos T CD8-positivos , Dolor Crónico/tratamiento farmacológico , Modelos Animales de Enfermedad , Hiperalgesia , Inflamación/tratamiento farmacológico , Masculino , Oligodesoxirribonucleótidos , RatasRESUMEN
Changing the immune responses to allergens is the cornerstone of allergen immunotherapy. Allergen-specific immunotherapy that consists of repeated administration of increasing doses of allergen extract is potentially curative. The major inconveniences of allergen-specific immunotherapy include failure to modify immune responses, long-term treatment leading to non-compliance and the potential for developing life-threating anaphylaxis. Here we investigated the effect of a novel liposomal formulation carrying low dose of allergen combined with CpG-ODN, a synthetic TLR9 agonist, on established allergic lung inflammation. We found that challenge with allergen (OVA) encapsulated in cationic liposome induced significantly less severe cutaneous anaphylactic reaction. Notably, short-term treatment (three doses) with a liposomal formulation containing co-encapsulated allergen plus CpG-ODN, but not allergen or CpG-ODN alone, reversed an established allergic lung inflammation and provided long-term protection. This liposomal formulation was also effective against allergens derived from Blomia tropicalis mite extract. The attenuation of allergic inflammation was not associated with increased numbers of Foxp3-positive or IL-10-producing regulatory T cells or with increased levels of IFN-gamma in the lungs. Instead, the anti-allergic effect of the liposomal formulation was dependent of the innate immune signal transduction generated in CD11c-positive putative dendritic cells expressing MyD88 molecule. Therefore, we highlight the pivotal role of dendritic cells in mediating the attenuation of established allergic lung inflammation following immunotherapy with a liposomal formulation containing allergen plus CpG-ODN.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Alérgenos/administración & dosificación , Asma/inmunología , Células Dendríticas/inmunología , Desensibilización Inmunológica/métodos , Sistemas de Liberación de Medicamentos/métodos , Factor 88 de Diferenciación Mieloide/metabolismo , Oligodesoxirribonucleótidos/administración & dosificación , Transducción de Señal/efectos de los fármacos , Alérgenos/efectos adversos , Anafilaxia/inmunología , Anafilaxia/prevención & control , Animales , Asma/inducido químicamente , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Liposomas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Resultado del TratamientoRESUMEN
Different mutations of the OTOF gene, encoding for otoferlin protein expressed in the cochlear inner hair cells, induces a form of deafness that is the major cause of nonsyndromic recessive auditory neuropathy spectrum disorder in humans. We report the generation of the first large animal model of OTOF mutations using the CRISPR system associated with different Cas9 components (mRNA or protein) assisted by single strand oligodeoxynucleotides (ssODN) to induce homology-directed repair (HDR). Zygote microinjection was performed with two sgRNA targeting exon 5 and 6 associated to Cas9 mRNA or protein (RNP) at different concentrations in a mix with an ssODN template targeting HDR in exon 5 containing two STOP sequences. A total of 73 lambs were born, 13 showing indel mutations (17.8%), 8 of which (61.5%) had knock-in mutations by HDR. Higher concentrations of Cas9-RNP induced targeted mutations more effectively, but negatively affected embryo survival and pregnancy rate. This study reports by the first time the generation of OTOF disrupted sheep, which may allow better understanding and development of new therapies for human deafness related to genetic disorders. These results support the use of CRISPR/Cas system assisted by ssODN as an effective tool for gene editing in livestock.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Proteínas de la Membrana/genética , Oligodesoxirribonucleótidos/genética , Ovinos/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Femenino , Masculino , Microinyecciones , Mutación , Reparación del ADN por Recombinación , Ovinos/embriologíaRESUMEN
BACKGROUND AND AIMS: Single-stranded DNA oligodeoxynucleotides (ssODNs) have been shown to elicit immune responses in mammals. In plants, RNA and genomic DNA can activate immunity, although the exact mechanism through which they are sensed is not clear. The aim of this work was to study the possible effect of ssODNs on plant immunity. KEY RESULTS: The ssODNs IMT504 and 2006 increased protection against the pathogens Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea but not against tobacco mosaic virus-Cg when infiltrated in Arabidopsis thaliana. In addition, ssODNs inhibited root growth and promoted stomatal closure in a concentration-dependent manner, with half-maximal effective concentrations between 0.79 and 2.06 µm. Promotion of stomatal closure by ssODNs was reduced by DNase I treatment. It was also diminished by the NADPH oxidase inhibitor diphenyleneiodonium and by coronatine, a bacterial toxin that inhibits NADPH oxidase-dependent reactive oxygen species (ROS) synthesis in guard cells. In addition it was found that ssODN-mediated stomatal closure was impaired in bak1-5, bak1-5/bkk1, mpk3 and npr1-3 mutants. ssODNs also induced early expression of MPK3, WRKY33, PROPEP1 and FRK1 genes involved in plant defence, an effect that was reduced in bak1-5 and bak1-5/bkk1 mutants. CONCLUSIONS: ssODNs are capable of inducing protection against pathogens through the activation of defence genes and promotion of stomatal closure through a mechanism similar to that of other elicitors of plant immunity, which involves the BAK1 co-receptor, and ROS synthesis.
Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Oligodesoxirribonucleótidos , Enfermedades de las Plantas , Inmunidad de la Planta , Pseudomonas syringae , Factores de TranscripciónRESUMEN
Introduction: This review aims to assess the available technologies, advances, and trends from technological readiness level 4 to level 8 for cancer immunologic therapeutics using the association of OX40 and CPG-ODN, usually known as cancer vaccine.Areas covered: Patent documents and clinic studies referring to the use of CpG-ODN and of OX40 association for cancer therapeutics. Patent data were obtained within the worldwide basis of the European Patent Office (EPO). The 138 patents of 36 patent families found were analyzed focusing on word distribution of technology developers and potential markets, legal status, annual evolution of first priority, technological domains, applicants and co-applicants and detailed analysis of each technology. Two clinical studies are in progress.Expert opinion: Traditional methods in post cancer diagnosis are being replaced by immunological association therapies. It is expected that the development of cancer vaccines will expand the scope of cancer-specific immunotherapy, especially if associated with alternative systems for expression and delivery with future potential. It is expected that genetic and controlled and/or specific nano delivery are improved. Furthermore, these new developments will likely address the problem of long-term treatments, reducing cancer mortality and reducing patient numbers worldwide.
Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Ligando OX40 , Oligodesoxirribonucleótidos , Receptores OX40/efectos de los fármacos , Adyuvantes Inmunológicos , Animales , Humanos , Inmunoterapia , Patentes como AsuntoRESUMEN
Corneal neovascularization (CNV) is a common sight-threatening pathology that can be induced by a variety of inflammatory and angiogenic stimuli. Current CNV treatments include anti-inflammatory drugs and antibody-based inhibitors of vascular endothelial growth factor (VEGF). However, these are not always effective and novel therapeutic approaches are needed. Previous work has indicated a role for nucleolin (NCL) in VEGF-mediated neoangiogenesis in a suture-induced CNV model. The major goal for this current study is to test the effect of AS1411, a NCL-binding DNA aptamer that has reached human clinical trials, on neovascularization in a murine model of VEGF-mediated CNV. Our results show that topical administration of AS1411 can significantly inhibit corneal neovascularization in this model. Mechanistic studies indicate that AS1411 reduces the VEGF-stimulated proliferation, migration, and tube formation of primary cells obtained from human limbus stroma (HLSC). AS1411 treatment also significantly reduced VEGF-stimulated induction of miR-21 and miR-221 in HLSC, suggesting a role for these pro-angiogenic miRNAs in mediating the effects of AS1411 in this system. In sum, this new research further supports a role for NCL in the molecular etiology of CNV and identifies AS1411 as a potential anti-angiogenic CNV treatment that works by a novel mechanism of action.